Application of a Pre-Trained CNN Model for Fault Interpretation in the Structurally Complex Browse Basin, Australia
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
3.1. Dataset
3.2. Methodology
Deep-Learning-Based Fault Prediction
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Basir, H.M.; Javaherian, A.; Yaraki, M. T Multi-attribute ant-tracking and neural network for fault detection: A case study of an Iranian oilfield. J. Geophys. Eng. 2013, 10, 015009. [Google Scholar] [CrossRef]
- Cunha, A.; Pochet, A.; Lopes, H.; Gattass, M. Seismic fault detection in real data using transfer learning from a convolutional neural network pre-trained with synthetic seismic data. Comput. Geosci. 2020, 135, 104344. [Google Scholar] [CrossRef]
- Di, H.; Wang, Z.; AlRegib, G. Seismic Fault Detection from Post-Stack Amplitude by Convolutional Neural Networks; European Association of Geoscientists & Engineers: Utrecht, The Netherlands, 2018; Volume 2018, pp. 1–5. [Google Scholar]
- Otchere, D.A.; Tackie-Otoo, B.N.; Mohammad, M.A.A.; Ganat, T.O.A.; Kuvakin, N.; Miftakhov, R.; Efremov, I.; Bazanov, A. Improving seismic fault mapping through data conditioning using a pre-trained deep convolutional neural network: A case study on Groningen field. J. Pet. Sci. Eng. 2022, 213, 110411. [Google Scholar] [CrossRef]
- Bond, C.E. Uncertainty in structural interpretation: Lessons to be learnt. J. Struct. Geol. 2015, 74, 185–200. [Google Scholar] [CrossRef]
- Alcalde, J.; Bond, C.E.; Johnson, G.; Ellis, J.F.; Butler, R.W. Impact of seismic image quality on fault interpretation uncertainty. GSA Today 2017, 27, 2. [Google Scholar] [CrossRef]
- Oumarou, S.; Mabrouk, D.; Tabod, T.C.; Marcel, J.; Ngos, S., III; Essi, J.M.A.; Kamguia, J. Seismic attributes in reservoir characterization: An overview. Arab. J. Geosci. 2021, 14, 402. [Google Scholar] [CrossRef]
- Mousavi, J.; Radad, M.; Monfared, M.S.; Kahoo, A.R. Fault Enhancement in Seismic Images by Introducing a Novel Strategy Integrating Attributes and Image Analysis Techniques. Pure Appl. Geophys. 2022, 179, 1645–1660. [Google Scholar] [CrossRef]
- Boe, T.H.; Daber, R. Seismic features and the human eye: RGB blending of azimuthal curvatures for enhancement of fault and fracture interpretation. In SEG Technical Program Expanded Abstracts 2010; Society of Exploration: London, UK, 2010; pp. 1535–1539. [Google Scholar]
- Yan, Z.; Zhang, Z.; Liu, S. Improving Performance of Seismic Fault Detection by Fine-Tuning the Convolutional Neural Net-work Pre-Trained with Synthetic Samples. Energies 2021, 14, 3650. [Google Scholar] [CrossRef]
- Ma, X.; Yao, G.; Zhang, F.; Wu, D. 3-D Seismic Fault Detection Using Recurrent Convolutional Neural Networks with Com-pound Loss. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5909815. [Google Scholar] [CrossRef]
- Alyaz, A.M.; Bedle, H.; Aydemir, A. Seismic attribute assisted analysis of the interpretational variations in the time and depth migrated datasets: An example from Taranaki Basin, New Zealand. Mar. Pet. Geol. 2023, 155, 106301. [Google Scholar] [CrossRef]
- Marfurt, K.J.; Kirlin, R.L.; Farmer, S.L.; Bahorich, M.S. 3-D seismic attributes using a semblance-based coherency algorithm. Geophysics 1998, 63, 1150–1165. [Google Scholar] [CrossRef]
- Wei, X.-L.; Zhang, C.-X.; Kim, S.-W.; Jing, K.-L.; Wang, Y.-J.; Xu, S.; Xie, Z.-Z. Seismic fault detection using convolutional neural networks with focal loss. Comput. Geosci. 2021, 158, 104968. [Google Scholar] [CrossRef]
- Yan, B.; Wang, T.; Ji, Y.; Yuan, S. Multidirectional Coherence Attribute for Discontinuity Characterization in Seismic Images. IEEE Geosci. Remote Sens. Lett. 2022, 19, 8026205. [Google Scholar] [CrossRef]
- Sui, J.; Zheng, X.; Zeng, Q.; Yang, Z.; Gan, L.; Hu, T. Seismic Coherence Attribute Based on Eigenvectors and Its Application. IEEE Geosci. Remote Sens. Lett. 2023, 20, 7504105. [Google Scholar] [CrossRef]
- Wang, S.; Yuan, S.; Yan, B.; He, Y.; Sun, W. Directional complex-valued coherence attributes for discontinuous edge detection. J. Appl. Geophys. 2016, 129, 1–7. [Google Scholar] [CrossRef]
