On the Finite Element Modeling of the Lumbar Spine: A Schematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search Strategy
2.2. Study Selection
2.3. Data Extraction
3. Results
3.1. Research Strategy
3.2. Analysis of Extracted Data
3.3. Modelling of the Different Components
3.3.1. Vertebral Body
3.3.2. Intervertebral Disc
3.3.3. Ligaments
3.3.4. Cartilaginous Endplates and Facet Joints
3.4. Boundary-Loading Conditions and Validation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Chen et al. (2001) [36] | Schimdt et al. (2006) [37] | Chen et al. (2008) [38] | Rohlmann et al. (2009) [39] | Zander et. al. (2009) [40] | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Anatomical Component | Constitutive Model | Element Type | Constitutive Model | Element Type | Constitutive Model | Element Type | Constitutive Model | Element Type | Constitutive Model | Element Type | ||||||||||
Cortical Bone | Isotropic Elastic E = 12,000 MPa = 0.3 | 8-node Solid | Transversely Isotropic = 11300 MPa = 0.484 = 11,300 MPa = 0.203 = 22,000 MPa = 3800 MPa = 5400 MPa = 5400 MPa | 8-node Solid | Transversely Isotropic = 11,300 MPa = 11,300 MPa = 0.203 = 22,000 MPa = 3800 MPa = 5400 MPa = 5400 MPa | 8-node Solid | Isotropic Elastic E = 10,000 MPa = 0.3 | 8-node Solid | Isotropic Elastic E = 10,000 MPa = 0.3 | 8-node Solid | ||||||||||
Cancellous Bone | Isotropic Elastic E = 100 MPa = 0.2 | 8-node Solid | Transversely Isotropic = 140 MPa = 0.450 = 140 MPa = 0.315 = 200 MPa = 0.325 = 48.3 MPa = 48.3 MPa = 48.3 MPa | 8-node Solid | Transversely Isotropic = 140 MPa = 0.450 = 140 MPa = 200 MPa = 48.3 MPa = 48.3 MPa = 48.3 MPa | 8-node Solid | Transversely Isotropic = 140 MPa = 0.450 = 140 MPa = 200 MPa | 8-node Solid | Transversely Isotropic = 140 MPa = 140 MPa = 200 MPa | 8-node Solid | ||||||||||
Posterior bone elements | Isotropic Elastic E = 3500 MPa = 0.25 | 8-node Solid | Isotropic Elastic E = 3500 MPa = 0.25 | 8-node Solid | Isotropic Elastic E = 3500 MPa = 0.25 | 8-node Solid | Isotropic Elastic E = 3200 MPa = 0.25 | 8-node Solid | Isotropic Elastic E = 3500 MPa = 0.25 | 8-node Solid | ||||||||||
Cartilaginous Endplate | - | - | Isotropic Elastic E = 23.8 MPa = 0.4 | 8-node Solid | Isotropic Elastic E = 24 MPa = 0.4 | 8-node Solid | Neo-Hokean = 0.3448, = 0.3 | 8/6-node Solid | Neo-Hokean = 0.3448, = 0.3 | 8-node Solid | ||||||||||
Annular ground substance | Isotropic Elastic E = 4.2MPa = 0.45 | 8-node Solid | Mooney-Rivlin = 0.18, = 0.045 Neo-Hookean c = 0.348, d = 0.3 | 8-node Solid | Mooney-Rivlin = 0.42 = 0.105 | 8-node Link | Neo-Hookean c = 0.3448, d = 0.3 | 8-node Solid | Neo-Hookean c = 0.3448, d = 0.3 | 8-node Solid | ||||||||||
Annular Collagen fibers | Isotropic Elastic E = 175 MPa A = 0.76 mm | 2-node Cable | Calibrated Non-Calibrated | Spring Elements | Isotropic Elastic E = 550–357.5 MPa A = 0.76–0.35 mm Change by layer | 2-node Link | Non-linear and dependent on the distance from the disc centre | Spring Element | Non Linear | 2-node Link | ||||||||||
Nucleus polposus | Isotropic Elastic E = 1 MPa = 0.499 | 8-node Solid | Mooney-Rivlin = 0.12, = 0.03 Isotropic Elastic E = 0.2 MPa, = 0.4999 | - | Incompressible Fluid E = 1666.7 MPa | 8-node Fluid | Incompressible Fluid | Fluid Element | Incompressible Fluid | Fluid Element | ||||||||||
Ligaments ALL PLL LF TL CL IL SL | E(MPa) 7.8–20 ( 12%) 10–20 ( 11%) 15–19.5 ( 6.2%) 10–58.7 ( 18%) 7.5–32.9 ( 25%) 10–11.6 ( 14%) 8–15 ( 20%) | A (mm) 63.7 20.0 40.0 1.8 30.0 40.0 30.0 | Calibrated Force–Deflection curves Non-Calibrated Force-Deflection curves | Spring Elements | E (MPa) 7.8 10 15 10 8 10 8 | A (mm) 24 14.4 40.0 3.6 30.0 26 23 | 2-node Link | Non Linear | Spring Elements | Non Linear | 2-node Solid | |||||||||
Facet Joint | - | - | Contact Frictionless | - | Sliding Contact | 8-node Contact | Soft Contact | - | Soft Contact | - | ||||||||||
Follower force | - | - | - | - | - | - | Acting in the centre of each vertebral body | - | Acting in the centre of each vertebral body | - |
Zander et al. (2009) [21] | Ayturk et al. (2010) [14] | Manek et al. (2012) [41] | Weisse et al. (2012) [42] | Kiapour et al. (2012) [15] | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Anatomical Component | Constitutive Model | Element Type | Constitutive Model | Element Type | Constitutive Model | Element Type | Constitutive Model | Element Type | Constitutive Model | Element Type | ||||||||||
Cortical Bone | Isotropic Elastic E = 10,000 MPa = 0.3 | 8-node Solid | Transversely Isotropic = 8000 MPa, = 0.4 = 8000 MPa, = 0.35 = 12,000 MPa, = 0.3 | 8-node Solid | Isotropic Elastic E = 16,000 MPa = 0.25 | Shell Element | Isotropic Elastic E depending on = 0.3 | 8-node Solid | Isotropic Elastic E = 12,000 MPa = 0.3 | 8-node Solid | ||||||||||
