Assessment of Thermal Comfort in an Electric Bus Based on Machine Learning Classification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Climatic Measurements
2.2. Data Set
- Group 1: Mild thermal sensation.
- Value of TS is 0 or 1 (178 surveys)
- Group 2: Warm thermal sensation.
- Value of TS is 2 or 3 (100 surveys)
- Parameter set . This parameter set includes only the air temperature and humidity, which are easy to obtain within a measurement campaign:
- Parameter set . This parameter set is the result of the EDA. Different tests regarding the encoding of and were carried out. Particularly one-hot encoding and ordinal encoding. The results showed that the best accuracy was achieved by one-hot encoding the parameter into and , and by leaving the and at their original numerical values. For further details, see Supplementary Materials.
2.3. PMV-PPD Model
2.4. Comparison of PMV-PPD Model and Thermal Sensation
2.5. Machine Learning Model Design
2.5.1. Machine Learning Classifiers
Artificial Neural Networks (ANNs)
Ensemble Learning (ENL)
- RF operates by fitting several decision tree classifiers on various distinct sub-samples of the data set. The majority vote of the decision trees is then used to compute the final classifications, thereby enabling us to greatly reduce both the variance and the sensitivity to the training data.
- AdaBoost is based on Boosting, i.e., the iterative creation of models that rectify the mistakes of the previous ones [36]. AdaBoost operates by first assigning equal weights to all data points in the employed data set. Subsequently, the misclassified data points are assigned a higher value and a second model is trained. The weight adjustment is then repeated. The whole process is iteratively performed and all the resulting models are used for the final classification.
k-Nearest Neighbors (kNN)
Support Vector Machine (SVM)
2.5.2. Implementation and Accuracy Metrics
3. Results
3.1. Shift Analysis
3.2. Results of Parameter Sets
3.2.1. Parameter Set
3.2.2. Parameter Set
3.2.3. Parameter Set
4. Discussion
4.1. Shift Analysis
4.2. Comparison of Parameter Sets
5. Conclusions and Next Steps
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
AdaBoost | Adaptive Boosting |
AI | Artificial Intelligence |
ANN | Artificial Neural Network |
BMI | Body Mass Index |
e-buses | Electric Buses |
ENL | Ensemble Learning |
EV | Electrical Vehicle |
HVAC | Heating, Ventilation and Air Conditioning |
IQR | Interquantile Range |
kNN | K-Nearest Neighbors |
ML | Machine Learning |
MS | Measurement Set |
PMV | Predictive Mean Vote |
Poly | Polynomial |
PPD | Predictive Percentage of Dissatisfied |
Rbf | Radial Basis Function |
SVM | Support Vector Machine |
TS | Thermal Sensation |
VIF | Variance Inflation Factor |
References
- Doyle, A.; Muneer, T. Energy consumption and modelling of the climate control system in the electric vehicle. Energy Explor. Exploit. 2018, 37, 014459871880645. [Google Scholar] [CrossRef]
- Göhlich, D.; Fay, T.A.; Jefferies, D.; Lauth, E.; Kunith, A.; Zhang, X. Design of urban electric bus systems. Des. Sci. 2018, 4, e15. [Google Scholar] [CrossRef]
- Cigarini, F.; Fay, T.A.; Artemenko, N.; Göhlich, D. Modeling and Experimental Investigation of Thermal Comfort and Energy Consumption in a Battery Electric Bus. World Electr. Veh. J. 2021, 12, 7. [Google Scholar] [CrossRef]
- Velt, K.B.; Daanen, H.A.M. Optimal bus temperature for thermal comfort during a cool day. Appl. Ergon. 2017, 62, 72–76. [Google Scholar] [CrossRef]
- Cigarini, F.; Schminkel, P.; Sonnekalb, M.; Best, P.; Göhlich, D. Determination of improved climatic conditions for thermal comfort and energy efficiency in electric buses. Appl. Ergon. 2022, 105, 103856. [Google Scholar] [CrossRef]
- American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE). ASHRAE Handbook Fundamentals; American Society of Heating, Refrigerating and Air–Conditioning Engineers, Inc.: Atlanta, GA, USA, 2017. [Google Scholar]
- Zhao, Q.; Lian, Z.; Lai, D. Thermal comfort models and their developments: A review. Energy Built Environ. 2021, 2, 21–33. [Google Scholar] [CrossRef]
- Kaynakli, O.; Pulat, E.; Kilic, M. Thermal comfort during heating and cooling periods in an automobile. Heat Mass Transf. 2005, 41, 449–458. [Google Scholar] [CrossRef]
- Pala, U.; Oz, H.R. An investigation of thermal comfort inside a bus during heating period within a climatic chamber. Appl. Ergon. 2015, 48, 164–176. [Google Scholar] [CrossRef]
- Fanger, P.O. Thermal Comfort: Analysis and Applications in Environmental Engineering; R.E. Krieger Pub. Co.: Malabar, FL, USA, 1982. [Google Scholar]
- ISO 7730; Ergonomics of the Thermal Environment: Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indicesand Local Thermal Comfort Criteria. ISO: Geneva, Switzerland, 2005.
