Changes in the Biological Activities of Gracilaria verrucosa Extracted Using Different Extraction Solvents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Seaweed
2.2. Preparation of GV Extracts
2.3. The Total Polyphenol Content (TPC) Measurement
2.4. The Total Flavonoid Content (TFC) Measurement
2.5. Antioxidant Activity Measurement
2.5.1. 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) Activity Measurement
2.5.2. 2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) Activity Measurement
2.5.3. Ferric Reducing Antioxidant Power (FRAP) Value Measurement
2.6. In Vitro Antioxidant Enzyme Activity Measurement
2.7. In Vitro Antiaging Activity Measurement
2.7.1. In Vitro Collagenase Inhibition Assay
2.7.2. In Vitro Elastase Inhibition Assay
2.8. In Vitro Tyrosinase Inhibition Assay
2.9. Measurement of Phenolic Compound Content
2.10. Analysis of Antibacterial Activity
2.11. Statistical Analysis
3. Results and Discussion
3.1. Extraction Yield of GV Extracts
3.2. The Total Polyphenol and Flavonoid Content of GV Extracts
3.3. DPPH Activity of GV Extracts
3.4. ABTS Activity of GV Extracts
3.5. FRAP Activity of GV Extracts
3.6. SOD, CAT, and APX Activities of GV Extracts
3.7. Analysis of Collagenase and Elastase Inhibition Activities of GV Extracts
3.8. Analysis of Tyrosinase Inhibition Activity of GV Extracts
3.9. Analysis of the Phenolic Compounds Content in GV Extracts
3.10. Analysis of the Antibacterial Activity of GV Extracts
3.11. Principal Component Analysis (PCA) of Biological Activities of GV Extracts
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Goñi, O.; Quille, P.; O’Connell, S. Seaweed carbohydrates. In The Chemical Biology of Plant Biostimulants; Geelen, D., Xu, L., Eds.; Wiley: Hoboken, NJ, USA, 2020; pp. 57–95. [Google Scholar]
- Suleria, H.A.R.; Gobe, G.; Masci, P.; Osborne, S.A. Marine bioactive compounds and health promoting perspectives; innovation pathways for drug discovery. Trends Food Sci. Technol. 2016, 50, 44–55. [Google Scholar] [CrossRef]
- Khalid, S.; Abbas, M.; Saeed, F.; Bader-Ul-Ain, H.; Suleria, H.A.R. Therapeutic potential of seaweed bioactive compounds. In Seaweed Biomaterials; Maiti, S., Laha, B., Eds.; IntechOpen: London, UK, 2018; pp. 7–13. [Google Scholar]
- Lim, C.S.; Jin, D.Q.; Sung, J.Y.; Lee, J.H.; Choi, H.G.; Ha, I.; Han, J.S. Antioxidant and anti-inflammatory activities of the methanolic extract of Neorhodomela aculeate in hippocampal and microglial cells. Biol. Pharm. Bull. 2006, 29, 1212–1216. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, B.K.; Troy, D.J. Seaweed sustainability–food and nonfood applications. In Seaweed Sustainability; Tiwari, B.K., Troy, D.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 1–6. [Google Scholar]
- Shannon, E.; Abu-Ghannam, N. Seaweeds as nutraceuticals for health and nutrition. Phycologia 2019, 58, 563–577. [Google Scholar] [CrossRef]
- Shi, Q.; Wang, A.; Lu, Z.; Qin, C.; Hu, J.; Yin, J. Overview on the antiviral activities and mechanisms of marine polysaccharides from seaweeds. Carbohydr. Res. 2017, 453, 1–9. [Google Scholar] [CrossRef]