Cancellous Bone | Transversely Isotropic = 200 MPa, = 0.45 = 140 MPa, = 0.315 | 8-node Solid | Based on CT scans | 8-node Solid | Isotropic Elastic E = 120 MPa = 0.25 | 8-node Solid | E depending on = 0.3 | 8-node Solid | Isotropic Elastic E = 100 MPa = 0.2 | 8-node Solid | ||||||||||
Posterior bone elements | Isotropic Elastic E = 3500 MPa = 0.25 | 8-node Solid | Isotropic Elastic E = 3500 MPa = 0.3 | 8-node Solid | - | 8-node Solid | - | - | Cortical Bone E = 12,000 MPa, = 0.3 Cancellous Bone E = 100 MPa, = 0.2 | 8-node Solid | ||||||||||
Cartilaginous Endplate | Neo-Hookean = 0.3448, = 0.43 | - | Isotropic Elastic E = 23.8 MPa, = 0.4 | 8-node Solid | Isotropic Elastic E = 500 MPa, = 0.25 | 8-node Solid | Neo-Hokean = 0.3448, = 0.3 | 8-node Solid | - | - | ||||||||||
Annular ground substance | Neo-Hookean = 0.3448, = 0.3 | 8-node Solid | Fiber reinforced Yeoh material = 0.0146, = −0.0189 = 0.041 = 0.03, = 120.00 | 8-node Solid | Two Ring Layer Isotropic Elastic = 30 MPa, = 0.37 = 18 MPa, = 0.41 | 8-node Link | Ogden Different values | 8-node Solid | Neo-Hookean = 0.3448, = 0.3 | 8-node Solid | ||||||||||
Annular Collagen fibers | Non-Linear dependent on the distance from the disc centre | Rebar | - | - | - | - | Force–displacement curve | 8-node Solid | Isotropic Elastic E = 357–550 MPa, = 0.3 | Rebar | ||||||||||
Nucleus polposus | Incompressible | Fluid | Isotropic Elastic,
E = 1 MPa = 0.499 | - | Isotropic Elastic E = 2 MPa, = 0.499 | 8-node Fluid | Mooney Rivlin = 0.12, = 0.03 | 8-node Solid | Incompressible Fluid E = 1 MPa, = 0.499 | Fluid Element | ||||||||||
Ligaments ALL PLL LF TL CL IL SL | Non Linear | Spring Elements | Exponential force displacement curves | Spring Elements | - | - | Force displacement curve | Spring Elements | E (MPa) 7.8–20 ( 12%) 10-20 ( 11%) 15–19.5 ( 6.2%) 10–58.7 ( 18%) 7.5–32.9 ( 25%) 10–11.6 ( 14%) 8–15 ( 20%) | 0.3 0.3 0.3 0.3 0.3 0.3 - | Truss Elements | |||||||||
Facet Joint | Soft Contact | - | Neo-Hokean = 2 | - | Isotropic Elastic E = 2.28 MPa, = 0.3 | 8-node Solid | Isotropic Elastic E = 24 MPa, = 0.45 | Surface to surface | Unidirectional Gap | - | ||||||||||
Followerv force | Acting in the centre of each vertebral body | - | - | - | - | - | Acting in the centre of each vertebral body | - | Acting in the centre of each vertebral body | - |
Little et al. (2013) [43] | Schmidt et al. (2013) [44] | Park et al. (2013) [18] | Kim et al. (2015) [45] | Erbulut et al. (2015) [46] | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Anatomical Component | Constitutive Model | Element Type | Constitutive Model | Element Type | Constitutive model | Element Type | Constitutive Model | Element Type | Constitutive Model | Element Type | ||||||||||
Cortical Bone | Isotropic Elastic E = 113,000 MPa = 0.2 | 4-node Shell | Poroelastic Model E = 10,000 MPa = 0.3 Poroelastic coefficients | - | Isotropic Elastic E = 12,000 MPa, = 0.3 | Solid Element | Transversely Isotropic = 11,300 MPa, = 0.484 = 11,300 MPa, = 0.203 = 22,000 MPa = 3800 MPa = 5400 MPa = 5400 MPa | - | Isotropic Elastic E = 12,000 MPa = 0.3 | Solid | ||||||||||
Cancellous Bone | Isotropic Elastic E = 140 MPa = 0.2 | First-Order Break | Poroelastic Model E = 100 MPa = 0.2 Poroelastic coefficients | - | Isotropic Elastic E = 190 MPa = 0.2 | Solid Element | Transversely Isotropic = 140 MPa, = 0.450 = 140 MPa, = 0.315 = 200 MPa = 48.3 MPa = 48.3 MPa = 48.3 MPa | - | Isotropic Elastic E = 450 MPa = 0.25 | Solid | ||||||||||
Posterior bone elements | Quasi-Rigid | Linear Beam | - | - | Isotropic Elastic E = 35,000 MPa, = 0.25 | Solid Element | Isotropic Elastic E = 3500 MPa, = 0.25 | - | Isotropic Elastic E = 3500 MPa, = 0.25 | Solid | ||||||||||
Cartilaginous Endplate | - | - | Poroelastic Model E = 10,000 MPa, = 0.3 Other coefficients | - | Isotropic Elastic E = 23.8 MPa, = 0.4 | Solid Element | Isotropic Elastic E = 24 MPa, = 0.4 | - | Modelled | - | ||||||||||
Annular ground substance | Mooney-Rivlin = 0.7, = 0.2 | First-Order Brick | Fiber reinforced Poroelastic Model Neo-Hookean = 1.23 MPa D = 0.688 MPa | - | Mooney-Rivlin = 0.18, = 0.045 | Solid Element | Isotropic Elastic E = 4.2 MPa, = 0.4 | - | Neo-Hookean = 0.3448, = 0.3 | Solid | ||||||||||
Annular Collagen fibers | Isotropic Elastic E = 500 MPa, = 0.3 | Rebar | Rebar
applied to Ground Substance | - | Hyperelastic Strain rate dependent | Truss | Isotropic Elastic E = 358-550 MPa, = 0.3 | - | Isotropic Elastic E = 357–550 MPa, = 0.3 | Rebar | ||||||||||
