Review of Mechanisms and Suppression Methods for Low-Frequency Pressure Fluctuations in Open-Jet Wind Tunnels
Abstract
:1. Introduction
1.1. Open Jet Wind Tunnel
1.2. Low-Frequency Pressure Fluctuation in Open-Jet Wind Tunnel
2. Mechanism of Low-Frequency Pressure Fluctuation
2.1. Excitation Source of Low-Frequency Pressure Fluctuation
2.2. Resonance Mechanism of Low-Frequency Pressure Fluctuation
2.2.1. Circuit and Helmholtz-Type Resonance
2.2.2. Planar Standing Wave in Plenum
- Plenum standing wave as an excitation source in LAWT
- Mechanism and prediction of plenum standing wave
- Planar standing wave in SKLA-01
- Other cases of resonance between plenum standing wave and edgetone
3. Suppression Methods for Low-Frequency Pressure Fluctuation
3.1. Vortex Generators
3.1.1. Two-Dimensional Vortex Generators
3.1.2. Three-Dimensional Vortex Generators
3.1.3. Corner Vortex Generator
3.2. Collector Optimization
3.2.1. Breathing Gap
3.2.2. Shape Optimization
3.3. Other Passive Control Methods
3.4. Active Control Methods
4. Concluding Remarks
- Mechanism
- Control methods
- Unsolved problems
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AAWT | Audi Aeroacoustic Wind Tunnel |
ARC | Active Resonance Control |
BMW AVZ | Aerodynamic Test Center of Bavarian Motor Works |
CVG | Corner Vortex Generator |
DNW-LLF | Large Low-Speed Facility of the German–Dutch Wind Tunnels |
DNW-NWB | Low-Speed Wind Tunnel Braunschweig of the German–Dutch Wind Tunnels |
FKFS | Institute of Automotive Engineering and Vehicle Engines Stuttgart |
IVK-MWT | the IVK 1:4-scale Model Wind Tunnel in Stuttgart |
LAWT | Large Acoustic Wind Tunnel |
HAWT | Hyundai Motor Aeroacoustic Wind Tunnel |
NASA | National Aeronautics and Space Administration |
NRC/IAR | Institute for Aerospace Research of the National Research Council of Canada |
RMS | Root Mean Square |
References
- Barlow, J.B.; Rae, W.H.; Pope, A. Low-Speed Wind Tunnel Testing, 3rd ed.; John Wiley & Sons: New York, NY, USA, 1999. [Google Scholar]
- Bergmann, A. The Aeroacoustic Wind Tunnel DNW-NWB. In Proceedings of the 18th AIAA/CEAS Aeroacoustics Conference (33rd AIAA Aeroacoustics Conference), Colorado Springs, CO, USA, 4–6 June 2012. Technical Report AIAA 2012-2173. [Google Scholar]
- Ciobaca, V.; Melber-Wilkending, S.; Wichmann, G.; Bergmann, A.; Küpper, A. Experimental and Numerical Studies of the Low Speed Wind Tunnel DNW-NWB’s Open Test Section Towards an Aeroacoustic Facility. In Proceedings of the 18th AIAA/CEAS Aeroacoustics Conference (33rd AIAA Aeroacoustics Conference), Colorado Springs, CO, USA, 4–6 June 2012. Technical Report AIAA 2012-2174. [Google Scholar] [CrossRef]
- Holthusen, H.; Kooi, J.W. Model and Full-Scale Investigations of the Low Frequency Vibration Phenomena of the DNW Open Jet. In Proceedings of the 79th AGARD Fluid Dynamics Panel Symposium: Aerodynamics of Wind Tunnel Circuits and Their Components, Moscow, Russia, 30 September 1996; Number AGARD-CP-585. pp. 26.1–26.8. [Google Scholar]
- Jia, Q.; Zhu, Y.; Bao, D.; Rashidi, M.M.; Yang, Z. On the Low Frequency Pressure Fluctuation in a 3/4 Open Jet Automotive Wind Tunnel. J. Appl. Fluid Mech. 2019, 12, 1359–1369. [Google Scholar] [CrossRef]
