Assessment and Comparison of Phytochemical Constituents and Biological Activities between Full Flowering and Late Flowering of Hypericum perforatum L.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Preparation
2.2. Chemicals and Reagents
2.3. Preparation of Dried Extract
2.4. Spectrophotometric Assay
2.4.1. Sample Preparation
2.4.2. Determination of the Total Phenolic and Flavonoid Content
2.4.3. Determination of Antioxidant Activity
2.4.4. Enzyme Inhibitory Effects
2.5. Sample Purification
2.5.1. Polyphenols Purification
2.5.2. Melatonin Purification
2.6. Chromatographic System and Operating Conditions
2.6.1. UHPLC-MS/MS Triple Quadrupole Method for 38 Polyphenols
2.6.2. UHPLC-MS/MS Triple Quadrupole Method for Melatonin
2.7. Statistical Analysis
3. Results and Discussion
3.1. Total Polyphenols, Flavonoids and Antioxidant Assays
3.2. Enzyme Inhibitory Activities
3.3. UHPLC-MS/MS Analysis of Phenolic Compounds
3.4. UHPLC-MS/MS Analytical Method Validation for Melatonin Quantification
3.5. UHPLC-MS/MS Quantification of Melatonin
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Biagi, M.; Pecorari, R.; Appendino, G.; Miraldi, E.; Magnano, A.R.; Governa, P.; Cettolin, G.; Giachetti, D. Herbal products in Italy: The thin line between phytotherapy, nutrition and parapharmaceuticals; A normative overview of the fastest growing market in Europe. Pharmaceuticals 2016, 9, 65. [Google Scholar] [CrossRef] [PubMed]
- Nobakht, S.Z.; Akaberi, M.; Mohammadpour, A.H.; Moghadam, A.T.; Emami, S.A. Hypericum perforatum: Traditional uses, clinical trials, and drug interactions. Iran. J. Basic. Med. Sci. 2022, 26, 1045–1058. [Google Scholar] [CrossRef]
- Chiappedi, M.; de Vincenzi, S.; Bejor, M. Nutraceuticals in Psychiatric Practice. Recent Patents CNS Drug Discov. 2012, 7, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Velingkar, V.S.; Gupta, G.L.; Hegde, N.B. A current update on phytochemistry, pharmacology and herb–drug interactions of Hypericum perforatum. Phytochem. Rev. 2017, 16, 725–744. [Google Scholar] [CrossRef]
- Filippini, R.; Piovan, A.; Borsarini, A.; Caniato, R. Study of dynamic accumulation of secondary metabolites in three subspecies of Hypericum perforatum. Fitoterapia 2010, 81, 115–119. [Google Scholar] [CrossRef] [PubMed]
- Kholghi, G.; Arjmandi-Rad, S.; Zarrindast, M.-R.; Vaseghi, S. St. John’s wort (Hypericum perforatum) and depression: What happens to the neurotransmitter systems? Naunyn Schmiedebergs Arch. Pharmacol. 2022, 395, 629–642. [Google Scholar] [CrossRef]
- Sahebkar-Khorasani, M.; Safarian, M.; Jarahi, L.; Yousefi, M.; Salari, R.; Meshkat, M.; Ayati, M.H.; Bahrami-Taghanaki, H.; Kargozar, R.; Azizi, H. Comparative effectiveness of Hypericum perforatum, acupuncture, and lifestyle modification in the management of obesity: A randomized clinical trial. Eur. J. Integr. Med. 2022, 52, 102119. [Google Scholar] [CrossRef]
- Nahrstedt, A.; Butterweck, V. Lessons learned from herbal medicinal products: The example of St. John’s wort. J. Nat. Prod. 2010, 73, 1015–1021. [Google Scholar] [CrossRef]