Nucleus polposus | Hydrostatic fluid Incompressible | 4-node Fluid | Poroelastic Model Neo-Hookean = 0.627 MPa, D = 2.475 MPa | - | Different value E | Fluid Element | Isotropic Elastic E = 1 MPa, = 0.499 | - | Isotropic Elastic E = 9 MPa, = 0.499 | Solid | ||||||||||
Ligaments ALL PLL LF TL CL IL SL | Non Linear | Connector and Spring Elements | Modelled | - | Hyperelastic Material Strain rate dependent | Truss | E (MPa) 7.8–20 ( 12%) 10–20 ( 11%) 15–19.5 ( 6.2%) 10–58.7 ( 18%) 7.5–32.9 ( 25%) 10–11.6 ( 14%) 8–15 ( 20%) | A (mm) 63.7 20.0 40.0 1.8 30.0 40.0 30.0 | - | E (MPa) 7.8–20 ( 12%) 10–20 ( 11%) 15–19.5 ( 6.2%) 10–58.7 ( 18%) 7.5–32.9 ( 25%) 10–11.6 ( 14%) 8–15 ( 20%) | 0.3 0.3 0.3 0.3 0.3 0.3 - | Truss Elements | ||||||||
Facet Joint | - | - | Surface to Surface Frictionless | - | Surface to Surface Soft contact | - | Surface to Surface Frictionless | - | Gap contact | - | ||||||||||
Follower force | - | - | Acting in the centre of each vertebral body | - | Acting in the centre of each vertebral body | - | Acting in the centre of each vertebral body | - | Acting in the centre of each vertebral body | - |
Barthelemy et al. (2015) [47] | Xu et al. (2016) [48] | Zander et al. (2016) [49] | Kang et al. (2017) [50] | Fan et al. (2017) [47] | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Anatomical Component | Constitutive Model | Element Type | Constitutive Model | Element Type | Constitutive Model | Element Type | Constitutive Model | Element Type | Constitutive Model | Element Type | ||||||||||
Cortical Bone | Isotropic Elastic E = 12,000 MPa = 0.4 | - | Isotropic Elastic E = 12,000 MPa, = 0.3 | 8-node Solid | Isotropic Elastic E = 10,000 MPa | Shell Element | Transversely Elastic = 11,300 MPa, = 0.484 = 11,300 MPa, = 0.203 = 22,000 MPa = 3800 MPa = 5400 MPa = 5400 MPa | Solid | Isotropic Elastic E = 12,000 MPa = 0.3 | 3-node Solid | ||||||||||
Cancellous Bone | Isotropic Elastic E = 140 MPa, = 0.45 | - | Isotropic Elastic E = 100 MPa, = 0.20 | 8-node Solid | Transversely Elastic E = 100–300 MPa | - | Transversely Elastic = 140 MPa, = 0.45 = 140 MPa, = 0.315 = 200 MPa = 48.3 MPa = 48.3 MPa = 48.3 MPa | 4-node Solid | Isotropic Elastic E = 100 MPa, = 0.2 | 4-node Solid | ||||||||||
Posterior bone elements | Isotropic Elastic E = 35,000 MPa, = 0.30 | - | Isotropic Elastic E = 35,000 MPa, = 0.25 | 8-node Solid | Isotropic Elastic E = 35,000 MPa | - | Isotropic Elastic E = 3500 MPa, = 0.25 | 4-node Solid | Isotropic Elastic E = 3500 MPa, = 0.25 | 4-node Solid | ||||||||||
Cartilaginous Endplate | Isotropic Elastic E = 1000 MPa, = 0.30 | - | Isotropic Elastic E = 23.89 MPa, = 0.40 | 8-node Solid | - | - | Isotropic Elastic E = 23.89 MPa, = 0.40 | Solid | Isotropic Elastic E = 23.8 MPa, = 0.4 | 3-node Solid | ||||||||||
Annular ground substance | Osmo-poro-viscoelastic | - | Mooney-Rivlin = 0.56, = 0.14, = 0.45 | 8-node Solid | Neo-Hookean = 0.3448, = 0.3 | - | Mooney-Rivlin = 0.2, = 0.05 | Solid | Mooney-Rivlin = 0.18, = 0.045 | 8-node Solid | ||||||||||
Annular Collagen fibers | - | - | Nonlinear curve | 4-node Shell Rebar | Nonlinear curve | - | Different value E | Truss | - | - | ||||||||||
Nucleus polposus | Osmo-poro-viscoelastic | - | Mooney-Rivlin = 0.12, = 0.09, = 0.4999 | 8-node Solid | Hydrostatic | - | Isotropic Elastic E = 1 MPa, = 0.499 | 8-node Solid | Mooney-Rivlin = 0.12, = 0.09, = 0.4999 | Solid | ||||||||||
Ligaments ALL PLL LF TL CL IL SL | Hypoelastic | Truss | Non-Linear curve | 4-node Shell | Non-Linear curve | - | E (MPa) 7.8–20 ( 12%) 10–20 ( 11%) 15–19.5 ( 6.2%) 10–58.7 ( 18%) 7.5–32.9 ( 25%) 10–11.6 ( 14%) 8–15 ( 20%) | 0.3 0.3 0.3 0.3 0.3 0.3 - | Truss Elements | E (MPa) 7.8–20 ( 12%) 10–20 ( 11%) 15–19.5 ( 6.2%) 10–58.7 ( 18%) 7.5–32.9 ( 25%) 10–11.6 ( 14%) 8–15 ( 20%) | 0.3 0.3 0.3 0.3 0.3 0.3 - | Truss Elements | ||||||||
Facet Joint | Surface to Surface Frictionless | - | Soft frictionless contact | - | Surface to Surface contact | - | Surface to Surface frictionless | - | Surface to Surface frictionless | - | ||||||||||
Follower force | - | - | Acting in the centre of each vertebral body | - | - | - | Acting in the centre of each vertebral body | - | Acting in the centre of each vertebral body | - |
Finley et al. (2018) [52] | Zhou et al. (2019) [53] | Fan et al. (2019) [54] | Mills et al. (2019) [55] | Haj-Ali et al. (2019) [56] | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Anatomical Component | Constitutive Model | Element Type | Constitutive Model | Element Type | Constitutive Model | Element Type | Constitutive Model | Element Type | Constitutive Model | Element Type | ||||||||||