- Pradhan, B.; Bhuyan, P.P.; Patra, S.; Nayak, R.; Behera, P.K.; Behera, C.; Behera, A.K.; Ki, J.-S.; Jena, M. Beneficial effects of seaweeds and seaweed-derived bioactive compounds: Current evidence and future prospective. Biocatal. Agric. 2022, 39, 102242. [Google Scholar] [CrossRef]
- Kadam, S.U.; Tiwari, B.K.; O’Donnell, C.P. Application of novel extraction technologies for bioactives from marine algae. J. Agric. Food Chem. 2013, 61, 4667–4675. [Google Scholar] [CrossRef]
- Yu, S.; Blennow, A.; Bojko, M.; Madsen, F.; Olsen, C.E.; Engelsen, S.B. Physico-chemical characterization of floridean starch of red algae. Starch-Stärke 2002, 54, 66–74. [Google Scholar] [CrossRef]
- Dumay, J.; Clément, N.; Morançais, M.; Fleurence, J. Optimization of hydrolysis conditions of Palmaria palmata to enhance R-phycoerythrin extraction. Bioresour. Technol. 2013, 131, 21–27. [Google Scholar] [CrossRef]
- Pei, J.; Lin, A.; Zhang, F.; Zhu, D.; Li, J.; Wang, G. Using agar extraction waste of Gracilaria lemaneiform is in the papermaking industry. J. Appl. Phycol. 2013, 25, 1135–1141. [Google Scholar] [CrossRef]
- Cha, W.Y.; Byoun, C. Development and characterization of an eco-friendly packaging film using Gelidium amansii and Sargassum Horneri. J. Mar. Biosci. Biotechnol. 2022, 14, 76–85. [Google Scholar]
- Kim, S.Y.; Yoo, Y.C.; Yang, E.C. Organelle Genomes and Phylogeny of Gracilaria vermiculophylla (Gracilariaceae, Rhodophyta) from Korea. Aquat. Nat. 2022, 2, 79–96. [Google Scholar]
- Kumar, S.; Gupta, R.; Kumar, G.; Sahoo, D.; Kuhad, R.C. Bioethanol production from Gracilaria verrucosa, a red alga, in a biorefinery approach. Bioresour. Technol. 2013, 135, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Mahadevan, K. Seaweeds: A sustainable food source. In Seaweed Sustainability; Tiwari, B.K., Troy, D.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 347–364. [Google Scholar]
- Lozano Muñoz, I.; Díaz, N.F. Minerals in edible seaweed: Health benefits and food safety issues. Crit. Rev. Food Sci. Nutr. 2020, 62, 1592–1607. [Google Scholar] [CrossRef] [PubMed]
- FAO. The State of World Fisheries and Aquaculture 2022; Food and Agriculture Organization of the United Nations: Rome, Italy, 2022; pp. 45–46. [Google Scholar]
- Michetti, K.M.; Martín, L.A.; Leonardi, P.I. Carpospore release and sporeling development in Gracilaria gracilis (Gracilariales, Rhodophyta) from the southwestern Atlantic coast (Chubut, Argentina). J. Appl. Phycol. 2013, 25, 1917–1924. [Google Scholar] [CrossRef]
- Samanta, P.; Jang, S.; Shin, S.; Kim, J.K. Effects of pH on growth and biochemical responses in Agarophyton vermiculophyllum under different temperature conditions. J. Appl. Phycol. 2020, 32, 499–509. [Google Scholar] [CrossRef]
- Kwak, Y.-H.; Kim, H.-S.; Choi, S.-J.; Kim, D.-J. Substantial estimated availability and NDF-bound trace minerals (Fe, Zn, Cu, and Mn) contents of seven different seaweeds. J. Korean Soc. Food Sci. Nutr. 2010, 39, 1078–1082. [Google Scholar] [CrossRef]
- Hong, S.-M.; Cho, H.-D.; Kim, J.-H.; Lee, J.-H.; Song, W.-S.; Lee, S.-T.; Lee, M.-K.; Seo, K.-I. Anti-proliferative effects of acid extract of Gracilaria verrucosa on primary human prostate cancer cells. J. Life Sci. 2016, 26, 1130–1136. [Google Scholar] [CrossRef]