- Linde, K. St. John’s Wort—An overview. Forsch. Komplementarmed. 2009, 16, 146–155. [Google Scholar] [CrossRef]
- Barnes, J.; Anderson, L.A.; Phillipson, J.D. St John’s wort (Hypericum perforatum L.): A review of its chemistry, pharmacology and clinical properties. J. Pharm. Pharmacol. 2010, 53, 583–600. [Google Scholar] [CrossRef]
- Li, X.-X.; Yan, Y.; Zhang, J.; Ding, K.; Xia, C.-Y.; Pan, X.-G.; Shi, Y.-J.; Xu, J.-K.; He, J.; Zhang, W.-K. Hyperforin: A natural lead compound with multiple pharmacological activities. Phytochemistry 2023, 206, 113526. [Google Scholar] [CrossRef] [PubMed]
- Tusevski, O.; Krstikj, M.; Stanoeva, J.P.; Stefova, M.; Simic, S.G. Phenolic profile and biological activity of Hypericum perforatum L.: Can roots be considered as a new source of natural compounds? S. Afr. J. Bot. 2018, 117, 301–310. [Google Scholar] [CrossRef]
- Alahmad, A.; Alghoraibi, I.; Zein, R.; Kraft, S.; Dräger, G.; Walter, J.-G.; Scheper, T. Identification of major constituents of Hypericum perforatum L. extracts in Syria by development of a rapid, simple, and reproducible HPLC-ESI-Q-TOF MS analysis and their antioxidant activities. ACS Omega 2022, 7, 13475–13493. [Google Scholar] [CrossRef] [PubMed]
- Carrubba, A.; Lazzara, S.; Giovino, A.; Ruberto, G.; Napoli, E. Content variability of bioactive secondary metabolites in Hypericum perforatum L. Phytochem. Lett. 2021, 46, 71–78. [Google Scholar] [CrossRef]
- Butterweck, V.; Jürgenliemk, G.; Nahrstedt, A.; Winterhoff, H. Flavonoids from Hypericum perforatum Show Antidepressant Activity in the Forced Swimming Test. Planta Medica 2000, 66, 3–6. [Google Scholar] [CrossRef]
- Riederer, P.; Bartl, J.; Laux, G.; Grünblatt, E. Diabetes type II: A risk factor for depression-Parkinson-Alzheimer? Neurotox. Res. 2011, 19, 253–265. [Google Scholar] [CrossRef]
- Bhattacharjee, A. Phytomelatonin: A comprehensive literature review and recent advance on medicinal meadow. Int. J. Hydrol. 2018, 2, 396–403. [Google Scholar] [CrossRef]
- Chung, M.H.; Deng, T.S. Effects of circadian clock and light on melatonin concentration in Hypericum perforatum L. (St. John’s Wort). Bot. Stud. 2020, 61, 21. [Google Scholar] [CrossRef]
- Murch, S.J.; Saxena, P.K. A melatonin-rich germplasm line of St John’s wort (Hypericum perforatum L.). J. Pineal Res. 2006, 41, 284–287. [Google Scholar] [CrossRef]
- Murch, S.J.; Saxena, P.K. Melatonin: A potential regulator of plant growth and development? In Vitro Cell. Dev. Biol. Plant 2002, 38, 531–536. [Google Scholar] [CrossRef]
- Mahomoodally, M.F.; Zengin, G.; Roumita, S.; Caprioli, G.; Mustafa, A.M.; Piatti, D.; Yıldıztugay, E.; Ak, G.; Karadağ, A.E.; Khalid, A.; et al. Chemical Characterization and Multidirectional Biological Effects of Different Solvent Extracts of Arum elongatum: In Vitro and In Silico Approaches. Chem. Biodivers. 2023, 20, e202201181. [Google Scholar] [CrossRef]
- Altun, M.L.; Yilmaz, B.S.; Orhan, I.E.; Citoglu, G.S. Assessment of cholinesterase and tyrosinase inhibitory and antioxidant effects of Hypericum perforatum L. (St. John’s wort). Ind. Crops Prod. 2013, 43, 87–92. [Google Scholar] [CrossRef]