- Mora, J.P.; Bedle, H.; Marfurt, K.J. Fault enhancement comparison among coherence enhancement, probabilistic neural net-works, and convolutional neural networks in the Taranaki Basin area, New Zealand. In Interpretation; Society of Exploration: London, UK, 2022; Volume 10, pp. SE1–SE19. [Google Scholar] [CrossRef]
- Ashraf, U.; Zhang, H.; Anees, A.; Nasir Mangi, H.; Ali, M.; Ullah, Z.; Zhang, X. Application of Unconventional Seismic Attrib-utes and Unsupervised Machine Learning for the Identification of Fault and Fracture Network. Appl. Sci. 2020, 10, 3864. [Google Scholar] [CrossRef]
- Hale, D. Methods to compute fault images, extract fault surfaces, and estimate fault throws from 3D seismic images. Geophysics 2013, 78, O33–O43. [Google Scholar] [CrossRef]
- Imran, Q.S.; Siddiqui, N.A.; Latiff, A.H.A.; Bashir, Y.; Khan, M.; Qureshi, K.; Al-Masgari, A.A.-S.; Ahmed, N.; Jamil, M. Automated fault detection and extraction under gas chimneys using hybrid discontinuity attributes. Appl. Sci. 2021, 11, 7218. [Google Scholar] [CrossRef]
- Kim, M.; Yu, J.; Kang, N.-K.; Kim, B.-Y. Improved Workflow for Fault Detection and Extraction Using Seismic Attributes and Orientation Clustering. Appl. Sci. 2021, 11, 8734. [Google Scholar] [CrossRef]
- Lyu, F.; Zhou, H.; Liu, J.; Zhou, J.; Tao, B.; Wang, D. A buried hill fault detection method based on 3D U-SegNet and transfer learning. J. Pet. Sci. Eng. 2022, 218, 110917. [Google Scholar] [CrossRef]
- Di, H.; Gao, D. 3D seismic flexure analysis for subsurface fault detection and fracture characterization. Pure Appl. Geophys. 2017, 174, 747–761. [Google Scholar] [CrossRef]
- Qi, X.; Marfurt, K. Volumetric aberrancy to map subtle faults and flexures. In Proceedings of the 2017 SEG International Exposition and Annual Meeting, Houston, TX, USA, 24–29 September 2017; pp. 3443–3447. [Google Scholar]
- Aqrawi, A.A.; Boe, T.H. Improved fault segmentation using a dip guided and modified 3D Sobel filter. In SEG Technical Program Expanded Abstracts 2011: Society of Exploration Geophysicists; Society of Exploration: London, UK, 2011; pp. 999–1003. [Google Scholar]
- Qi, J.; Zhang, B.; Lyu, B.; Marfurt, K. Seismic attribute selection for machine-learning-based facies analysis. Geophysics 2020, 85, O17–O35. [Google Scholar] [CrossRef]
- Li, F.; Lyu, B.; Qi, J.; Verma, S.; Zhang, B. Seismic Coherence for Discontinuity Interpretation. Surv. Geophys. 2021, 42, 1229–1280. [Google Scholar] [CrossRef]
- Di, H.; Gao, D. Gray-level transformation and Canny edge detection for 3D seismic discontinuity enhancement. Comput. Geosci. 2014, 72, 192–200. [Google Scholar] [CrossRef]
- Rijks, E.; Jauffred, J. Attribute extraction: An important application in any detailed 3-D interpretation study. Lead. Edge 1991, 10, 11–19. [Google Scholar] [CrossRef]
- Maduna, N.G.; Manzi, M.S.D.; Bourdeau, J.E.; Jinnah, Z. 3D reflection seismic imaging of natural gas/fluid escape features in the dee[1]p-water Orange Basin of South Africa. Mar. Geophys. Res. 2023, 44, 17. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, Y.; Pelissier, M.; Hemstra, N. Semiautomated fault interpretation based on seismic attributes. Interpretation 2014, 2, SA11–SA19. [Google Scholar] [CrossRef]
- Machado, G.; Alali, A.; Hutchinson, B.; Olorunsola, O.; Marfurt, K.J. Display and enhancement of volumetric fault images. Interpretation 2016, 4, SB51–SB61. [Google Scholar] [CrossRef]
- Di, H.; Shafiq, M.A.; AlRegib, G. Seismic-fault detection based on multiattribute support vector machine analysis. In Proceedings of the 2017 SEG International Exposition and Annual Meeting, Houston, TX, USA, 24–29 September 2017. [Google Scholar]
- Di, H.; Shafiq, M.; AlRegib, G. Patch-level MLP classification for improved fault detection. In SEG Technical Program Expanded Abstracts 2018: Society of Exploration Geophysicists; Society of Exploration: London, UK, 2018; pp. 2211–2215. [Google Scholar]
