Design and Analysis of the High-Speed Underwater Glider with a Bladder-Type Buoyancy Engine
Abstract
:1. Introduction
2. Analysis of UG
2.1. Hull Shape Design
2.2. Hull Resistance Analysis
2.3. Maximum Speed Analysis
3. Mathematical Model of the UG
3.1. Structure of UG System
3.2. Mathematical Model of UG
4. Experiment
Gliding Experiment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shin, D.H.; Bae, S.B.; Baek, W.K.; Joo, M.G. Way-point tracking of AUV using Fuzzy PD controller. Korea Inst. Inf. Technol. 2013, 11, 1–7. [Google Scholar] [CrossRef]
- Chen, X.; Bose, N.; Brito, M.; Khan, F.; Thanyamanta, B.; Zou, T. A review of risk analysis research for the operations of autonomous underwater vehicles. Reliab. Eng. Syst. Saf. 2021, 216, 108011. [Google Scholar] [CrossRef]
- Park, J.J. Underwater glider: Its applicability in the East/Japan Sea. Ocean. Polar Res. 2013, 35, 107–121. [Google Scholar] [CrossRef]
- Park, Y.-S.; Lee, S.-J.; Lee, Y.-K.; Jung, S.-K.; Jang, N.-D.; Lee, H.-W. Report of east sea crossing by underwater glider. Sea J. Korean Soc. Oceanogr. 2012, 17, 130–137. [Google Scholar] [CrossRef]
- Arima, M.; Tonai, H.; Kosuga, Y. Underwater glider ‘SOARER’ for ocean environmental monitoring. In Proceedings of the 2013 IEEE International Underwater Technology Symposium (UT), Tokyo, Japan, 5–8 March 2013; pp. 1–5. [Google Scholar]
- Claus, B.; Bachmayer, R.; Cooney, L. Analysis and development of a buoyancy-pitch based depth control algorithm for a hybrid underwater glider. In Proceedings of the 2012 IEEE/OES Autonomous Underwater Vehicles (AUV), Southampton, UK, 24–27 September 2012; pp. 1–6. [Google Scholar]
- Ruiz, S.; Renault, L.; Garau, B.; Tintoré, J. Underwater glider observations and modeling of an abrupt mixing event in the upper ocean. Geophys. Res. Lett. 2012, 39, L01603. [Google Scholar] [CrossRef]
- Sherman, J.; Davis, R.E.; Owens, W.; Valdes, J. The autonomous underwater glider “Spray”. IEEE J. Ocean. Eng. 2001, 26, 437–446. [Google Scholar] [CrossRef]
- Yu, J.; Zhang, F.; Zhang, A.; Jin, W.; Tian, Y. Motion parameter optimization and sensor scheduling for the sea-wing underwater glider. IEEE J. Ocean. Eng. 2013, 38, 243–254. [Google Scholar] [CrossRef]
- Bhatta, P.; Leonard, N.E. Nonlinear gliding stability and control for vehicles with hydrodynamic forcing. Automatica 2008, 44, 1240–1250. [Google Scholar] [CrossRef]
- Graver, J.G.; Leonard, N.E. Underwater glider dynamics and control. In Proceedings of the 12th International Symposium on Unmanned Untethered Submersible Technology, Durham, UK, 27 August 2001; pp. 1710–1742. [Google Scholar]
- Isa, K.; Arshad, M.R. Dynamic modeling and characteristics estimation for USM underwater glider. In Proceedings of the 2011 IEEE Control and System Graduate Research Colloquium, Shah Alam, Malaysia, 27–28 June 2011; pp. 12–17. [Google Scholar]
- Niu, W.D.; Wang, S.X.; Wang, Y.H. Stability analysis of hybrid-driven underwater glider. China Ocean Eng. 2017, 31, 528–538. [Google Scholar] [CrossRef]
- Wu, H.; Niu, W.; Wang, S.; Yan, S. An analysis method and a compensation strategy of motion accuracy for UG considering uncertain current. Ocean Eng. 2021, 226, 108877. [Google Scholar] [CrossRef]
- Yang, M.; Wang, Y.H.; Yang, S.Q.; Zhang, L.H.; Deng, J.J. Shape optimization of underwater glider based on approximate model technology. Appl. Ocean Res. 2021, 110, 102580. [Google Scholar] [CrossRef]
- Yang, M.; Yang, S.; Wang, Y.; Liang, Y.; Wang, S.; Zhang, L. Optimization design of neutrally buoyant hull for underwater gliders. Ocean Eng. 2020, 209, 107512. [Google Scholar] [CrossRef]