- Park, E.-K.; Kim, H.-W.; Ji, Y.-H.; Park, S.-H. Moisturizing and Skin Improvement Effect of Polysaccharides from Gracilariopsis spp. J. Mar. Biosci. Biotechnol. 2017, 9, 58–64. [Google Scholar]
- Kang, D.-M.; Kang, S.-M. The antioxidation effect of Gracilaria spp. extract. J. Korean Soc. Cosmetol. 2021, 27, 552–559. [Google Scholar] [CrossRef]
- Kang, S.-Y.; Oh, M.-J.; Shin, J.-A. Antimicrobial activities of Korean marine algae against fish pathogenic bacteria. J. Fish Pathol. 2005, 18, 147–156. [Google Scholar]
- Folin, O.; Denis, W. On phosphotungstic-phosphomolybdic compounds as color reagents. J. Biol. Chem. 1912, 12, 239–243. [Google Scholar] [CrossRef]
- Moreno, M.I.N.; Isla, M.I.; Sampietro, A.R.; Vattuone, M.A. Comparison of the free radical-scavenging activity of propolis from several regions of Argentina. J. Ethnopharmacol. 2000, 71, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Lee, H.-H.; Moon, Y.-S. Assessment of the important factors influencing consistent and accurate ABTS assay. J. Korean Soc. Food Sci. Nutr. 2019, 48, 390–393. [Google Scholar] [CrossRef]
- Nowak, A.; Florkowska, K.; Zielonka-Brzezicka, J.; Duchnik, W.; Muzykiewicz, A.; Klimowicz, A. The effects of extraction techniques on the antioxidant potential of extracts of different parts of milk thistle (Silybum marianum L.). Acta Sci. Pol. Technol. Aliment. 2021, 20, 37–46. [Google Scholar] [PubMed]
- Beauchamp, C.; Fridovich, I. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 1971, 44, 276–287. [Google Scholar] [CrossRef]
- Aebi, H. Catalase in vitro. Meth. Enzymol. 1984, 105, 121–126. [Google Scholar]
- Nakano, Y.; Asada, K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 1981, 22, 867–880. [Google Scholar]
- Cannell, R.J.; Kellam, S.J.; Owsianka, A.M.; Walker, J.M. Results of a large scale screen of microalgae for the production of protease inhibitors. J. Med. Plant Res. 1988, 54, 10–14. [Google Scholar] [CrossRef]
- Yagi, A.; Kanbara, T.; Morinobu, N. Inhibition of Mushroom-Tyrosinase by Aloe Extract. Planta Med. 1987, 53, 515–517. [Google Scholar] [CrossRef]
- Julianti, E.; Rajah, K.K.; Fidrianny, I. Antibacterial activity of ethanolic extract of cinnamon bark, honey, and their combination effects against acne-causing bacteria. Sci. Pharm. 2017, 85, 19. [Google Scholar] [CrossRef]
- Nichitoi, M.M.; Josceanu, A.M.; Isopescu, R.D.; Isopencu, G.O.; Geana, E.I.; Ciucure, C.T.; Lavric, V. Polyphenolics profile effects upon the antioxidant and antimicrobial activity of propolis extracts. Sci. Rep. 2021, 11, 20113. [Google Scholar] [CrossRef] [PubMed]
- Pavlić, B.; Teslić, N.; Zengin, G.; Đurović, S.; Rakić, D.; Cvetanović, A.; Gunes, A.K.; Zeković, Z. Antioxidant and enzyme-inhibitory activity of peppermint extracts and essential oils obtained by conventional and emerging extraction techniques. Food Chem. 2021, 338, 127724. [Google Scholar] [CrossRef] [PubMed]
- Melo, M.; Feitosa, J.; Freitas, A.; De Paula, R. Isolation and characterization of soluble sulfated polysaccharide from the red seaweed Gracilaria Cornea. Carbohydr. Polym. 2002, 49, 491–498. [Google Scholar] [CrossRef]
- Vuai, S.A. Characterization of agar extracted from Gracilaria species collected along Tanzanian coast. Heliyon 2022, 22, e09002. [Google Scholar] [CrossRef]