Cortical Bone | Transversely Elastic = 8000 MPa = 0.4 = 8000 MPa = 0.3 = 12,000 MPa = 0.35 | Solid Element | Isotropic Elastic E = 12,000 MPa, = 0.3 | - | Isotropic Elastic E = 12,000 MPa, = 0.3 | Solid Element | Transversely Elastic = 11,300 MPa, = 0.484 = 11,300 MPa, = 0.203 = 22,000 MPa = 3800 MPa = 5400 MPa = 5400 MPa | - | Isotropic Elastic E = 12,000 MPa = 0.3 | Solid Element | ||||||||||
Cancellous Bone | Neo-Hookean E = 100 MPa = 0.2 | Solid Element | Transversely Elastic = 140 MPa, = 0.45 = 140 MPa, = 0.315 = 200 MPa = 48.3 MPa = 48.3 MPa = 48.3 MPa | - | Isotropic Elastic E = 100 MPa = 0.2 | Solid | Transversely Elastic = 140 MPa, = 0.45 = 140 MPa, = 0.315 = 200 MPa = 48.3 MPa = 48.3 MPa = 48.3 MPa | - | Isotropic Elastic E = 100 MPa, = 0.2 | Solid Element | ||||||||||
Posterior bone elements | Neo-Hookean E = 35,000 MPa = 0.30 | - | Isotropic Elastic E = 35,000 MPa = 0.25 | - | Isotropic Elastic E = 35,000 MPa = 0.25 | - | Isotropic Elastic E = 3500 MPa, = 0.25 G = 1400 MPa | - | - | - | ||||||||||
Annular Collagen fibers | Exponentialpower = 65 MPa, = 2 MPa = 0.296 MPa | - | Annular Lamellae Non-linear | - | Isotropic Elastic E = 360–550 MPa | - | Two layers = 3 MPa, = 45 MPa | - | - | - | ||||||||||
Cartilaginous Endplate | Neo-Hookean E = 23.8 MPa, = 0.42 | - | Isotropic Elastic E = 24 MPa, = 0.40 | - | Isotropic Elastic E = 23.8 MPa, = 0.4 | Solid | - | - | - | - | ||||||||||
Annular ground substance | Holmes-Mow E = 1 MPa, = 0.4 = 3.4 | - | Mooney-Rivlin = 0.18, = 0.045 | - | Mooney-Rivlin = 0.18, = 0.045 | Solid Element | Neo-Hookean = 0.250 | Solid | Isotropic Elastic E = 8.4 MPa, = 0.45 | Solid | ||||||||||
Nucleus polposus | Neo-Hookean E = 1 MPa, = 0.49 | - | Mooney-Rivlin = 0.12, = 0.03 | - | Mooney-Rivlin = 0.12, = 0.03 | Solid | Mooney-Rivlin = 0.12, = 0.03 | 8-node Solid | Isotropic Elastic E = 1 MPa = 0.4999 | Solid | ||||||||||
Ligaments ALL PLL LF TL CL IL SL | Non-linear | Spring Elements | Non-Linear force-deflection relation | - | E (MPa) 7.8–20 ( 12%) 10–20 ( 11%) 15–19.5 ( 6.2%) 10–58.7 ( 18%) 7.5–32.9 ( 25%) 10–11.6 ( 14%) 8–15 ( 20%) | A (mm) 63.7 20 40 1.8 30 40 30 | Truss | Tension-only | - | Different modelling Non-linear E varying on -rate | - | |||||||||
Facet Joint | Neo-Hookean E = MPa, = 0.4 | - | Isotropic Elastic E = 35 MPa, = 0.4 | - | - | - | Non-Linear Isotropic elastic Surface to surface | - | Contact Frictionless | - | ||||||||||
Follower force | Acting in the centre of each vertebral body | - | Acting in the centre of each vertebral body | - | Acting in the centre of each vertebral body | - | - | - | - | - |
Affolter et al. (2020) [57] | Godinho et al. (2021) [58] | Sengul et al. (2021) [59] | Turbucz et al. (2022) [60] | Sanjay et al. (2022) [61] | Tan et al. (2022) [24] | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Anatomical Component | Constitutive Model | Element Type | Constitutive Model | Element Type | Constitutive Model | Element Type | Constitutive Model | Element Type | Constitutive Model | Element Type | Constitutive Model | Element Type | ||||||||||||
Cortical Bone | Transversely Elastic | Solid Element | Isotropic Elastic E = 1200 MPa, = 0.3 | Solid | Isotropic Elastic E = 12,000 MP, = 0.3 | Shell Element | Isotropic Elastic E = 10,000 MPa, = 0.3 | Solid | Isotropic Elastic E = 12,000 MPa, = 0.3 | Solid Element | Isotropic Elastic E = 12,000 MPa, = 0.3 | Solid Element | ||||||||||||
Cancellous Bone | Transversely Elastic | Solid Element | Transversely Elastic E = 200 MPa, = 0.315 | Solid Element | Isotropic Elastic E = 100 MPa, = 0.2 | Solid | Isotropic Elastic E = 100 MPa, = 0.2 | Solid Element | Isotropic Elastic E = 100 MPa, = 0.3 | Solid Element | Isotropic Elastic E = 100 MPa, = 0.3 | Solid Element | ||||||||||||
Posterior bone elements | Transversely Elastic | Solid Element | - | - | - | - | Isotropic Elastic E = 3500 MPa, = 0.25 | Solid Element | - | - | Isotropic Elastic E = 3500 MPa, = 0.25 | Solid Element | ||||||||||||
Cartilaginous Endplate | Modelled | - | Modelled | - | Isotropic Elastic E = 23.8 MPa, = 0.4 | Solid Element | Isotropic Elastic E = 23.8 MPa, = 0.42 | Solid Element | Isotropic Elastic E = 23.8 MPa, = 0.4 | Solid | Isotropic Elastic E = 24 MPa | Solid | ||||||||||||
Annular ground ubstance | Hyperelastic Model | Solid Element | Holzapfel = 0.254 MPa = 12 MPa = 300, k = 0.1 | Solid | Mooney-Rivlin = 0.13 = 0.03 D = 0.6 | Solid Element | Mooney-Rivlin = 0.18 = 0.045 | Solid | Isotropic Elastic E = 9 MPa, = 0.4 | Solid | Mooney-Rivlin | Solid | ||||||||||||
Annular Collagen fibers | Non-Linear | Rebar | - | - | Isotropic Elastic E = 360–550 MPa = 0.45 | Rebar | Non-Linear -curve | Truss Element | - | - | Non-Linear - calibrated curve | Spring Element | ||||||||||||