- García, A.A.; Grande, B.C.; Gándara, J.S. Development of a rapid method based on solid-phase extraction and liquid chromatography with ultraviolet absorbance detection for the determination of polyphenols in alcohol-free beers. J. Chromatogr. A 2004, 1054, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, A.M.; Angeloni, S.; Abouelenein, D.; Acquaticci, L.; Xiao, J.; Sagratini, G.; Maggi, F.; Vittori, S.; Caprioli, G. A new HPLC-MS/MS method for the simultaneous determination of 36 polyphenols in blueberry, strawberry and their commercial products and determination of antioxidant activity. Food Chem. 2022, 367, 130743. [Google Scholar] [CrossRef] [PubMed]
- Sekeroglu, N.; Urlu, E.; Kulak, M.; Gezici, S.; Dang, R. Variation in total polyphenolic contents, DNA protective potential and antioxidant capacity from aqueous and ethanol extracts in different plant parts of Hypericum perforatum L. Indian J. Pharm. Educ. Res. 2017, 51, S1–S7. [Google Scholar] [CrossRef]
- Becker, L.; Zaiter, A.; Petit, J.; Zimmer, D.; Karam, M.-C.; Baudelaire, E.; Scher, J.; Dicko, A. Improvement of antioxidant activity and polyphenol content of Hypericum perforatum and Achillea millefolium powders using successive grinding and sieving. Ind. Crops Prod. 2016, 87, 116–123. [Google Scholar] [CrossRef]
- Kalogeropoulos, N.; Yannakopoulou, K.; Gioxari, A.; Chiou, A.; Makris, D.P. Polyphenol characterization and encapsulation in β-cyclodextrin of a flavonoid-rich Hypericum perforatum (St John’s wort) extract. LWT 2010, 43, 882–889. [Google Scholar] [CrossRef]
- Slađana, K.; Tijana, P. Effect of the vegetation cycle on total phenolic and flavonoid compounds in Hypericum perforatum L. and Melissa officinalis L. collected in Montenegro. Agric. For. 2021, 67, 181–190. [Google Scholar] [CrossRef]
- Orhan, N.; Orhan, I.E.; Ergun, F. Insights into cholinesterase inhibitory and antioxidant activities of five Juniperus species. Food Chem. Toxicol. 2011, 49, 2305–2312. [Google Scholar] [CrossRef]
- Stasiuk, M.; Bartosiewicz, D.; Kozubek, A. Inhibitory effect of some natural and semisynthetic phenolic lipids upon acetylcholinesterase activity. Food Chem. 2008, 108, 996–1001. [Google Scholar] [CrossRef]
- Dong, Q.; Hu, N.; Yue, H.; Wang, H.; Wei, Y. Rapid screening of α-glucosidase inhibitors in Hypericum perforatum L. using bio-affinity chromatography coupled with UPLC/MS. Biomed. Chromatogr. 2023, 37, e5536. [Google Scholar] [CrossRef] [PubMed]
- Cossuta, D.; Vatai, T.; Báthori, M.; Hohmann, J.; Keve, T.; Simándi, B. Extraction of hyperforin and hypericin from St. John’s wort (Hypericum perforatum L.) with different solvents. J. Food Process Eng. 2012, 35, 222–235. [Google Scholar] [CrossRef]
- Odabas, M.S.; Raduienë, J.; Camas, N.; Janulis, V.; Ivanauskas, L.; Çırak, C. The Quantitative Effects of Temperature and Light Intensity on Hyperforin and Hypericins Accumulation in Hypericum perforatum L. J. Med. Plants Res. 2009, 3, 519–525. Available online: http://www.academicjournals.org/JMPR (accessed on 15 October 2023).