- Trejo-Méndez, M.D.J.; Hernández-Carmona, G.; Arvizu-Higuera, D.L.; Rosas-Alquicira, E.F.; Montoya-Márquez, J.A.; Rodríguez-Montesinos, Y.E.; Muñoz-Ochoa, M. Spatial and seasonal effects on physicochemical properties of native agar from Gracilaria parvispora (Rhodophyta) in the Tropical Mexican Pacific (Oaxaca-Chiapas). Hidrobiológica 2021, 231, 125–135. [Google Scholar] [CrossRef]
- Li, H.; Yu, X.; Jin, Y.; Zhang, W.; Liu, Y. Development of an eco-friendly agar extraction technique from the red seaweed Gracilaria lemaneiformis. Bioresour. Technol. 2008, 99, 3301–3305. [Google Scholar] [CrossRef]
- Mohibbullah, M.; Talha, M.A.; Baten, M.A.; Newaz, A.W.; Choi, J.S. Yield optimization, physicochemical characterizations, and antioxidant properties of food grade agar from Gracilaria tenuistipitata of Cox’s Bazar coast, Bangladesh. Food Sci. Nutr. 2023, 11, 2852–2863. [Google Scholar] [CrossRef]
- Pereira, S.G.; Teixeira-Guedes, C.; Souza-Matos, G.; Maricato, É.; Nunes, C.; Coimbra, M.A.; Teixeira, J.A.; Pereira, R.N.; Rocha, C.M. Influence of ohmic heating in the composition of extracts from Gracilaria vermiculophylla. Algal Res. 2021, 58, 102360. [Google Scholar] [CrossRef]
- Sasadara, M.M.V.; Wirawan, I.G.P. Effect of extraction solvent on total phenolic content, total flavonoid content, and antioxidant activity of Bulung Sangu (Gracilaria spp.) Seaweed. IOP Conf. Ser. Earth Environ. 2021, 712, 012005. [Google Scholar] [CrossRef]
- Vasantharaja, R.; Abraham, L.S.; Inbakandan, D.; Thirugnanasambandam, R.; Senthilvelan, T.; Jabeen, S.A.; Prakash, P. Influence of seaweed extracts on growth, phytochemical contents and antioxidant capacity of cowpea (Vigna unguiculata L. Walp). Biocatal. Agric. 2019, 17, 589–594. [Google Scholar] [CrossRef]
- Machu, L.; Misurcova, L.; Vavra Ambrozova, J.; Orsavova, J.; Mlcek, J.; Sochor, J.; Jurikova, T. Phenolic content and antioxidant capacity in algal food products. Molecules 2015, 20, 1118–1133. [Google Scholar] [CrossRef]
- Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability. AJCN 2004, 79, 727–747. [Google Scholar] [CrossRef]
- Rusli, A.; Metusalach, T.M.; Salengke, S. Analysis of bioactive compounds of Caulerpa recemosa, Sargassum spp. and Gracillaria verrucosa using different solvents. J. Teknol. 2016, 78, 15–19. [Google Scholar]
- Farvin, K.S.; Jacobsen, C. Phenolic compounds and antioxidant activities of selected species of seaweeds from Danish coast. Food Chem. 2013, 138, 1670–1681. [Google Scholar] [CrossRef] [PubMed]
- Vijayalaxmi, S.; Jayalakshmi, S.; Sreeramulu, K. Polyphenols from different agricultural residues: Extraction, identification and their antioxidant properties. J. Food Sci. Technol. 2015, 52, 2761–2769. [Google Scholar] [CrossRef]
- GÜLÇin, I.; Alici, H.A.; Cesur, M. Determination of in vitro antioxidant and radical scavenging activities of propofol. Chem. Pharm. Bull. 2005, 53, 281–285. [Google Scholar] [CrossRef]
- Sornalakshmi, V.; Tresina, P.; Ananthi, K.J. Phytochemical analysis and DPPH radical scavenging activity of marine red seaweed Gracilaria Corticata. Nat. Volatiles Essent. Oils. 2021, 8, 3724–3730. [Google Scholar]