Ligaments ALL PLL LF TL CL IL SL | Ogdenr 3rd Order | - | E (MPa) 20 10 13 12 7.5 9.8 8.8 | A (mm) 75.9 1.6 39 1.8 19 1.8 6 | - | Non-Linear | Connector | Non-Linear | Spring | E (MPa) 45.20 26.49 43.71 2.77 - 35.50 12.72 | - | Tension-only | Spring | |||||||||||
Nucleus polposus | Fluid Cavity | Fluid | Mooney-Rivlin = 0.315 = 0.03 = 0.667 | - | Isotropic Elastic E = 1 MPa = 0.499 | Solid | Mooney-Rivlin = 0.12, = 0.03 | 8-node Solid | Isotropic Elastic E = 0.1 MPa = 0.49 | Solid | Mooney-Rivlin | - | ||||||||||||
Facet Joint | - | - | Gap contact Surface to surface | - | Gap contact | - | Neo-Hookean = 5.36, = 0.04 | Solid | Gap contact | - | Neo-Hookean | Solid | ||||||||||||
Follower force | Acting in the centre of each vertebral body | - | - | - | - | - | Acting in the centre of each vertebral body | - | - | - | Acting in the centre of each vertebral body | - |
References
- Fung, Y.C. Biomechanics: Biomechanics Mechanical Properties of Living Tissues, 2nd ed.; Springer: New York, NY, USA, 2010. [Google Scholar]
- Benzel, E.C. Deformity Prevention and Correction: Component Strategies; Biomechanics of Spine Stablization; AANS Publications: Rolling Meadows, IL, USA, 2001; pp. 437–440. [Google Scholar]
- Orías, A.A.E.; He, J.; Wang, M. Biomechanical Testing of the Intact and Surgically Treated spine. In Experimental Methods in Orthopaedic Biomechanics; Academic Press: Cambridge, MA, USA, 2017; pp. 133–147. [Google Scholar]
- Noailly, J.; Lacroix, D. Finite Element Modelling of the Spine. In Biomaterials for Spinal Surgery; Woodhead Publishing: Sawston, UK, 2012; pp. 144–234. [Google Scholar]
- Kramer, P.A.; Hammerberg, A.G.; Sylvester, A.D. Modeling the spine using finite element models: Considerations and cautions. In Spinal Evolution; Springer: Cham, Switzerland, 2019; pp. 387–400. [Google Scholar]
- Kurutz, M.; Oroszváry, L. Finite element modeling and simulation of healthy and degenerated human lumbar spine. In Finite Element Analysis—From Biomedical Applications to Industrial Developments; IntechOpen Limited: London, UK, 2012. [Google Scholar]
- Martini, F.; Timmons, M.J.; Tallitsch, R.B.; Ober, W.C.; Garrison, C.W.; Welch, K.B.; Hutchings, R.T. Human Anatomy, 9th ed.; Prentice Hall: Hoboken, NJ, USA, 2017; p. 904. [Google Scholar]
- Lu, Y.M.; Hutton, W.C.; Gharpuray, V.M. The Effect of Fluid Loss on the Viscoelastic Behavior of the Lumbar Intrevertebral Disc in Compression. J. Biomech. Eng. 1998, 120, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Patwardhan, A.G.; Havey, R.M.; Meade, K.P.; Lee, B.; Dunlap, B. A follower load increases the load-carrying capacity of the lumbar spine in compression. Spine 1999, 24, 1003–1009. [Google Scholar] [CrossRef]
- Kim, Y.H.; Kim, K. Computational modeling of spine and trunk muscles subjected to follower force. J. Mech. Sci. Technol. 2007, 21, 568–574. [Google Scholar] [CrossRef]
- Kim, K.; Kim, Y.H. Role of trunk muscles in generating follower load in the lumbar spine of neutral standing posture. J. Biomech. Eng. 2008, 130, 041005. [Google Scholar] [CrossRef] [PubMed]
- Han, K.S.; Rohlmann, A.; Yang, S.J.; Kim, B.S.; Lim, T.H. Spinal muscles can create compressive follower loads in the lumbar spine in a neutral standing posture. Med. Eng. Phys. 2011, 33, 472–478. [Google Scholar] [CrossRef]
- Dreischarf, M.; Zander, T.; Shirazi-Adl, A.; Puttlitz, C.M.; Adam, C.J.; Chen, C.S.; Goel, V.K.; Kiapour, A.; Kim, Y.H.; Labus, K.M.; et al. Comparison of eight published static finite element models of the intact lumbar spine: Predictive power of models improves when combined together. J. Biomech. 2014, 47, 1757–1766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayturk, U.M.; Puttlitz, C.M. Parametric convergence sensitivity and validation of a finite element model of the human lumbar spine. Comput. Methods Biomech. Biomed. Eng. 2011, 14, 695–705. [Google Scholar] [CrossRef]
- Kiapour, A.; Ambati, D.; Hoy, R.W.; Goel, V.K. Effect of graded facetectomy on biomechanics of Dynesys dynamic stabilization system. Spine 2012, 37, E581–E589. [Google Scholar] [CrossRef]
- Little, J.P.; De Visser, H.; Pearcy, M.J.; Adam, C.J. Are coupled rotations in the lumbar spine largely due to the osseo-ligamentous anatomy?–A modelling study. Comput. Methods Biomech. Biomed. Eng. 2008, 11, 95–103. [Google Scholar] [CrossRef]
- Liu, C.L.; Zhong, Z.C.; Hsu, H.W.; Shih, S.L.; Wang, S.T.; Hung, C.; Chen, C.S. Effect of the cord pretension of the Dynesys dynamic stabilisation system on the biomechanics of the lumbar spine: A finite element analysis. Eur. Spine J. 2011, 20, 1850–1858. [Google Scholar] [CrossRef]