- Silva, B.A.; Ferreres, F.; Malva, J.O.; Dias, A.C.P. Phytochemical and antioxidant characterization of Hypericum perforatum alcoholic extracts. Food Chem. 2005, 90, 157–167. [Google Scholar] [CrossRef]
- Jürgenliemk, G.; Nahrstedt, A. Phenolic Compounds from Hypericum perforatum. Planta Medica 2002, 68, 88–91. [Google Scholar] [CrossRef]
- Milutinović, M.; Miladinović, M.; Gašić, U.; Dimitrijević-Branković, S.; Rajilić-Stojanović, M. Recovery of bioactive molecules from Hypericum perforatum L. dust using microwave-assisted extraction. Biomass Convers. Biorefinery 2022. [Google Scholar] [CrossRef]
- Sarikurkcu, C.; Locatelli, M.; Tartaglia, A.; Ferrone, V.; Juszczak, A.M.; Ozer, M.S.; Tepe, B.; Tomczyk, M. Enzyme and biological activities of the water extracts from the plants Aesculus hippocastanum, Olea europaea and Hypericum perforatum that are used as folk remedies in Turkey. Molecules 2020, 25, 1202. [Google Scholar] [CrossRef]
- Napoli, E.; Siracusa, L.; Ruberto, G.; Carrubba, A.; Lazzara, S.; Speciale, A.; Cimino, F.; Saija, A.; Cristani, M. Phytochemical profiles, phototoxic and antioxidant properties of eleven Hypericum species—A comparative study. Phytochemistry 2018, 152, 162–173. [Google Scholar] [CrossRef]
- Mandrone, M.; Scognamiglio, M.; Fiorentino, A.; Sanna, C.; Cornioli, L.; Antognoni, F.; Bonvicini, F.; Poli, F. Phytochemical profile and α-glucosidase inhibitory activity of Sardinian Hypericum scruglii and Hypericum hircinum. Fitoterapia 2017, 120, 184–193. [Google Scholar] [CrossRef]
- Cirak, C.; Radusiene, J. Factors affecting the variation of bioactive compounds in Hypericum species. Biol. Futur. 2019, 70, 198–209. [Google Scholar] [CrossRef]
- Murch, S.J.; Campbell, S.S.B.; Saxena, P.K. The Role of Serotonin and Melatonin in Plant Morphogenesis: Regulation of Auxin-Induced Root Organogenesis in In Vitro-Cultured Explants of St. John’s Wort (Hypericum perforatum L.). In Vitro Cell. Dev. Biol. Plant 2001, 37, 786–793. [Google Scholar] [CrossRef]
- Murch, S.J.; KrishnaRaj, S.; Saxena, P.K. Tryptophan is a precursor for melatonin and serotonin biosynthesis in in vitro regenerated St. John’s wort (Hypericum perforatum L. cv. Anthos) plants. Plant Cell Rep. 2000, 19, 698–704. [Google Scholar] [CrossRef] [PubMed]
- Shahid, R.; Ren, M.; Mora-Poblete, F.; Arnao, M.B.; Naz, S.; Anwar, M.; Altaf, M.M.; Shahid, S.; Shakoor, A.; Sohail, H.; et al. Phytomelatonin: An overview of the importance and mediating functions of melatonin against environmental stresses. Physiol. Plant 2021, 172, 820–846. [Google Scholar]
No. | Compounds | Precursor Ion, m/z | Product Ion, m/z | Fragm-entor, V | Collision Energy, V | Polarity | Retention Time (Rt, min) | Delta Retention Time (ΔRt) |
---|---|---|---|---|---|---|---|---|
1 | Gallic acid | 169 | 125.2 * | 97 | 12 | Negative | 6.96 | 2 |
2 | Neochlorogenic acid | 353 | 191.2 *, 179 | 82 | 12, 12 | Negative | 9.52 | 2 |