- Sobuj, M.K.A.; Islam, M.; Mahmud, Y.; Rafiquzzaman, S. Effect of solvents on bioactive compounds and antioxidant activity of Padina tetrastromatica and Gracilaria tenuistipitata seaweeds collected from Bangladesh. Sci. Rep. 2021, 11, 19082. [Google Scholar] [CrossRef]
- Yu, L.; Haley, S.; Perret, J.; Harris, M.; Wilson, J.; Qian, M. Free radical scavenging properties of wheat extracts. J. Agric. Food Chem. 2002, 50, 1619–1624. [Google Scholar] [CrossRef]
- Miliauskas, G.; Venskutonis, P.R.; Van Beek, T.A. Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food Chem. 2004, 85, 231–237. [Google Scholar] [CrossRef]
- SungHee Kole, A.; Jones, H.D.; Christensen, R.; Gladstein, J. A case of Kombucha tea toxicity. J. Intensive Care Med. 2009, 24, 205–207. [Google Scholar] [CrossRef]
- Pang, J.-R.; Goh, V.M.-J.; Tan, C.-Y.; Phang, S.-M.; Wong, K.-H.; Yow, Y.-Y. Neuritogenic and in vitro antioxidant activities of Malaysian Gracilaria manilaensis Yamamoto & Trono. J. Appl. Phycol. 2018, 30, 3253–3260. [Google Scholar]
- Wang, T.; Jonsdottir, R.; Ólafsdóttir, G. Total phenolic compounds, radical scavenging and metal chelation of extracts from Icelandic seaweeds. Food Chem. 2009, 116, 240–248. [Google Scholar] [CrossRef]
- Matanjun, P.; Mohamed, S.; Mustapha, N.M.; Muhammad, K.; Ming, C.H. Antioxidant activities and phenolics content of eight species of seaweeds from North Borneo. J. Appl. Phycol. 2008, 20, 367–373. [Google Scholar] [CrossRef]
- Chan, P.T.; Matanjun, P.; Yasir, S.M.; Tan, T.S. Antioxidant activities and polyphenolics of various solvent extracts of red seaweed, Gracilaria changii. J. Appl. Phycol. 2015, 27, 2377–2386. [Google Scholar] [CrossRef]
- Neoh, Y.Y.; Matanjun, P.; Lee, J.S. Comparative study of drying methods on chemical constituents of Malaysian red seaweed. Dry. Technol. 2016, 34, 1745–1751. [Google Scholar] [CrossRef]
- Demidchik, V. Mechanisms of oxidative stress in plants: From classical chemistry to cell biology. Environ. Exp. Bot. 2015, 109, 212–228. [Google Scholar] [CrossRef]
- Afify, A.E.-M.M.; El-Beltagi, H.S.; Fayed, S.A.; Shalaby, E.A. Acaricidal activity of different extracts from Syzygium cumini L. Skeels (Pomposia) against Tetranychus urticae Koch. Asian Pac. J. Trop. Biomed. 2011, 1, 359–364. [Google Scholar] [CrossRef]
- Kurakake, M.; Itakura, K.; Nakano, M. Functional Properties of Nori Seaweed (Pyropia yezoensis) with Different Quality and Ulva spp. J. Aquat. Food Prod. 2021, 30, 188–195. [Google Scholar] [CrossRef]
- Kim, S.Y.; Kim, I.C.; Lee, S.-Y. Antimicrobial and antioxidant activities of ethanol extracts from marine red algae. J. Investig. Cosmetol. 2020, 16, 249–257. [Google Scholar]
- El-Sheekh, M.M.; Mousa, A.S.H.; Farghl, A.A. Biological control of Fusarium wilt disease of tomato plants using seaweed extracts. Arab. J. Sci. Eng. 2020, 45, 4557–4570. [Google Scholar] [CrossRef]
- Han, S.; Park, J.-S.; Umanzor, S.; Yarish, C.; Kim, J.K. Effects of extraction methods for a new source of biostimulant from Sargassum horneri on the growth of economically important red algae, Neopyropia yezoensis. Sci. Rep. 2022, 12, 11878. [Google Scholar] [CrossRef] [PubMed]