- Rennie, M. Effect of Jet Length on Pressure Fluctuations in 3/4 Open-Jet Wind Tunnels. In Proceedings of the Motor Industry Research Association Vehicle Aerodynamics 2000 Symposium, Reno, NV, USA, 9–11 October 2000. [Google Scholar]
- Rennie, M.; Kim, M.S.; Lee, J.H.; Kee, J.D. Suppression of Open-Jet Pressure Fluctuations in the Hyundai Aeroacoustic Wind Tunnel. SAE Trans. 2004, 113, 404–418. [Google Scholar]
- Amandolese, X.; Vartanian, C. Reduction of 3/4 Open Jet Low-Frequency Fluctuations in the S2A Wind Tunnel. J. Wind. Eng. Ind. Aerodyn. 2010, 98, 568–574. [Google Scholar] [CrossRef]
- Pott-Pollenske, M.; von Heesen, W.; Bergmann, A. Acoustical Preexamination Work and Characterization of the Low Noise Wind Tunnel DNW-NWB. In Proceedings of the 18th AIAA/CEAS Aeroacoustics Conference (33rd AIAA Aeroacoustic Conference), Colorado Springs, CO, USA, 4–6 June 2012. Number AIAA-2012-2175. [Google Scholar] [CrossRef]
- Chong, T.; Joseph, P.; Davies, P. Design and Performance of an Open Jet Wind Tunnel for Aero-Acoustic Measurement. Appl. Acoust. 2009, 70, 605–614. [Google Scholar] [CrossRef]
- Kudo, T.; Komatsu, Y.; Maeda, K.; Nishimura, M. Techniques for Reducing Low-Frequency Fluctuations in Aeroacoustic Wind Tunnels. J. Environ. Eng. 2009, 4, 289–301. [Google Scholar] [CrossRef]
- Jing, H.; Xia, Y.; Li, H.; Xu, Y.; Li, Y. Excitation Mechanism of Rain-Wind Induced Cable Vibration in a Wind Tunnel. J. Fluids Struct. 2017, 68, 32–47. [Google Scholar] [CrossRef]
- Zheng, Z.; Wang, Y.; Yang, Z. Buffeting Phenomenon of Open-jet Automotive Aero-acoustic Wind Tunnel. J. Tongji Univ. (Nat. Sci.) 2009, 37, 253–257. (In Chinese) [Google Scholar]
- Zheng, Z.; Wang, Y.; Yang, Z. A Study on the Mechanism of Buffeting Suppression of the Gap at Collector Throat in Automotive Wind Tunnel. Automot. Eng. 2008, 30, 804–807. (In Chinese) [Google Scholar]
- Zheng, Z.; Wang, Y.; Yang, Z. An Experimental Study on the Suppression of the Low Frequency Pulsation of Model Wind Tunnel. Automot. Eng. 2007, 29, 369–371. (In Chinese) [Google Scholar]
- Sellers, W.L.I.; Applin, Z.T.; Molloy, J.K. Effect of Jet Exit Vanes on Flow Pulsations in an Open-Jet Wind Tunnel; Technical Report NASA-TM-86299; Langley Research Center: Hampton, VA, USA, 1985.
- Lacey, J. A Study of the Pulsations in a 3/4 Open Jet Wind Tunnel; Technical Report SAE 2002-01-0251; SAE 2002 World Congress & Exhibition: Detroit, MI, USA, 2002. [Google Scholar] [CrossRef]
- Arnette, S.A.; Buchanan, T.D.; Zabat, M. On Low-Frequency Pressure Pulsations and Static Pressure Distribution in Open Jet Automotive Wind Tunnels; SAE Technical Paper 1999-01-0813; International Congress & Exposition; SAE International: Warrendale, PA, USA, 1999. [Google Scholar] [CrossRef]
- Von Heesen, W.; Höpfer, M. Suppression of Wind Tunnel Buffeting by Active Flow Control. SAE Trans. 2004, 113, 431–441. [Google Scholar]
- Ahuja, K.; Massey, K.; D’Agostino, M. Flow/Acoustic Interactions in Open-Jet Wind Tunnels. In Proceedings of the 3rd AIAA/CEAS Aeroacoustics Conference, Atlanta, GA, USA, 12–14 May 1997. Technical Report AIAA-97-1691-CP. [Google Scholar] [CrossRef]
- Manuel, G.S.; Molloy, J.K.; Barna, P.S. Effect of Collector Configuration on Test-Section Turbulence Levels in an Open-Jet Wind Tunnel; Technical Report NASA-TM-4333; Langley Research Center: Hampton, VA, USA, 1992.