3 | Delphindin-3-galactoside | 465.01 | 303 * | 121 | 20 | Positive | 11.36 | 2 |
4 | (+)-Catechin | 289 | 245.2 *,109.2 | 131 | 8, 20 | Negative | 11.44 | 2 |
5 | Procyanidin B2 | 576.99 | 576.99 *, 321.2 | 160 | 0, 32 | Negative | 12.41 | 2 |
6 | Chlorogenic acid | 353 | 191.2 *, 127.5 | 82 | 12, 20 | Negative | 12.42 | 2 |
7 | p-Hydroxybenzoic acid | 137 | 93.2 * | 92 | 16 | Negative | 12.86 | 2 |
8 | (-)-Epicatechin | 289 | 245.1 *, 109.1 | 126 | 8, 20 | Negative | 13.03 | 2 |
9 | Cyanidin-3-glucoside | 449 | 287.3 *, 255.6 | 121 | 20, 20 | Positive | 13.14 | 2 |
10 | Petunidin-3-glucoside | 479.01 | 317 *, 302 | 121 | 20, 44 | Positive | 13.26 | 2 |
11 | 3-Hydroxybenzoic acid | 137 | 93.2 * | 88 | 8 | Negative | 13.59 | 2 |
12 | Caffeic acid | 179 | 135.2 *, 134.1 | 92 | 12, 24 | Negative | 13.65 | 2 |
13 | Vanillic acid | 167 | 152.4 *, 108.1 | 88 | 12, 20 | Negative | 14.32 | 2 |
14 | Resveratrol | 227 | 185 * | 131 | 12 | Negative | 14.40 | 2 |
15 | Pelargonidin-3-glucoside | 433.01 | 271 *, 121 | 116 | 24, 50 | Positive | 14.52 | 2 |
16 | Pelagonidin-3-rutinoside | 579.01 | 271 * | 145 | 32 | Positive | 14.56 | 2 |
17 | Malvidin-3-galactoside | 493.01 | 331 *, 315.1 | 121 | 20, 50 | Positive | 14.64 | 2 |
18 | Syringic acid | 196.9 | 182.2 *, 121.2 | 93 | 8, 12 | Negative | 15.28 | 2 |
19 | Procyanidin A2 | 575 | 575 *, 285 | 170 | 0, 20 | Negative | 16.18 | 2 |
20 | p-Coumaric acid | 163 | 119.2 *, 93.2 | 83 | 12, 36 | Negative | 16.70 | 2 |
21 | Ferulic acid | 193 | 134.2 *, 131.6 | 83 | 12, 8 | Negative | 17.10 | 2 |
22 | 3,5-Dicaffeoylquinic acid | 514.9 | 353.1 *, 191 | 117 | 8, 28 | Negative | 17.61 | 2 |
23 | Rutin | 609 | 300.2 *, 271.2 | 170 | 32, 50 | Negative | 17.73 | 2 |
24 | Hyperoside | 465.01 | 303 *, 61.1 | 97 | 8, 50 | Positive | 18.33 | 2 |
25 | Isoquercitrin | 463 | 271.2 *, 300.2 | 155 | 44, 24 | Negative | 18.36 | 2 |
26 | Delphindin-3,5-diglucoside | 462.9 | 300.1 * | 165 | 24 | Negative | 18.38 | 2 |
27 | Phloridzin | 435.39 | 273 *, 167 | 155 | 8, 28 | Negative | 18.83 | 2 |
28 | Quercitrin | 446.99 | 300.2 *, 301.2 | 160 | 24, 16 | Negative | 19.61 | 2 |
29 | Myricetin | 316.99 | 179.1 *, 182 | 150 | 16, 24 | Negative | 19.61 | 2 |
30 | Naringin | 578.99 | 271.3 *, 151.3 | 170 | 32, 44 | Negative | 19.62 | 2 |
31 | Kaempferol-3-glucoside | 447 | 284.2 *, 255.2 | 170 | 24, 40 | Negative | 19.77 | 2 |
32 | Hesperidin | 611.01 | 303 *, 334.8 | 112 | 20, 12 | Positive | 20.19 | 2 |
33 | Ellagic acid | 301 | 301 *, 229 | 170 | 0, 24 | Negative | 21.41 | 2 |
34 | trans-cinnamic acid | 149 | 131.2 | 74 | 4 | Positive | 21.44 | 2 |
35 | Quercetin | 300.99 | 151.2 *, 179.2 | 145 | 16, 12 | Negative | 21.87 | 2 |
36 | Phloretin | 272.99 | 167 *, 123 | 116 | 8, 20 | Negative | 22.30 | 2 |
37 | Kaempferol | 287.01 | 153 *, 69.1 | 60 | 36, 50 | Positive | 23.84 | 2 |
38 | Isorhamnetin | 314.99 | 300.2 *, 196.1 | 145 | 16, 4 | Negative | 24.57 | 2 |