- Wu, H. Effect of different light qualities on growth, pigment content, chlorophyll fluorescence, and antioxidant enzyme activity in the red alga Pyropia haitanensis (Bangiales, Rhodophyta). Biomed Res. Int. 2016, 2016, 7383918. [Google Scholar] [CrossRef] [PubMed]
- Makrantonaki, E.; Adjaye, J.; Herwig, R.; Brink, T.C.; Groth, D.; Hultschig, C.; Lehrach, H.; Zouboulis, C.C. Age-specific hormonal decline is accompanied by transcriptional changes in human sebocytes in vitro. Aging Cell 2006, 5, 331–344. [Google Scholar] [CrossRef]
- Vu, V.V.; Lee, K.E.; Kang, S.G. Evaluation of antioxidant, tyrosinase and collagenase inhibitory of Grateloupia elliptica extracts after Aureobasidium pullulans fermentation. J. Soc. Cosmet. Sci. Korea 2020, 46, 1–9. [Google Scholar]
- Hartmann, A.; Gostner, J.; Fuchs, J.E.; Chaita, E.; Aligiannis, N.; Skaltsounis, L.; Ganzera, M. Inhibition of collagenase by mycosporine-like amino acids from marine sources. Planta Med. 2015, 81, 813–820. [Google Scholar] [CrossRef]
- Jesumani, V.; Du, H.; Aslam, M.; Pei, P.; Huang, N. Potential use of seaweed bioactive compounds in skincare—A review. Mar. Drugs 2019, 17, 688. [Google Scholar] [CrossRef]
- Castejón, N.; Thorarinsdottir, K.A.; Einarsdóttir, R.; Kristbergsson, K.; Marteinsdóttir, G. Exploring the potential of icelandic seaweeds extracts produced by aqueous pulsed electric fields-assisted extraction for cosmetic applications. Mar. Drugs 2021, 19, 662. [Google Scholar] [CrossRef]
- Chung, J.H.; Kang, S.; Varani, J.; Lin, J.; Fisher, G.J.; Voorhees, J.J. Decreased extracellular-signal-regulated kinase and increased stress-activated MAP kinase activities in aged human skin in vivo. J. Investig. Dermatol. 2000, 115, 177–182. [Google Scholar] [CrossRef]
- Susano, P.; Silva, J.; Alves, C.; Martins, A.; Gaspar, H.; Pinteus, S.; Mouga, T.; Goettert, M.I.; Petrovski, Ž.; Branco, L.B. Unravelling the dermatological potential of the brown seaweed Carpomitra costata. Mar. Drugs 2021, 19, 135. [Google Scholar] [CrossRef] [PubMed]
- Solano, F.; Briganti, S.; Picardo, M.; Ghanem, G. Hypopigmenting agents: An updated review on biological, chemical and clinical aspects. Pigment Cell Res. 2006, 19, 550–571. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Lee, H.; Choi, S.; Pandey, L.K.; Depuydt, S.; De Saeger, J.; Park, J.-T.; Han, T. Extracts of red seaweed, Pyropia yezoensis, inhibit melanogenesis but stimulate collagen synthesis. J. Appl. Phycol. 2021, 33, 653–662. [Google Scholar] [CrossRef]
- Cha, S.H.; Ko, S.C.; Kim, D.; Jeon, Y.J. Screening of marine algae for potential tyrosinase inhibitor: Those inhibitors reduced tyrosinase activity and melanin synthesis in zebrafish. J. Dermatol. 2011, 38, 354–363. [Google Scholar] [CrossRef] [PubMed]
- Paudel, P.; Wagle, A.; Seong, S.H.; Park, H.J.; Jung, H.A.; Choi, J.S. A new tyrosinase inhibitor from the red alga Symphyocladia latiuscula (Harvey) Yamada (Rhodomelaceae). Mar. Drugs 2019, 17, 295. [Google Scholar] [CrossRef] [PubMed]
- Gunathilake, T.; Akanbi, T.O.; Suleria, H.A.; Nalder, T.D.; Francis, D.S.; Barrow, C.J. Seaweed phenolics as natural antioxidants, aquafeed additives, veterinary treatments and cross-linkers for microencapsulation. Mar. Drugs 2022, 20, 445. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Park, Y.H.; Park, S.E.; Hwang, B.S.; Hwang, I.G.; Kim, G.-C. Antioxidant activity and phenolic acid analysis of Rud beckia laciniata var. hortensis Extract. J. Korean Soc. Food Sci. Nutr. 2020, 49, 46–53. [Google Scholar] [CrossRef]