- Cheung, T.; Schiavon, S.; Parkinson, T.; Li, P.; Brager, G. Analysis of the accuracy on PMV–PPD model using the ASHRAE Global Thermal Comfort Database II. Build. Environ. 2019, 153, 205–217. [Google Scholar] [CrossRef]
- Jefferies, D.; Ly, T.-A.; Kunith, A.; Göhlich, D. Energiebedarf verschiedener Klimatisierungssysteme für Elektro-Linienbusse. In Proceedings of the Deutsche Kälte und Klimatagung 2015; Deutscher Kälte- und Klimatechnischer Verein e.V.: Dresden, Germany, 2015. [Google Scholar]
- Gagge, A.P.; Fobelets, A.P.; Berglund, L.G. A Standard Predictive Index of Human Response to the Thermal Environment. ASHRAE Trans. 1986, 92 Pt 2, 709–731. [Google Scholar]
- Zhang, H.; Arens, E.; Huizenga, C.; Han, T. Thermal sensation and comfort models for non-uniform and transient environments: Part I: Local sensation of individual body parts. Build. Environ. 2010, 45, 380–388. [Google Scholar] [CrossRef]
- Abou Jaoude, R.; Thiagalingam, I.; El Khoury, R.; Crehan, G. Berkeley thermal comfort models: Comparison to people votes and indications for user-centric HVAC strategies in car cabins. Build. Environ. 2020, 180, 107093. [Google Scholar] [CrossRef]
- Qavidel Fard, Z.; Zomorodian, Z.S.; Korsavi, S.S. Application of machine learning in thermal comfort studies: A review of methods, performance and challenges. Energy Build. 2022, 256, 111771. [Google Scholar] [CrossRef]
- Guenther, J.; Sawodny, O. Feature selection and Gaussian Process regression for personalized thermal comfort prediction. Build. Environ. 2019, 148, 448–458. [Google Scholar] [CrossRef]
- Ju, Y.J.; Lim, J.R.; Jeon, E.S. Prediction of AI-Based Personal Thermal Comfort in a Car Using Machine-Learning Algorithm. Electronics 2022, 11, 340. [Google Scholar] [CrossRef]
- Kotsiantis, S.B.; Zaharakis, I.D.; Pintelas, P.E. Machine learning: A review of classification and combining techniques. Artif. Intell. Rev. 2006, 26, 159–190. [Google Scholar] [CrossRef]
- Althnian, A.; AlSaeed, D.; Al-Baity, H.; Samha, A.; Dris, A.B.; Alzakari, N.; Abou Elwafa, A.; Kurdi, H. Impact of Dataset Size on Classification Performance: An Empirical Evaluation in the Medical Domain. Appl. Sci. 2021, 11, 796. [Google Scholar] [CrossRef]
- Chaudhuri, T.; Soh, Y.C.; Li, H.; Xie, L. Machine learning based prediction of thermal comfort in buildings of equatorial Singapore. In Proceedings of the 2017 IEEE International Conference on Smart Grid and Smart Cities (ICSGSC), Singapore, 23–26 July 2017; pp. 72–77. [Google Scholar] [CrossRef]
- ASHRAE Standard—55; Thermal Environmental Conditions for Human Occupancy. ASHRAE: Peachtree Corners, GA, USA, 2020.