- Wang, S.; Yang, M.; Wang, Y.; Yang, S.; Lan, S.; Zhang, X. Optimization of Flight Parameters for Petrel-L Underwater Glider. IEEE J. Ocean. Eng. 2020, 46, 817–828. [Google Scholar] [CrossRef]
- Nguyen, N.-D.; Choi, H.-S.; Jin, H.-S.; Huang, J.; Lee, J.-H. Robust Adaptive Depth Control of hybrid underwater glider in vertical plane. Adv. Technol. Innov. 2020, 5, 135–146. [Google Scholar] [CrossRef]
- Yang, M.; Wang, Y.; Liang, Y.; Wang, C. A new approach to system design optimization of underwater gliders. IEEE-ASME Trans. Mechatron. 2022, 27, 3494–3505. [Google Scholar] [CrossRef]
- Wang, S.; Yang, M.; Niu, W.; Wang, Y.; Yang, S.; Zhang, L.; Deng, J. Multidisciplinary Design Optimization of Underwater Glider for Improving Endurance. Struct. Multidiscip. Optim. 2021, 63, 2835–2851. [Google Scholar] [CrossRef]
- Huang, J.; Choi, H.-S.; Jung, D.-W.; Cho, H.-J.; Anh, P.H.N.; Zhang, R.; Park, J.-H.; Yun, C.-U. Simulation Study on a New Hybrid Autonomous Underwater Vehicle with Elevators. Proc. Eng. Technol. Innov. 2023, 25, 11–25. [Google Scholar] [CrossRef]
- Myring, D. A theoretical study of body drag in subcritical axisymmetric flow. Aeronaut. Q. 1976, 27, 186–194. [Google Scholar] [CrossRef]
- Prestero, T.J. Verification of a Six-Degree of Freedom Simulation Model for the REMUS Autonomous Underwater Vehicle. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2001. [Google Scholar]
- Fossen, T.I. Guidance and Control of Ocean Vehicles; John Wiley & Sons Ltd.: Chichester, UK, 1994. [Google Scholar]
- Ji, D.-H.; Choi, H.-S.; Kang, J.-I.; Cho, H.-J.; Joo, M.-G.; Lee, J.-H. Design and control of hybrid underwater glider. Adv. Mech. Eng. 2019, 11, 1–9. [Google Scholar] [CrossRef]
- Kim, D.-H.; Lee, S.-S.; Choi, H.-S.; Kim, J.-Y.; Lee, S.-J.; Lee, Y.-K. Dynamic modeling and motion analysis of unmanned underwater gliders with mass shifter unit and buoyancy engine. J. Ocean. Eng. Technol. 2014, 28, 466–473. [Google Scholar] [CrossRef]
Parameters | Description | Units |
---|---|---|
Nose section length | m | |
Nose offset | m | |
Constant radius center section length | m | |
Tail section length | m | |
Tail offset | m | |
Exponential coefficient | - | |
Included tail angle | radians | |
Maximum hull diameter | m | |
Vehicle total length | m | |
Vehicle forward length | m |
Index | Value | Units |
---|---|---|
Length | 2.14 | m |
Diameter | 0.28 | m |
Width | 1.45 | m |
Height | 0.348 | m |
Weight | 108 | kg |
Buoyancy | 108 | kg |
Classification | Axis | Motion | Fore and Moment | Velocity | Displacement |
---|---|---|---|---|---|
Translational motion | x | Surge | |||
y | Sway | ||||
z | Heave | ||||
Rotational motion | x | Roll | |||
y | Pitch | ||||
z | Yaw |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, D.-H.; Lee, J.-H.; Ko, S.-H.; Hyeon, J.-W.; Lee, J.-H.; Choi, H.-S.; Jeong, S.-K. Design and Analysis of the High-Speed Underwater Glider with a Bladder-Type Buoyancy Engine. Appl. Sci. 2023, 13, 11367. https://doi.org/10.3390/app132011367
Ji D-H, Lee J-H, Ko S-H, Hyeon J-W, Lee J-H, Choi H-S, Jeong S-K. Design and Analysis of the High-Speed Underwater Glider with a Bladder-Type Buoyancy Engine. Applied Sciences. 2023; 13(20):11367. https://doi.org/10.3390/app132011367
Chicago/Turabian StyleJi, Dae-Hyeong, Jung-Han Lee, Sung-Hyub Ko, Jong-Wu Hyeon, Ji-Hyeong Lee, Hyeung-Sik Choi, and Sang-Ki Jeong. 2023. "Design and Analysis of the High-Speed Underwater Glider with a Bladder-Type Buoyancy Engine" Applied Sciences 13, no. 20: 11367. https://doi.org/10.3390/app132011367
APA StyleJi, D.-H., Lee, J.-H., Ko, S.-H., Hyeon, J.-W., Lee, J.-H., Choi, H.-S., & Jeong, S.-K. (2023). Design and Analysis of the High-Speed Underwater Glider with a Bladder-Type Buoyancy Engine. Applied Sciences, 13(20), 11367. https://doi.org/10.3390/app132011367