- Park, W.M.; Kim, K.; Kim, Y.H. Effects of degenerated intervertebral discs on intersegmental rotations, intradiscal pressures, and facet joint forces of the whole lumbar spine. Comput. Biol. Med. 2013, 43, 1234–1240. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, H.; Galbusera, F.; Rohlmann, A.; Zander, T.; Wilke, H.J. Effect of multilevel lumbar disc arthroplasty on spine kinematics and facet joint loads in flexion and extension: A finite element analysis. Eur. Spine J. 2012, 21, 663–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shirazi-Adl, A. Biomechanics of the lumbar spine in sagittal/lateral moments. Spine 1994, 19, 2407–2414. [Google Scholar] [CrossRef] [PubMed]
- Zander, T.; Rohlmann, A.; Bergmann, G. Influence of different artificial disc kinematics on spine biomechanics. Clin. Biomech. 2009, 24, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.W.; Chuang, S.M.; Chen, C.S. Biomechanical Evaluation of the Lumbar Spine by Using a New Interspinous Process Device: A Finite Element Analysis. Appl. Sci. 2021, 11, 10486. [Google Scholar] [CrossRef]
- Guan, Y.; Yoganandan, N.; Zhang, J.; Pintar, F.A.; Cusick, J.F.; Wolfla, C.E.; Maiman, D.J. Validation of a clinical finite element model of the human lumbosacral spine. Med. Biol. Eng. Comput. 2006, 44, 633–641. [Google Scholar] [CrossRef]
- Tan, Q.C.; Huang, J.F.; Bai, H.; Liu, Z.X.; Huang, X.Y.; Zhao, X.; Yang, Z.; Du, C.-F.; Lei, W.; Wu, Z.X. Effects of Revision Rod Position on Spinal Construct Stability in Lumbar Revision Surgery: A Finite Element Study. Front. Bioeng. Biotechnol. 2021, 9, 799727. [Google Scholar] [CrossRef]
- Schmidt, H.; Heuer, F.; Simon, U.; Kettler, A.; Rohlmann, A.; Claes, L.; Wilke, H.J. Application of a new calibration method for a three-dimensional finite element model of a human lumbar annulus fibrosus. Clin. Biomech. 2006, 21, 337–344. [Google Scholar] [CrossRef]
- Keller, T.S.; Spengler, D.M.; Hansson, T.H. Mechanical behavior of the human lumbar spine. I. Creep analysis during static compressive loading. J. Orthop. Res. 1987, 5, 467–478. [Google Scholar] [CrossRef]
- Neumann, P.; Keller, T.S.; Ekström, L.; Perry, L.; Hansson, T.H.; Spengler, D.M. Mechanical properties of the human lumbar anterior longitudinal ligament. J. Biomech. 1992, 25, 1185–1194. [Google Scholar] [CrossRef]
- Patwardhan, A.G.; Havey, R.M.; Carandang, G.; Simonds, J.; Voronov, L.I.; Ghanayem, A.J.; Meade, K.P.; Gavin, T.M.; Paxinos, O. Effect of compressive follower preload on the flexion–extension response of the human lumbar spine. J. Orthop. Res. 2003, 21, 540–546. [Google Scholar] [CrossRef]
- Popovich, J.M., Jr.; Welcher, J.B.; Hedman, T.P.; Tawackoli, W.; Anand, N.; Chen, T.C.; Kulig, K. Lumbar facet joint and intervertebral disc loading during simulated pelvic obliquity. Spine J. 2013, 13, 1581–1589. [Google Scholar] [CrossRef] [PubMed]
- Wilke, H.J.; Wolf, S.; Claes, L.E.; Arand, M.; Wiesend, A. Influence of varying muscle forces on lumbar intradiscal pressure: An in vitro study. J. Biomech. 1996, 29, 549–555. [Google Scholar] [CrossRef] [PubMed]
- Damm, N.; Rockenfeller, R.; Gruber, K. Lumbar spinal ligament characteristics extracted from stepwise reduction experiments allow for preciser modeling than literature data. Biomech. Model. Mechanobiol. 2020, 19, 893–910. [Google Scholar] [CrossRef] [Green Version]
- Yahia, L.H.; Audet, J.; Drouin, G. Rheological properties of the human lumbar spine ligaments. J. Biomed. Eng. 1991, 13, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Brinckmann, P.; Grootenboer, H. Change of disc height, radial disc bulge, and intradiscal pressure from discectomy an in vitro investigation on human lumbar discs. Spine 1991, 16, 641–646. [Google Scholar] [CrossRef]
- Yamamoto, I.S.A.O.; Panjabi, M.M.; Crisco, T.R.E.Y.; Oxland, T.O.M. Three-dimensional movements of the whole lumbar spine and lumbosacral joint. Spine 1989, 14, 1256–1260. [Google Scholar] [CrossRef]
- Alawneh, O.; Zhong, X.; Faieghi, R.; Xi, F. Finite Element Methods for Modeling the Pressure Distribution in Human Body–Seat Interactions: A Systematic Review. Appl. Sci. 2022, 12, 6160. [Google Scholar] [CrossRef]
- Chen, C.S.; Cheng, C.K.; Liu, C.L.; Lo, W.H. Stress analysis of the disc adjacent to interbody fusion in lumbar spine. Med. Eng. Phys. 2001, 23, 485–493. [Google Scholar] [CrossRef]
- Schmidt, H.; Heuer, F.; Drumm, J.; Klezl, Z.; Claes, L.; Wilke, H.J. Application of a calibration method provides more realistic results for a finite element model of a lumbar spinal segment. Clin. Biomech. 2007, 22, 377–384. [Google Scholar] [CrossRef]
- Zhong, Z.C.; Chen, S.H.; Hung, C.H. Load-and displacement-controlled finite element analyses on fusion and non-fusion spinal implants. Proc. Inst. Mech. Eng. Part J. Eng. Med. 2009, 223, 143–157. [Google Scholar] [CrossRef] [PubMed]
