Special Issue on Deep Learning for Electroencephalography (EEG) Data Analysis
Acknowledgments
Conflicts of Interest
References
- Vergara-Sánchez, D.L.; Calvo, H.; Moreno-Armendáriz, M.A. Distributional Representation of Cyclic Alternating Patterns for A-Phase Classification in Sleep EEG. Appl. Sci. 2023, 13, 10299. [Google Scholar] [CrossRef]
- Machida, K.; Nambu, I.; Wada, Y. Transposed Convolution as Alternative Preprocessor for Brain-Computer Interface Using Electroencephalogram. Appl. Sci. 2023, 13, 3578. [Google Scholar] [CrossRef]
- Zheng, Y.; Luo, Y.; Shao, H.; Zhang, L.; Li, L. DABaCLT: A Data Augmentation Bias-Aware Contrastive Learning Framework for Time Series Representation. Appl. Sci. 2023, 13, 7908. [Google Scholar] [CrossRef]
- Kim, H.G.; Jeong, D.K.; Kim, J.Y. Emotional Stress Recognition Using Electroencephalogram Signals Based on a Three-Dimensional Convolutional Gated Self-Attention Deep Neural Network. Appl. Sci. 2022, 12, 11162. [Google Scholar] [CrossRef]
- Abdulrahman, A.; Baykara, M.; Alakus, T.B. A novel approach for emotion recognition based on EEG signal using deep learning. Appl. Sci. 2022, 12, 10028. [Google Scholar] [CrossRef]
- Saminu, S.; Xu, G.; Shuai, Z.; Kader, I.A.E.; Jabire, A.H.; Ahmed, Y.K.; Karaye, I.A.; Ahmad, I.S. Application of Deep Learning and WT-SST in Localization of Epileptogenic Zone Using Epileptic EEG Signals. Appl. Sci. 2022, 12, 4879. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prevete, R.; Isgrò, F.; Donnarumma, F. Special Issue on Deep Learning for Electroencephalography (EEG) Data Analysis. Appl. Sci. 2023, 13, 11475. https://doi.org/10.3390/app132011475
Prevete R, Isgrò F, Donnarumma F. Special Issue on Deep Learning for Electroencephalography (EEG) Data Analysis. Applied Sciences. 2023; 13(20):11475. https://doi.org/10.3390/app132011475
Chicago/Turabian StylePrevete, Roberto, Francesco Isgrò, and Francesco Donnarumma. 2023. "Special Issue on Deep Learning for Electroencephalography (EEG) Data Analysis" Applied Sciences 13, no. 20: 11475. https://doi.org/10.3390/app132011475
APA StylePrevete, R., Isgrò, F., & Donnarumma, F. (2023). Special Issue on Deep Learning for Electroencephalography (EEG) Data Analysis. Applied Sciences, 13(20), 11475. https://doi.org/10.3390/app132011475