- Onofrejová, L.; Vašíčková, J.; Klejdus, B.; Stratil, P.; Mišurcová, L.; Kráčmar, S.; Kopecký, J.; Vacek, J. Bioactive phenols in algae: The application of pressurized-liquid and solid-phase extraction techniques. J. Pharm. Biomed. Anal. 2010, 51, 464–470. [Google Scholar] [CrossRef]
- Sanz-Pintos, N.; Pérez-Jiménez, J.; Buschmann, A.H.; Vergara-Salinas, J.R.; Pérez-Correa, J.R.; Saura-Calixto, F. Macromolecular antioxidants and dietary fiber in edible seaweeds. J. Food Sci. 2017, 82, 289–295. [Google Scholar] [CrossRef]
- Silva, M.M.; Lidon, F. Food preservatives—An overview on applications and side effects. Emir. J. Food Agric. 2016, 26, 366–373. [Google Scholar] [CrossRef]
- Park, S.-Y.; Park, M.J.; Kim, J.Y. Physiological effects of red-colored food-derived bioactive compounds on cardiovascular and metabolic diseases. Appl. Sci. 2022, 12, 1786. [Google Scholar] [CrossRef]
- Cao, R.; Wu, X.; Guo, H.; Pan, X.; Huang, R.; Wang, G.; Liu, J. Naringin exhibited therapeutic effects against DSS-induced mice ulcerative colitis in intestinal barrier–dependent manner. Molecules 2021, 26, 6604. [Google Scholar] [CrossRef] [PubMed]
- Stabrauskiene, J.; Kopustinskiene, D.M.; Lazauskas, R.; Bernatoniene, J. Naringin and naringenin: Their mechanisms of action and the potential anticancer activities. Biomedicines 2022, 10, 1686. [Google Scholar] [CrossRef] [PubMed]
- Cavia-Saiz, M.; Busto, M.D.; Pilar-Izquierdo, M.C.; Ortega, N.; Perez-Mateos, M.; Muniz, P. Antioxidant properties, radical scavenging activity and biomolecule protection capacity of flavonoid naringenin and its glycoside naringin: A comparative study. J. Sci. Food Agric. 2010, 90, 1238–1244. [Google Scholar] [CrossRef]
- Chtourou, Y.; Aouey, B.; Aroui, S.; Kebieche, M.; Fetoui, H. Anti-apoptotic and anti-inflammatory effects of naringin on cisplatin-induced renal injury in the rat. Chem. Biol. Interact. 2016, 243, 1–9. [Google Scholar] [CrossRef]
- Capillo, G.; Savoca, S.; Costa, R.; Sanfilippo, M.; Rizzo, C.; Lo Giudice, A.; Albergamo, A.; Rando, R.; Bartolomeo, G.; Spanò, N. New insights into the culture method and antibacterial potential of Gracilaria gracilis. Mar. Drugs. 2018, 16, 492. [Google Scholar] [CrossRef]
- Obluchinskaya, E.; Daurtseva, A. Effects of air drying and freezing and long-term storage on phytochemical composition of brown seaweeds. J. Appl. Phycol. 2020, 32, 4235–4249. [Google Scholar] [CrossRef]
- Vera, J.; Castro, J.; Gonzalez, A.; Moenne, A. Seaweed polysaccharides and derived oligosaccharides stimulate defense responses and protection against pathogens in plants. Mar. Drugs 2011, 9, 2514–2525. [Google Scholar] [CrossRef]
- Pérez, M.J.; Falqué, E.; Domínguez, H. Antimicrobial action of compounds from marine seaweed. Mar. Drugs 2016, 14, 52. [Google Scholar] [CrossRef]
- Alshuniaber, M.A.; Krishnamoorthy, R.; AlQhtani, W.H. Antimicrobial activity of polyphenolic compounds from Spirulina against food-borne bacterial pathogens. Saudi J. Biol. Sci. 2021, 28, 459–464. [Google Scholar] [CrossRef]