- Rohlmann, A.; Zander, T.; Rao, M.; Bergmann, G. Applying a follower load delivers realistic results for simulating standing. J. Biomech. 2009, 42, 1520–1526. [Google Scholar] [CrossRef] [PubMed]
- Zander, T.; Krishnakanth, P.; Bergmann, G.; Rohlmann, A. Diurnal variations in intervertebral disc height affect spine flexibility, intradiscal pressure and contact compressive forces in the facet joints. Comput. Methods Biomech. Biomed. Eng. 2010, 13, 551–557. [Google Scholar] [CrossRef]
- Manek, F.; Marcián, P.; Florian, Z.; Valášek, J.; Ebringerová, V. Biomechanical Study of Lumbar Spinal Fixation Device. In Applied Mechanics and Materials; Trans Tech Publications Ltd.: Wollerau, Switzerland, 2012; Volume 232, pp. 142–146. [Google Scholar]
- Weisse, B.; Aiyangar, A.K.; Affolter, C.; Gander, R.; Terrasi, G.P.; Ploeg, H. Determination of the translational and rotational stiffnesses of an L4–L5 functional spinal unit using a specimen-specific finite element model. J. Mech. Behav. Biomed. Mater. 2012, 13, 45–61. [Google Scholar] [CrossRef]
- Little, J.P.; Adam, C.J. Geometric sensitivity of patient-specific finite element models of the spine to variability in user-selected anatomical landmarks. Comput. Methods Biomech. Biomed. Eng. 2015, 18, 676–688. [Google Scholar] [CrossRef]
- Schmidt, H.; Bashkuev, M.; Dreischarf, M.; Rohlmann, A.; Duda, G.; Wilke, H.J.; Shirazi-Adl, A. Computational biomechanics of a lumbar motion segment in pure and combined shear loads. J. Biomech. 2013, 46, 2513–2521. [Google Scholar] [CrossRef]
- Kim, H.J.; Kang, K.T.; Son, J.; Lee, C.K.; Chang, B.S.; Yeom, J.S. The influence of facet joint orientation and tropism on the stress at the adjacent segment after lumbar fusion surgery: A biomechanical analysis. Spine J. 2015, 15, 1841–1847. [Google Scholar] [CrossRef] [PubMed]
- Erbulut, D.U.; Zafarparandeh, I.; Hassan, C.R.; Lazoglu, I.; Ozer, A.F. Determination of the biomechanical effect of an interspinous process device on implanted and adjacent lumbar spinal segments using a hybrid testing protocol: A finite-element study. J. Neurosurg. Spine 2015, 23, 200–208. [Google Scholar] [CrossRef] [Green Version]
- Barthelemy, V.M.P.; Van Rijsbergen, M.M.; Wilson, W.; Huyghe, J.M.; Van Rietbergen, B.; Ito, K. A computational spinal motion segment model incorporating a matrix composition-based model of the intervertebral disc. J. Mech. Behav. Biomed. Mater. 2016, 54, 194–204. [Google Scholar] [CrossRef]
- Xu, M.; Yang, J.; Lieberman, I.H.; Haddas, R. Lumbar spine finite element model for healthy subjects: Development and validation. Comput. Methods Biomech. Biomed. Eng. 2017, 20, 1–15. [Google Scholar] [CrossRef]
- Zander, T.; Dreischarf, M.; Timm, A.K.; Baumann, W.W.; Schmidt, H. Impact of material and morphological parameters on the mechanical response of the lumbar spine–A finite element sensitivity study. J. Biomech. 2017, 53, 185–190. [Google Scholar] [CrossRef]
- Kang, K.T.; Koh, Y.G.; Son, J.; Yeom, J.S.; Park, J.H.; Kim, H.J. Biomechanical evaluation of pedicle screw fixation system in spinal adjacent levels using polyetheretherketone, carbon-fiber-reinforced polyetheretherketone, and traditional titanium as rod materials. Compos. Part Eng. 2017, 130, 248–256. [Google Scholar] [CrossRef]
- Fan, W.; Guo, L.X. Influence of different frequencies of axial cyclic loading on time-domain vibration response of the lumbar spine: A finite element study. Comput. Biol. Med. 2017, 86, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Finley, S.M.; Brodke, D.S.; Spina, N.T.; DeDen, C.A.; Ellis, B.J. FEBio finite element models of the human lumbar spine. Comput. Methods Biomech. Biomed. Eng. 2018, 21, 444–452. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Cha, T.; Li, G. An upper bound computational model for investigation of fusion effects on adjacent segment biomechanics of the lumbar spine. Comput. Methods Biomech. Biomed. Eng. 2019, 22, 1126–1134. [Google Scholar] [CrossRef]
- Fan, W.; Guo, L.X.; Zhao, D. Stress analysis of the implants in transforaminal lumbar interbody fusion under static and vibration loadings: A comparison between pedicle screw fixation system with rigid and flexible rods. J. Mater. Sci. Mater. Med. 2019, 30, 1–10. [Google Scholar] [CrossRef]
- Mills, M.J.; Sarigul-Klijn, N. Validation of an in vivo medical image-based young human lumbar spine finite element model. J. Biomech. Eng. 2019, 141, 031003. [Google Scholar] [CrossRef]