- Zhao, T.; Jayaram, V.; Roy, A.; Marfurt, K.J. A comparison of classification techniques for seismic facies recognition. In Interpretation; Society of Exploration: London, UK, 2015; Volume 3, pp. SAE29–SAE58. [Google Scholar]
- Struckmeyer, H.I.; Blevin, J.E.; Sayers, J.; Totterdell, J.M.; Baxter, K.; Cathro, D.L. Structural Evolution of the Browse Basin, Northwest Shelf: New Concepts from Deep-Seismic Data; PESA: Beaumaris, Australia, 1998. [Google Scholar]
- Patadiya, P.; Parmar, J.; Ramalingam, V.; Singh, A. Hydrocarbon Source Rock Characterization and Basin Modelling, A Case Study from Poseidon Field, Browse Basin, Australia; European Association of Geoscientists & Engineers: Utrecht, The Netherlands, 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Dixit, A.; Mandal, A. Detection of gas chimney and its linkage with deep-seated reservoir in poseidon, NW shelf, Australia from 3D seismic data using multi-attribute analysis and artificial neural network approach. J. Nat. Gas Sci. Eng. 2020, 83, 103586. [Google Scholar] [CrossRef]
- Farfour, M.; El-Ghali, M.A.K.; Gaci, S.; Moustafa, M.S.H.; Siddiqui, N.A. Seismic attributes for hydrocarbon detection and reservoir characterization: A case study from Poseidon field, Northwestern Australia. Arab. J. Geosci. 2021, 14, 24. [Google Scholar] [CrossRef]
- Hoffman, N.; Hill, K.; Ellis, G.; Baillie, P.; Munson, T. Structural-stratigraphic evolution and hydrocarbon prospectivity of the deep-water Browse Basin, Northwest Shelf, Australia. In Proceedings of the Timor Sea Symposium, Timor Sea Petroleum Geoscience, Darwin, Australia, 19–20 June 2003; pp. 19–20. [Google Scholar]
- Farfour, M.; Foster, D. Machine learning and seismic attributes for prospect identification and risking: An example from offshore Australia. In Proceedings of the SEG/AAPG International Meeting for Applied Geoscience & Energy, Houston, TX, USA, 28 August–2 September 2022. [Google Scholar]
- Le Poidevin, S.R.; Temple, P.; Edwards, D.S.; Kuske, T. Australian Petroleum Accumulations Report 7 Browse Basin: Western Australia and Territory of Ashmore and Cartier Islands Adjacent Area; Geoscience Australia: Canberra, Australia, 2015.
- Di, H.; Shafiq, A.; Wang, Z.; Alregib, G. Improving seismic fault detection by super-attribute-based classification. In Interpretation; Society of Exploration: London, UK, 2019; Volume 7, pp. 1–56. [Google Scholar] [CrossRef]
- Fehmers, G.C.; Höcker, C.F.W. Fast structural interpretation with structure-oriented filtering. Geophysics 2003, 68, 1286–1293. [Google Scholar] [CrossRef]
- Laudon, C.; Qi, J.; Rondon, A.; Rouis, L.; Kabazi, H. An enhanced fault detection workflow combining machine learning and seismic attributes yields an improved fault model for Caspian Sea asset. First Break. 2021, 39, 53–60. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Islam, M.M.; Babikir, I.; Elsaadany, M.; Elkurdy, S.; Siddiqui, N.A.; Akinyemi, O.D. Application of a Pre-Trained CNN Model for Fault Interpretation in the Structurally Complex Browse Basin, Australia. Appl. Sci. 2023, 13, 11300. https://doi.org/10.3390/app132011300
Islam MM, Babikir I, Elsaadany M, Elkurdy S, Siddiqui NA, Akinyemi OD. Application of a Pre-Trained CNN Model for Fault Interpretation in the Structurally Complex Browse Basin, Australia. Applied Sciences. 2023; 13(20):11300. https://doi.org/10.3390/app132011300
Chicago/Turabian StyleIslam, Md Mahmodul, Ismailalwali Babikir, Mohamed Elsaadany, Sami Elkurdy, Numair A. Siddiqui, and Oluwaseun Daniel Akinyemi. 2023. "Application of a Pre-Trained CNN Model for Fault Interpretation in the Structurally Complex Browse Basin, Australia" Applied Sciences 13, no. 20: 11300. https://doi.org/10.3390/app132011300
APA StyleIslam, M. M., Babikir, I., Elsaadany, M., Elkurdy, S., Siddiqui, N. A., & Akinyemi, O. D. (2023). Application of a Pre-Trained CNN Model for Fault Interpretation in the Structurally Complex Browse Basin, Australia. Applied Sciences, 13(20), 11300. https://doi.org/10.3390/app132011300