- Jin, L.; Gu, Y.; Deng, X.B.; Sun, H.; Yue, T.; Zhang, J. Standing wave and its impact on the low-frequency pressure fluctuation in an open jet wind tunnel. J. Wind. Eng. Ind. Aerodyn. 2021, 208, 104413. [Google Scholar] [CrossRef]
- Jin, L.; Sun, H.; Jiang, Y.; Liang, Y.; Zhang, J. Suppression of low-frequency pressure pulsations in an open jet wind tunnel by corner vortex generators. AIP Adv. 2021, 11, 065306. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, K.; Jin, L.; Zhang, R.; Ma, R.; Li, J. Low-frequency fluctuations and their suppression in the 5.5 m × 4 m aeroacoustic wind tunnel at CARDC. Appl. Acoust. 2021, 180, 108113. [Google Scholar] [CrossRef]
- Jin, L.; Deng, X.B.; Wang, X.; Gu, Y.; Liang, Y.; Lian, Z. Standing waves in the plenum of an open jet wind tunnel: Resonance and self-excited oscillation. AIP Adv. 2022, 12, 025105. [Google Scholar] [CrossRef]
- Wickern, G.; von Heesen, W.; Wallmann, S. Wind Tunnel Pulsations and their Active Suppression. SAE Trans. 2000, 109, 1403–1416. [Google Scholar]
- Jia, Q.; Huang, L.; Zhu, Y.; Rashidi, M.; Xu, J.; Yang, Z. Experimental research of active control optimization on a 3/4 open-jet wind tunnel’s jet section. Alex. Eng. J. 2021, 60, 2265–2278. [Google Scholar] [CrossRef]
- Rockwell, D.; Naudascher, E. Self-Sustained Oscillations of Impinging Free Shear Layers. Annu. Rev. Fluid Mech. 1979, 11, 67–94. [Google Scholar] [CrossRef]
- Rockwell, D. Oscillations of Impinging Shear Layers. AIAA J. 1983, 21, 645–664. [Google Scholar] [CrossRef]
- Rossiter, J.E. Wind-Tunnel Experiments on the Flow over Rectangular Cavities at Subsonic and Transsonic Speeds; RAE Technical Report No. 64037; Royal Aircraft Establishment RAE: Farnborough, UK, 1964. [Google Scholar]
- Wang, Y.; Yang, Z.; Li, Q. Methods to Control Low Frequency Pulsation in Open-Jet Wind Tunnel. Appl. Acoust. 2012, 73, 666–672. [Google Scholar] [CrossRef]
- Evert, F.; Miehling, H. Active Suppression of Buffeting at the Audi AAWT: Operational Experiences and Enhancements of the Control Scheme. SAE Trans. 2004, 113, 419–430. [Google Scholar]
- Drazin, P.G. Introduction to Hydrodynamic Stability; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Sun, M.; Liang, J.; Wang, Z. Numerical Study on Self-sustained Oscillation in Cavity Flameholders of Scramjets. Chin. J. Comput. Phys. 2007, 24, 591–597. [Google Scholar] [CrossRef]
- Powell, A. On edge tones and associated phenomena. Acta Acust. United Acust. 1953, 3, 233–243. [Google Scholar]
- Powell, A. On the Edgetone. J. Acoust. Soc. Am. 1961, 33, 395–409. [Google Scholar] [CrossRef]
- Chanaud, R.C.; Powell, A. Some Experiments Concerning the Hole and Ring Tone. J. Acoust. Soc. Am. 1965, 37, 902–911. [Google Scholar] [CrossRef]
- Brackenridge, J. Self-Maintained Transverse Oscillations of a Jet; Edge Tones. J. Acoust. Soc. Am. 1959, 31, 114. [Google Scholar] [CrossRef]
- Rockwell, D. Transverse Oscillations of a Jet in a Jet-Splitter System. J. Basic Eng. 1972, 94, 675–681. [Google Scholar] [CrossRef]