- Dayuti, S. Antibacterial activity of red algae (Gracilaria verrucosa) extract against Escherichia coli and Salmonella typhimurium. IOP Conf. Ser. Earth Environ. Sci. 2018, 137, 012074. [Google Scholar] [CrossRef]
- Belhaoues, S.; Amri, S.; Bensouilah, M. Major phenolic compounds, antioxidant and antibacterial activities of Anthemis praecox Link aerial parts. S. Afr. J. Bot. 2020, 131, 200–205. [Google Scholar] [CrossRef]
Foodborne Bacteria | Cultivation Conditions | ||
---|---|---|---|
Culture Medium | Culture Temperature | ||
Gram-positive | Bacillus cereus | Nutrient broth | 30 °C |
Staphylococcus aureus | Nutrient broth | 37 °C | |
Listeria monocytogenes | Brain heart infusion broth | 37 °C | |
Gram-negative | Escherichia coli | Nutrient broth | 37 °C |
Salmonella typhimurium | Nutrient broth | 30 °C | |
Vibrio parahaemolyticus | Nutrient broth | 37 °C |
Extracts | GVE | GVM | GVW |
---|---|---|---|
Yield (%) | 3.3 ± 0.3 b | 1.3 ± 0.2 b | 43.4 ± 1.7 a |
IC50 = μg/μL | GVE | GVM | GVW | Ascorbic Acid |
---|---|---|---|---|
DPPH | 69.4 ± 0.4 a | 73.3 ± 0.9 a | 182.0 ± 17.8 b | 3.2 ± 0.0 |
ABTS | 66.9 ± 2.0 a | 53.5 ± 1.2 a | 276.2 ± 20.7 b | 0.1 ± 0.0 |
FRAP | 56.1 ± 1.4 a | 87.3 ± 0.9 b | 171.6 ± 5.8 c | 0.6 ± 0.0 |
Inhibition Activity (%) | GVE | GVM | GVW | Ascorbic Acid |
---|---|---|---|---|
Collagenase | 10.1 ± 1.3 b | 16.4 ± 1.0 a | 0.9 ± 0.1 c | 23.7 ± 1.1 |
Elastase | 10.8 ± 0.4 c | 21.2 ± 0.2 a | 16.8 ± 0.1 b | 52.2 ± 0.2 |
Tyrosinase | 6.1 ± 0.5 c | 37.9 ± 1.4 a | 22.4 ± 1.5 b | 50.2 ± 2.7 |
Compound Contents (μg/g) | GVE | GVM | GVW |
---|---|---|---|
4-hydroxy benzoic acid | ND | ND | 1.91 ± 0.01 |
Naringenin | 1.33 ± 0.01 | ND | ND |
Naringin | 666.88 ± 4.07 | ND | ND |
Foodborne Bacteria | GVE | GVM | GVW | |||
---|---|---|---|---|---|---|
MIC (μg/μL) | MBC (μg/μL) | MIC (μg/μL) | MBC (μg/μL) | MIC (μg/μL) | MBC (μg/μL) | |
B. cereus | 0.25 | 0.5 | 2.67 | 5.31 | - | - |
S. aureus | 0.125 | 0.25 | 2.67 | 5.31 | - | - |
L. monocytogens | 0.0625 | 0.125 | 1.33 | 2.67 | - | - |
E. coli | 0.125 | 0.25 | 1.33 | 2.67 | - | - |
S. typhymurium | 0.125 | 0.25 | 2.67 | 5.31 | - | - |
V. parahaemolyticus | 0.125 | 0.25 | 1.33 | 2.67 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.-S.; Choi, C.; Lee, H.-H. Changes in the Biological Activities of Gracilaria verrucosa Extracted Using Different Extraction Solvents. Appl. Sci. 2023, 13, 12314. https://doi.org/10.3390/app132212314
Kim J-S, Choi C, Lee H-H. Changes in the Biological Activities of Gracilaria verrucosa Extracted Using Different Extraction Solvents. Applied Sciences. 2023; 13(22):12314. https://doi.org/10.3390/app132212314
Chicago/Turabian StyleKim, Jin-Sol, Chulyung Choi, and Hyun-Hwa Lee. 2023. "Changes in the Biological Activities of Gracilaria verrucosa Extracted Using Different Extraction Solvents" Applied Sciences 13, no. 22: 12314. https://doi.org/10.3390/app132212314
APA StyleKim, J.-S., Choi, C., & Lee, H.-H. (2023). Changes in the Biological Activities of Gracilaria verrucosa Extracted Using Different Extraction Solvents. Applied Sciences, 13(22), 12314. https://doi.org/10.3390/app132212314