- Haj-Ali, R.; Wolfson, R.; Masharawi, Y. A patient specific computational biomechanical model for the entire lumbosacral spinal unit with imposed spondylolysis. Clin. Biomech. 2019, 68, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Affolter, C.; Kedzierska, J.; Vielma, T.; Weisse, B.; Aiyangar, A. Estimating lumbar passive stiffness behaviour from subject-specific finite element models and in vivo 6DOF kinematics. J. Biomech. 2020, 102, 109681. [Google Scholar] [CrossRef]
- Godinho, M.I.; Carvalho, V.; Matos, M.T.; Fernandes, P.R.; Castro, A.P.G. Computational modeling of lumbar disc degeneration before and after spinal fusion. Clin. Biomech. 2021, 90, 105490. [Google Scholar] [CrossRef]
- Sengul, E.; Ozmen, R.; Yaman, M.E.; Demir, T. Influence of posterior pedicle screw fixation at L4–L5 level on biomechanics of the lumbar spine with and without fusion: A finite element method. Biomed. Eng. Online 2021, 20, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Turbucz, M.; Pokorni, A.J.; Szőke, G.; Hoffer, Z.; Kiss, R.M.; Lazary, A.; Eltes, P.E. Development and Validation of Two Intact Lumbar Spine Finite Element Models for In Silico Investigations: Comparison of the Bone Modelling Approaches. Appl. Sci. 2022, 12, 10256. [Google Scholar] [CrossRef]
- Sanjay, D.; Bhardwaj, J.S.; Kumar, N.; Chanda, S. Expandable pedicle screw may have better fixation than normal pedicle screw: Preclinical investigation on instrumented L4–L5 vertebrae based on various physiological movements. Med. Biol. Eng. Comput. 2022, 60, 2501–2519. [Google Scholar] [CrossRef] [PubMed]
- Moramarco, V.D.; Del Palomar, A.P.; Pappalettere, C.; Doblaré, M. An accurate validation of a computational model of a human lumbosacral segment. J. Biomech. 2010, 43, 334–342. [Google Scholar] [CrossRef]
- Sciortino, V.; Pasta, S.; Ingrassia, T.; Cerniglia, D. A Population-Based 3D Atlas of the Pathological Lumbar Spine Segment. Bioengineering 2022, 9, 408. [Google Scholar] [CrossRef]
- Mimura, M.; Panjabi, M.M.; Oxland, T.R.; Crisco, J.J.; Yamamoto, I.; Vasavada, A. Disc degeneration affects the multidirectional flexibility of the lumbar spine. Spine 1994, 19, 1371–1380. [Google Scholar] [CrossRef]
- Sciortino, V.; Cerniglia, D.; Pasta, S.; Ingrassia, T. Fractional Calculus as a New Perspective in the Viscoelastic Behaviour of the Intervertebral Disc. In European Workshop on Structural Health Monitoring; Springer: Cham, Switzerland, 2023; pp. 915–925. [Google Scholar]
Keywords, Exclusion Criteria, and Inclusion Criteria | N° Articles |
---|---|
TITLE-ABS-KEY ((lumbar AND spine) AND (computational) | 393 |
AND(modelling) AND (model)) | |
After duplicate removal | 340 |
TITLE-ABS-KEY ((lumbar AND spine) AND (computational) | 117 |
AND (modelling) AND (model) AND (biomechanics)) | |
AND (finite AND element)) | |
After reading and screening of abstracts and title | 54 |
Additional papers | 11 |
Exclusion and inclusion criteria, according to presence of all data about | 31 |
modelling of every single anatomical part of the lumbar spine (Young’s modulus, | |
constitutive model, density, Poisson coefficient, type element meshing⋯) |
Anatomical Components | Finite Element Modelling | Finite Elements | |
---|---|---|---|
Vertebral body | Cortical and Cancellous Bone | Isotropic Elastic Transversely Elastic Poroelastic behaviour | Solid |
Nucelus Polpous | Isotropic Elastic Incompressible Fluid Empty cavity Hyperelastic behaviour | Solid Fluid | |
Intervertebral disc | Annular Ground Substance | Hyperelastic behaviour | Solid |
Collagen Fibers | Isotropic Elastic Non linear behaviour Based on curve | Truss Beam Connector | |
Ligaments | Isotropic Elastic Isotropic varying on strain rate Non linear behaviour Based on data curve | Truss Beam Connector | |
Cartilagineus Endplate | Isotropic Elastic | Solid | |
Facet Joints | Isotropic Elastic Hyperelastic behaviour Surface to surface contact Frictionless Unidirectional gap contact | Solid Contact |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sciortino, V.; Pasta, S.; Ingrassia, T.; Cerniglia, D. On the Finite Element Modeling of the Lumbar Spine: A Schematic Review. Appl. Sci. 2023, 13, 958. https://doi.org/10.3390/app13020958
Sciortino V, Pasta S, Ingrassia T, Cerniglia D. On the Finite Element Modeling of the Lumbar Spine: A Schematic Review. Applied Sciences. 2023; 13(2):958. https://doi.org/10.3390/app13020958
Chicago/Turabian StyleSciortino, Vincenza, Salvatore Pasta, Tommaso Ingrassia, and Donatella Cerniglia. 2023. "On the Finite Element Modeling of the Lumbar Spine: A Schematic Review" Applied Sciences 13, no. 2: 958. https://doi.org/10.3390/app13020958
APA StyleSciortino, V., Pasta, S., Ingrassia, T., & Cerniglia, D. (2023). On the Finite Element Modeling of the Lumbar Spine: A Schematic Review. Applied Sciences, 13(2), 958. https://doi.org/10.3390/app13020958