- Lepicovsky, J.; Ahuja, K.K. Some new results on edge-tone oscillations in high-speed subsonic jets. In Proceedings of the AIAA 8th Aeroacoustics Conference, Atlanta, GA, USA, 11–13 April 1983. Number AIAA-83-0665. [Google Scholar] [CrossRef]
- Lin, J.C.; Rockwell, D. Oscillations of a Turbulent Jet Incident Upon an Edge. J. Fluids Struct. 2001, 15, 791–829. [Google Scholar] [CrossRef]
- Curle, N. The Mechanics of Edge-Tones. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1953, 216, 412–424. [Google Scholar]
- Curle, N. The Influence of Solid Boundaries Upon Aerodynamic Sound. Proc. R. Soc. A Math. Phys. Eng. Sci. 1955, 231, 505–514. [Google Scholar] [CrossRef]
- Nyborg, W.L. Self-Maintained Oscillations of the Jet in a Jet-Edge System. I. J. Acoust. Soc. Am. 1954, 26, 174–182. [Google Scholar] [CrossRef]
- Brown, G.B. The mechanism of edge-tone production. Proc. Phys. Soc. 1937, 49, 508–521. [Google Scholar] [CrossRef]
- Stegen, G.; Karamcheti, K. Multiple tone operation of edgetones. J. Sound Vib. 1970, 12, 281–284. [Google Scholar] [CrossRef]
- Holger, D.K.; Wilson, T.A.; Beavers, G.S. Fluid mechanics of the edgetone. J. Acoust. Soc. Am. 1977, 62, 1116–1128. [Google Scholar] [CrossRef]
- Lighthill, M. On Sound Generated Aerodynamically. I. General Theory. Proc. R. Soc. A Math. Phys. Eng. Sci. 1952, 211, 564–587. [Google Scholar] [CrossRef]
- Jin, L. Research on the Mechanism and Suppression Methods of Low-Frequency Pressure flUctuations in Open Jet Wind Tunnels. Ph.D. Thesis, Nanjing University of Aeronautics and Astronautics, Nanjing, China, 2022. (In Chinese). [Google Scholar]
- Hu, X.; Luo, Y.; Leng, J.; Guo, P.; Yu, T.; Wang, J. The low frequency pressure pulsation and control of the open-jet wind tunnel. Sci. Rep. 2022, 12, 19090. [Google Scholar] [CrossRef] [PubMed]
- Hoad, D.R.; Martin, R.M. Background Noise Measurements from Jet Exit Vanes Designed to Reduce Flow Pulsations in an Open-Jet Wind Tunnel; Technical Report NASA TM-86383; NASA: Hampton, VA, USA, 1985.
- Maruta, Y.; Minorikawa, G.; Maruta, Y.; Minorikawa, G. Developments of Low-Noise Contractive Nozzle Used in Acoustic Wind-Tunnel. In Proceedings of the 3rd AIAA/CEAS Aeroacoustics Conference, Atlanta, GA, USA, 12–14 May 1997. Technical Report AIAA-97-1679-CP. [Google Scholar] [CrossRef]
- Bao, D.; Jia, Q.; Yang, Z. Effect of Vortex Generator on Flow-Field Quality in 3/4 Open Jet Automotive Wind Tunnel. SAE Int. J. Passeng. Cars-Mech. Syst. 2017, 10, 224–234. [Google Scholar] [CrossRef]
- Blumrich, R.; Widdecke, N.; Wiedemann, J.; Michelbach, A.; Wittmeier, F.; Beland, O. New FKFS Technology at the Full-Scale Aeroacoustic Wind Tunnel of University of Stuttgart. SAE Int. J. Passeng. Cars-Mech. Syst. 2015, 8, 294–305. [Google Scholar] [CrossRef]
- Michelbach, A.; Blumrich, R. Upgrade of the full-scale aeroacoustic wind tunnel of Stuttgart University by FKFS. In 15. Internationales Stuttgarter Symposium; Springer Fachmedien Wiesbaden: Wiesbaden, Germany, 2015; pp. 497–523. [Google Scholar] [CrossRef]
