φ-OTDR Based on Orthogonal Frequency-Division Multiplexing Time Sequence Pulse Modulation
Abstract
:1. Introduction
2. Principle and Theoretical Analysis
2.1. System Principles
2.2. Generation of NLFM Signals
2.3. Generation of OFDM-NLFM Signals
3. Experiments and Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Masoudi, A.; Newson, T.P. Contributed Review: Distributed optical fibre dynamic strain sensing. Rev. Sci. Instrum. 2016, 87, 011501. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Liu, Q. Optical Fiber Distributed Acoustic Sensors: A Review. J. Light. Technol. 2021, 39, 3671–3686. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, J.; Wang, M.; Zhong, Y.; Peng, F. Fiber distributed acoustic sensing using convolutional long short-term memory network: A field test on high-speed railway intrusion detection. Opt. Express 2020, 28, 2925–2938. [Google Scholar] [CrossRef]
- Magalhães, R.; Garcia-Ruiz, A.; Martins, H.F.; Pereira, J.; Margulis, W.; Martin-Lopez, S.; Gonzalez-Herraez, M. Fiber-based distributed bolometry. Opt. Express 2019, 27, 4317–4328. [Google Scholar] [CrossRef]
- Liu, Q.; Fan, X.; He, Z. Time-gated digital optical frequency domain reflectometry with 1.6-m spatial resolution over entire 110-km range. Opt. Express 2015, 23, 25988–25995. [Google Scholar] [CrossRef] [PubMed]
- Lu, B.; Pan, Z.; Wang, Z.; Zheng, H.; Ye, Q.; Qu, R.; Cai, H. High spatial resolution phase-sensitive optical time domain reflectometer with a frequency-swept pulse. Opt. Lett. 2017, 42, 391–394. [Google Scholar] [CrossRef] [PubMed]
- Mei, X.; Pang, F.; Liu, H.; Yu, G.; Shao, Y.; Qian, T.; Mou, C.; Lv, L.; Wang, T. Fast coarse-fine locating method for φ-OTDR. Opt. Express 2018, 26, 2659–2667. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Liu, Q.; Fan, X.; He, Z. Distributed Fiber-Optic Acoustic Sensor with Enhanced Response Bandwidth and High Signal-to-Noise Ratio. J. Light. Technol. 2017, 35, 2037–2043. [Google Scholar] [CrossRef]
- Xiong, J.; Wang, Z.; Wu, Y.; Chen, Y.; Li, J.; Rao, Y. High performance CP-ΦOTDR utilizing the negative band. In Proceedings of the 2018 International Conference on Optical Fiber Sensors, Lausanne, Switzerland, 24–28 September 2018; p. FB5. [Google Scholar]
- Xiao, Z.; Yuan, X.; Xu, S.; Li, Z.; Huang, Y. Frequency Response Enhancement of Φ-OTDR Using Interval-Sweeping Pulse Equivalent Sampling Based on Compressed Sensing. J. Light. Technol. 2022, 41, 768–776. [Google Scholar] [CrossRef]
- He, Q.; Liu, R.; Tan, G. Non-uniformly periodical sampling in phase-sensitive OTDR. Opt. Commun. 2017, 405, 201–204. [Google Scholar] [CrossRef]
- He, Q.; Zhu, T.; Zhou, J.; Diao, D.; Bao, X. Frequency Response Enhancement by Periodical Nonuniform Sampling in Distributed Sensing. IEEE Photon. Technol. Lett. 2015, 27, 2158–2161. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, T.; Zheng, H.; Kuang, Y.; Liu, M.; Huang, W. Breaking through the bandwidth barrier in distributed fiber vibration sensing by sub-Nyquist randomized sampling. In Proceedings of the 2018 International Conference on Optical Fiber Sensors, Jeju, Republic of Korea, 24–28 April 2017; pp. 1–4. [Google Scholar]
- Yang, G.; Fan, X.; Liu, Q.; He, Z. Frequency response enhancement of direct-detection phase-sensitive OTDR by using frequency division multiplexing. J. Light. Technol. 2017, 36, 1197–1203. [Google Scholar] [CrossRef]
- Marcon, L.; Soto, M.A.; Soriano-Amat, M.; Costa, L.; Fernandez-Ruiz, M.R.; Martins, H.F.; Palmieri, L.; Gonzalez-Herraez, M. High-Resolution Chirped-Pulse φ-OTDR by Means of Sub-Bands Processing. J. Light. Technol. 2020, 38, 4142–4149. [Google Scholar] [CrossRef]
- Wakisaka, Y.; Iida, D.; Koshikiya, Y.; Honda, N. Sampling Rate Enhancement and Fading Suppression of Φ-OTDR with Frequency Division Multiplex Technique. J. Light. Technol. 2022, 40, 822–836. [Google Scholar] [CrossRef]
- Xu, N.; Wang, P.; Wang, Y.; Liu, X.; Bai, Q.; Gao, Y.; Zhang, H.; Jin, B. Crosstalk Noise Suppressed for Multi-frequency ϕ-OTDR Using Compressed Sensing. J. Light. Technol. 2021, 39, 7343–7350. [Google Scholar] [CrossRef]
- Zou, W.; Yang, S.; Long, X.; Chen, J. Optical pulse compression reflectometry: Proposal and proof-of-concept experiment. Opt. Express 2015, 23, 512–522. [Google Scholar] [CrossRef]
- Lu, Y.; Zhu, T.; Chen, L.; Bao, X. Distributed Vibration Sensor Based on Coherent Detection of Phase-OTDR. J. Light. Technol. 2010, 28, 3243–3249. [Google Scholar]