- Tartarini, F.; Schiavon, S. pythermalcomfort: A Python package for thermal comfort research. SoftwareX 2020, 12, 100578. [Google Scholar] [CrossRef]
- Wang, S.C. Artificial Neural Network. In Interdisciplinary Computing in Java Programming; Springer: Boston, MA, USA, 2003; pp. 81–100. [Google Scholar] [CrossRef]
- Kasar, M.M.; Bhattacharyya, D.; Kim, T.H. Face Recognition Using Neural Network: A Review. Int. J. Secur. Its Appl. 2016, 10, 81–100. [Google Scholar] [CrossRef]
- Hasan, M.T.; Fattahul Islam, K.M.; Rahman, M.S.; Li, S. Weather Forecasting Using Artificial Neural Network. In Proceedings of the Artificial Intelligence and Security; Sun, X., Pan, Z., Bertino, E., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 171–180. [Google Scholar]
- Deng, Z.; Chen, Q. Artificial neural network models using thermal sensations and occupants’ behavior for predicting thermal comfort. Energy Build. 2018, 174, 587–602. [Google Scholar] [CrossRef]
- Dyvia, H.A.; Arif, C. Analysis of thermal comfort with predicted mean vote (PMV) index using artificial neural network. IOP Conf. Ser. Earth Environ. Sci. 2021, 622, 012019. [Google Scholar] [CrossRef]
- Jahan, I.; Ahmed, M.F.; Ali, M.O.; Jang, Y.M. Self-gated rectified linear unit for performance improvement of deep neural networks. ICT Express 2022, 9, 320–325. [Google Scholar] [CrossRef]
- Rokach, L. Ensemble-based classifiers. Artif. Intell. Rev. 2010, 33, 1–39. [Google Scholar] [CrossRef]
- Breiman, L. Random Forest. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Freund, Y.; Schapire, R.E. A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting. J. Comput. Syst. Sci. 1997, 55, 119–139. [Google Scholar] [CrossRef]
- Chaudhuri, T.; Zhai, D.; Soh, Y.C.; Li, H.; Xie, L. Random forest based thermal comfort prediction from gender-specific physiological parameters using wearable sensing technology. Energy Build. 2018, 166, 391–406. [Google Scholar] [CrossRef]
- Alsaleem, F.; Tesfay, M.; Rafaie, M.; Sinkar, K.; Besarla, D.; Arunasalam, P. An IoT Framework for Modeling and Controlling Thermal Comfort in Buildings. Front. Built Environ. 2020, 6, 87. [Google Scholar] [CrossRef]
- Shapire, R.E. The Boosting Approach to Machine Learning—An Overview. In Nonlinear Estimation and Classification; Springer: New York, NY, USA, 2022; Available online: https://www.aivc.org/sites/default/files/airbase_2522.pdf (accessed on 1 October 2023).