- Lacey, J. Concept for Reducing the Cost of Subsonic Wind Tunnels. In Proceedings of the USAF Developmental Test and Evaluation Summit, Woodland Hills, CA, USA, 14–16 November 2004. Technical Report AIAA 2004-6828. [Google Scholar] [CrossRef]
- Lacey, J. Further Tests of a Non-Resonant Configuration: SAE 2003 World Congress & Exhibition; SAE International: Detroit, MI, USA, 2003. [Google Scholar] [CrossRef]
- Hanson, C.E. The Design, Development and Construction of a Low-Noise, Low-Turbulence Wind Tunnel. Master’s Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 1967. [Google Scholar]
- Jin, L.; Jiang, X.; Liu, Z.; Deng, X.B. Study on the mechanism impact of through-hole in collector wall on the low frequency oscillation on the wind tunnel FL-14. In Proceedings of the 8th National Conference on Fluid Mechanics, Lanzhou, China, 18–21 September 2014. (In Chinese). [Google Scholar]
- Kharazi, A.; Duell, E.; Walter, J. Application of Helmholtz Resonators in Open Jet Wind Tunnels. SAE Int. J. Passeng. Cars-Mech. Syst. 2013, 6, 436–447. [Google Scholar] [CrossRef]
- Martin, R.M.; Brooks, T.F.; Hoad, D.R. Reduction of background noise induced by wind tunnel jet exit vanes. AIAA J. 1985, 23, 1631–1632. [Google Scholar] [CrossRef]
- Paterson, R.W.; Vogt, P.G.; Foley, W.M. Design and Development of the United Aircraft Research Laboratories Acoustic Research Tunnel. J. Aircr. 1973, 10, 427–433. [Google Scholar] [CrossRef]
- Jacobs, E.N. Investigation of Air Flow in Open-Throat Wind Tunnels; Technical Report NACA Rep.322; NASA: Langley Field, VA, USA, 1929.
Resonance Mechanism | Wind Tunnel | Frequency (Mode) (Intensity) | Suppression Methods |
---|---|---|---|
Standing wave modes of circuit loop | HAWT [7] | 1.4 Hz () (); | Breather gap in collector |
2.6 Hz () () | |||
S2A [8] | 1.6 Hz () (≈100 dB); | Passive flap on upper nozzle edge | |
2.8 Hz (n = 3) (>100 dB); | |||
4.4 Hz (n = 5) (≈100 dB); | |||
6.3 Hz (n = 7) (≈100 dB) | |||
AAWT [26] | 2.4 Hz () (121 dB); | ARC | |
3.9 Hz () (110 dB); | |||
6.8 Hz () (120 dB) | |||
1/20-scale AAWT [26] | 53 Hz () (102 dB); | ARC | |
81 Hz () (110 dB) | |||
Automobile wind tunnel of Jilin University [50] | 2.5 Hz (×) () | Spoiler at nozzle; | |
Flow-follow device (Simulation only) | |||
DNW-LLF [4] | 33 Hz (×) (×) | Tetrahedral vortex generators at nozzle | |
1/7-scaled open-jet of NRC/IAR [6] | 4 Hz () (×); | Decreasing jet length; | |
12 Hz () (×); | |||
18 Hz () (×); | Increasing collector inlet size | ||
24 Hz () (×) | |||
Old DNW-NWB [9] | 3.78 Hz (×) (×); | Seiferth wings at nozzle | |
7.56 Hz (×) (×); | |||
9.45 Hz (×) (×) | |||
IVK-MWT [19] | 18 Hz () (130 dB) | FKFS-flaps (movable) | |
Model wind tunnel at Mitsubishi Heavy Industries [11] | 11 Hz () (×); | Entrainment system; | |
26 Hz () (×) | Acoustic opening; | ||
Duct cross-sectional jump | |||
SKLA-01 [25] | 169 Hz () (130 dB) | × | |
Planar standing waves of plenum | LAWT [22,23,24,25] | 5.4 Hz () (120 dB) | CVG; |
Changing plenum dimension (Simulation only) | |||
SKLA-01 [25] | 127 Hz () (×); | Changing plenum size; | |
109 Hz () (×); | Increasing collector inlet size | ||
169 Hz () (×) | |||
IVK-MWT [19] | 18 Hz () (130 dB); | × | |