- Wang, S.; Fan, X.; Liu, Q.; He, Z. Distributed fiber-optic vibration sensing based on phase extraction from time-gated digital OFDR. Opt. Express 2015, 23, 33301–33309. [Google Scholar] [CrossRef]
- Pastor-Graells, J.; Martins, H.F.; Garcia-Ruiz, A.; Martin-Lopez, S.; Gonzalez-Herraez, M. Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses. Opt. Express 2016, 24, 13121–13133. [Google Scholar] [CrossRef]
- Zhang, J.D.; Wu, H.T.; Zheng, H.; Huang, J.S.; Yin, G.L.; Zhu, T.; Qiu, F.; Huang, X.B.; Qu, D.R.; Bai, Y.Z. 80 km Fading Free Phase-Sensitive Reflectometry Based on Multi-Carrier NLFM Pulse Without Distributed Amplification. J. Light. Technol. 2019, 37, 4748–4754. [Google Scholar] [CrossRef]
- Muanenda, Y.; Faralli, S.; Oton, C.J.; Velha, P.; Pasquale, F.D. Adaptable Pulse Compression in ϕ-OTDR with Direct Digital Synthesis of Probe Waveforms and Rigorously Defined Nonlinear Chirping. IEEE Photonics J. 2022, 14, 1–10. [Google Scholar] [CrossRef]
- Chen, D.; Liu, Q.; He, Z. High-fidelity distributed fiber-optic acoustic sensor with fading noise suppressed and sub-meter spatial resolution. Opt. Express 2018, 26, 16138–16146. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Liu, Q.; He, Z. 108-km Distributed Acoustic Sensor with 220-pε/√ Hz Strain Resolution and 5-m Spatial Resolution. J. Light. Technol. 2019, 37, 4462–4468. [Google Scholar] [CrossRef]
- Li, H.; Zhao, Y.; Cheng, Z.; Feng, D. Orthogonal frequency division multiplexing linear frequency modulation signal design with optimised pulse compression property of spatial synthesised signals. IET Radar Sonar Nav. 2016, 10, 1319–1326. [Google Scholar] [CrossRef]
- Vizitiu, I.; Anton, L.; Popescu, F.; Iubu, G. The synthesis of some NLFM laws using the stationary phase principle. In Proceedings of the 2012 10th International Symposium on Electronics and Telecommunications, Timisoara, Romania, 15–16 November 2012; pp. 377–380. [Google Scholar]
- Boukeffa, S.; Jiang, Y.; Jiang, T. Sidelobe reduction with nonlinear frequency modulated waveforms. In Proceedings of the 2011 IEEE 7th International Colloquium on Signal Processing and Its Applications, Penang, Malaysia, 4–6 March 2011; pp. 399–403. [Google Scholar]
- Chen, D.; Liu, Q.; He, Z. Phase-detection distributed fiber-optic vibration sensor without fading-noise based on time-gated digital OFDR. Opt. Express 2017, 25, 8315–8325. [Google Scholar] [CrossRef]
- Wu, M.; Fan, X.; Zhang, X.; Yan, L.; He, Z. Frequency Response Enhancement of Phase-Sensitive OTDR for Interrogating Weak Reflector Array by Using OFDM and Vernier Effect. J. Light. Technol. 2020, 38, 4874–4882. [Google Scholar] [CrossRef]
- Ma, F.; Song, N.; Wang, X.; Ma, H.; Wei, X.; Yu, J. Study on the generation and influence factors of the new wavelength components in backscattering light of Φ-OTDR. Opt. Commun. 2020, 474, 126106. [Google Scholar] [CrossRef]
- Mompó, J.J.; Martín-Lópe, S.Z.; González-Herráez, M.; Loayssa, A. Sidelobe apodization in optical pulse compression reflectometry for fiber optic distributed acoustic sensing. Opt. Lett. 2018, 43, 1499–1502. [Google Scholar] [CrossRef]
- Gautam, G.; Shrestha, S.; Cho, S. Spectral Analysis of Rectangular, Hanning, Hamming and Kaiser Window for Digital Fir Filter. Int. J. Adv. Smart Converg. 2015, 4, 138–144. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Zhang, Y.; Yuan, X.; Xiao, Z.; Zhang, Y.; Huang, Y. φ-OTDR Based on Orthogonal Frequency-Division Multiplexing Time Sequence Pulse Modulation. Appl. Sci. 2023, 13, 11355. https://doi.org/10.3390/app132011355
Li Z, Zhang Y, Yuan X, Xiao Z, Zhang Y, Huang Y. φ-OTDR Based on Orthogonal Frequency-Division Multiplexing Time Sequence Pulse Modulation. Applied Sciences. 2023; 13(20):11355. https://doi.org/10.3390/app132011355
Chicago/Turabian StyleLi, Zhengyang, Yangan Zhang, Xueguang Yuan, Zhenyu Xiao, Yuan Zhang, and Yongqing Huang. 2023. "φ-OTDR Based on Orthogonal Frequency-Division Multiplexing Time Sequence Pulse Modulation" Applied Sciences 13, no. 20: 11355. https://doi.org/10.3390/app132011355
APA StyleLi, Z., Zhang, Y., Yuan, X., Xiao, Z., Zhang, Y., & Huang, Y. (2023). φ-OTDR Based on Orthogonal Frequency-Division Multiplexing Time Sequence Pulse Modulation. Applied Sciences, 13(20), 11355. https://doi.org/10.3390/app132011355