- Cunningham, P.; Delany, S.J. k-Nearest Neighbour Classifiers—A Tutorial. ACM Comput. Surv. 2022, 54, 1–25. [Google Scholar] [CrossRef]
- Latha, R.; Sreekanth, G.; Suganthe, R.; Geetha, M.; Selvaraj, R.E.; Balaji, S.; Harini, K.; Ponnusamy, P.P. Stock Movement Prediction using KNN Machine Learning Algorithm. In Proceedings of the 2022 International Conference on Computer Communication and Informatics (ICCCI), Coimbatore, India, 25–27 January 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Trstenjak, B.; Mikac, S.; Donko, D. KNN with TF-IDF based Framework for Text Categorization. Procedia Eng. 2014, 69, 1356–1364. [Google Scholar] [CrossRef]
- Xiong, L.; Yao, Y. Study on an adaptive thermal comfort model with K-nearest-neighbors (KNN) algorithm. Build. Environ. 2021, 202, 108026. [Google Scholar] [CrossRef]
- Ma, Y.; Guo, G. (Eds.) Support Vector Machines Applications; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Patle, A.; Chouhan, D.S. SVM kernel functions for classification. In Proceedings of the 2013 International Conference on Advances in Technology and Engineering (ICATE), Mumbai, India, 23–25 January 2013; pp. 1–9. [Google Scholar] [CrossRef]
- Zhou, X.; Xu, L.; Zhang, J.; Niu, B.; Luo, M.; Zhou, G.; Zhang, X. Data-driven thermal comfort model via support vector machine algorithms: Insights from ASHRAE RP-884 database. Energy Build. 2020, 211, 109795. [Google Scholar] [CrossRef]
- Patro, S.K.; Sahu, K.K. Normalization: A Prepocessing Stage. Int. Adv. Res. J. Sci. Eng. Technol. 2015, 2, 20–22. [Google Scholar] [CrossRef]
- Sokolova, M.; Japkowicz, N.; Szpakowicz, S. Beyond Accuracy, F-Score and ROC: A Family of Discriminant Measures for Performance Evaluation. In Australasian Joint Conference on Artificial Intelligence; Springer: Berlin/Heidelberg, Germany, 2006; Volume 4304, pp. 1015–1021. [Google Scholar] [CrossRef]
- Chen, L. Curse of Dimensionality. In Encyclopedia of Database Systems; Liu, L., Özsu, M.T., Eds.; Springer: Boston, MA, USA, 2009; pp. 545–546. [Google Scholar] [CrossRef]
Parameter | Symbol | Unit |
---|---|---|
Air temperature | °C | |
Relative air humidity | % | |
Air velocity | / | |
Mean radiant temperature | °C | |
External air temperature | °C | |
Age | years | |
Sex | Male/Female | |
Height | h | |
Weight | m | |
Clothing insulation | Clo | |
Thermal Sensation | ASHRAE scale | |
Position in the bus cabin | Sector 1 to 6 |
Value | Thermal Sensation (TS) |
---|---|
Cold | |
Cool | |
Slightly cool | |
0 | Neutral |
1 | Slightly warm |
2 | Warm |
3 | Hot |
MS | Date | Number of Surveys | Considered Surveys | Mean External Air Temperature |
---|---|---|---|---|
1 | 26 August 2021 | 132 | 106 | 14.7–20.3 °C |
2 | 17 June 2022 | 83 | 65 | 17.7–26.5 °C |
3 | 25 June 2022 | 114 | 107 | 23.5–32.0 °C |
Parameter | Symbol | VIF (Before) | VIF (After) |
---|---|---|---|
Air temperature | 63.45 | 4.93 | |
Relative air humidity | 4.42 | 4.02 | |
Air velocity | 1.21 | 1.16 | |
Mean radiant temperature | 60.78 | – | |
External air temperature | 11.63 | – | |
Age | 1.07 | 1.07 | |
Sex | 1.06 | 1.06 | |
Clothing insulation | 1.64 | 1.57 | |
Body mass index | 1.14 | 1.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santoyo Alum, A.; Fay, T.-A.; Cigarini, F.; Göhlich, D. Assessment of Thermal Comfort in an Electric Bus Based on Machine Learning Classification. Appl. Sci. 2023, 13, 11190. https://doi.org/10.3390/app132011190
Santoyo Alum A, Fay T-A, Cigarini F, Göhlich D. Assessment of Thermal Comfort in an Electric Bus Based on Machine Learning Classification. Applied Sciences. 2023; 13(20):11190. https://doi.org/10.3390/app132011190
Chicago/Turabian StyleSantoyo Alum, Anuar, Tu-Anh Fay, Francesco Cigarini, and Dietmar Göhlich. 2023. "Assessment of Thermal Comfort in an Electric Bus Based on Machine Learning Classification" Applied Sciences 13, no. 20: 11190. https://doi.org/10.3390/app132011190
APA StyleSantoyo Alum, A., Fay, T. -A., Cigarini, F., & Göhlich, D. (2023). Assessment of Thermal Comfort in an Electric Bus Based on Machine Learning Classification. Applied Sciences, 13(20), 11190. https://doi.org/10.3390/app132011190