22 Hz () (134 dB); | |||
239 Hz () (118 dB) | |||
DNW-LLF [4] | 5.5 Hz () (×); | × | |
Helmholtz modes of plenum | S2A [8] | 1.6 Hz (×) (100 dB) | Passive flap |
1/20-scale AAWT [26] | 45 Hz (×) (99 dB) | ARC | |
Reverberation modes of plenum | IVK-MWT [19] | 22 Hz (0,1,0) (134 dB) * | FKFS-laps (movable) |
39 Hz (0,0,1 or 2,0,0) (118 dB) ** | |||
42 Hz (1,0,1 or 0,1,1) (111 dB) ** |
Direction | Max. SPL (dB) in Plenum Corner | Frequency (Hz) at max. SPL | Wind Speed (m/s) at max. SPL | 1 |
---|---|---|---|---|
Length (X) | 130 | 18 | 44.4 | 5.6% |
Width (Y) | 134 | 22 | 55.5 | 1.7% |
Height (Z) | 118 | 39 | 77.8 | 14.2% |
Suppression Methods | Configuration | Effectiveness | Side Effect | Cost | Application Range | |
---|---|---|---|---|---|---|
Nozzle Vortex Generator (VG) | 2D | Vanes, tabs, teeth, spoiler, Seiferth wing [2,3,4,8,9,16,51,52,53] | − | |||
3D | Tetrahedrons, FKFS besst [4,54,55] | 0 | ||||
CVG | 3D VG on a square nozzle corners [23,49] | 0 | + | |||
Collecter optimization | Breathing gap | gaps/slots/holes in collector [4,6,7,14,15,21,58,59] | + | + | ||
Shape optimization | Inclined inlet, increasing inlet size, reshaping inlet [4,6,17,21,23,31,49,56,57] | − | 0 | |||
Helmholtz resonator | Chambers connected to wind tunnel through a tube [31,55,60] | 0 | + | |||
Modifying the circuit loop | Entrainment system | Entrainment inlets beside nozzle and entrainment outlets around the first corner [11] | + | + | − | 0 |
Cross-section area changing | Abrupt changing of cross-section area at certain locations of circuit loop [9] | + | − | 0 | ||
Membrane coverd apertures | Adding membrane-covered apertures at certain locations of the circuit loop [19] | + | 0 | + | ||
Active control methods | ARC | A plenum-mounted microphone and a wall-mounted loudspeaker in circuit loop [26,32] | 0 | 0 | ||
Movable flaps | Electrically driven movable flaps at nozzle [19] | − | 0 | 0 | ||
Synthetic jet | Synthetic jet exciters at nozzle [27] | − | 0 | 0 | ||
Flow-follow device | Airflow injection around nozzle [50] | + | + | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, L.; Deng, X.B.; Wang, X.; Zhang, J.; Zeng, W. Review of Mechanisms and Suppression Methods for Low-Frequency Pressure Fluctuations in Open-Jet Wind Tunnels. Appl. Sci. 2023, 13, 10808. https://doi.org/10.3390/app131910808
Jin L, Deng XB, Wang X, Zhang J, Zeng W. Review of Mechanisms and Suppression Methods for Low-Frequency Pressure Fluctuations in Open-Jet Wind Tunnels. Applied Sciences. 2023; 13(19):10808. https://doi.org/10.3390/app131910808
Chicago/Turabian StyleJin, Ling, Xiao Bing Deng, Xunnian Wang, Junlong Zhang, and Weiping Zeng. 2023. "Review of Mechanisms and Suppression Methods for Low-Frequency Pressure Fluctuations in Open-Jet Wind Tunnels" Applied Sciences 13, no. 19: 10808. https://doi.org/10.3390/app131910808
APA StyleJin, L., Deng, X. B., Wang, X., Zhang, J., & Zeng, W. (2023). Review of Mechanisms and Suppression Methods for Low-Frequency Pressure Fluctuations in Open-Jet Wind Tunnels. Applied Sciences, 13(19), 10808. https://doi.org/10.3390/app131910808