Compound | Precursor Ion (m/z) | Product Ion (m/z) | Fragmentor (V) | Collision Energy (V) | Retention Time (Rt, min) | Polarity |
---|---|---|---|---|---|---|
Melatonin | 233.11 | 174.2 * | 78 | 12 | 11.16 | positive |
233.11 | 159.1 | 78 | 28 | 11.16 | positive |
Samples | Total Phenolics Content (mg GAE/g) | Total Flavonoids Content (mg RT/g) |
---|---|---|
H. perforatum I | 68.16 ± 1.85 a | 51.82 ± 0.66 b |
H. perforatum II | 65.63 ± 2.19 a | 60.62 ± 0.82 a |
H. perforatum III | 37.91 ± 0.13 b | 46.71 ± 0.42 c |
Samples | DPPH (mg TE/g) | ABTS (mg TE/g) | CUPRAC (mg TE/g) | FRAP (mg TE/g) | Chel. ab. (mg EDTAE/g) | Pho. (mmol TE/g) |
---|---|---|---|---|---|---|
H. perforatum I | 171.40 ± 2.73 a | 363.58 ± 5.82 a | 386.92 ± 12.97 a | 207 ± 6 a | 15.13 ± 0.4 b | 2.35 ± 0.17 a |
H. perforatum II | 159.45 ± 0.44 b | 310.33 ± 6.9 b | 315.63 ± 14.8 b | 194.98 ± 2.65 b | 12.96 ± 0.35 c | 2.49 ± 0.04 a |
H. perforatum III | 62.19 ± 0.32 c | 160.97 ± 2.97 c | 143.99 ± 1.64 c | 75 ± 3.46 c | 19.65 ± 0.5 a | 1.86 ± 0.12 b |
Samples | AchE Inhibition (mg GALAE/g) | BchE Inhibition (mg GALAE/g) | Tyrosinase Inhibition (mg KAE/g) | Amylase Inhibition (mmol ACAE/g) | Glucosidase Inhibition (mmol ACAE/g) |
---|---|---|---|---|---|
H. perforatum I | 2.36 ± 0.07 a | 1.86 ± 0.18 a | 51.39 ± 1.7 a | 0.41 ± 0.006 a | 3.54 ± 0.02 b |
H. perforatum II | 2.23 ± 0.03 b | 1.35 ± 0.12 c | 52.49 ± 2.31 a | 0.37 ± 0.001 b | 3.98 ± 0.07 a |
H. perforatum III | 1.98 ± 0.01 c | 1.65 ± 0.14 b | 9.56 ± 1.34 b | 0.38 ± 0.007 b | 3.88 ± 0.03 a |
No. | Compounds | H. perforatum I | H. perforatum II | H. perforatum III |
---|---|---|---|---|
1 | Gallic acid | 93.28 | 140.36 | 50.80 |
2 | Neochlorogenic acid | 3892.00 | 4095.90 | 1680.42 |
3 | Delphindin-3-galactoside | n.d. | n.d. | n.d. |
4 | (+)-Catechin | 349.86 | 519.22 | 129.04 |
5 | Procyanidin B2 | 1319.85 | 1184.41 | 260.01 |
6 | Chlorogenic acid | 282.52 | 612.38 | 203.74 |
7 | p-Hydroxybenzoic acid | 78.57 | 184.91 | 138.17 |
8 | (-)-Epicatechin | 519.49 | 551.41 | 117.56 |
9 | Cyanidin-3-glucoside | n.d. | n.d. | n.d. |
10 | Petunidin-3-glucoside | n.d. | n.d. | n.d. |
11 | 3-Hydroxybenzoic acid | n.d. | n.d. | n.d. |
12 | Caffeic acid | 29.04 | 77.52 | 23.17 |
13 | Vanillic acid | 84.12 | 204.61 | 128.20 |
14 | Resveratrol | n.d. | n.d. | n.d. |
15 | Pelargonidin-3-glucoside | n.d. | n.d. | n.d. |
16 | Pelagonidin-3-rutinoside | n.d. | n.d. | n.d. |
17 | Malvidin-3-galactoside | n.d. | n.d. | n.d. |
18 | Syringic acid | 10.47 | 24.33 | 18.87 |
19 | Procyanidin A2 | 84.68 | 83.99 | 64.29 |
20 | p-Coumaric acid | 38.56 | 108.93 | 44.55 |
21 | Ferulic acid | 6.16 | 13.46 | 5.57 |
22 | 3.5-Dicaffeoylquinic acid | n.d. | 0.95 | 0.82 |
23 | Rutin | 5843.49 | 9573.17 | 2405.53 |
24 | Hyperoside | 10,743.95 | 18,726.59 | 6334.01 |
25 | Isoquercitrin | 6518.96 | 11,895.02 | 4028.77 |
26 | Delphindin-3,5-diglucoside | 5805.38 | 10,619.51 | 3616.57 |
27 | Phloridzin | 6.32 | 11.12 | 3.47 |
28 | Quercitrin | 851.13 | 2069.36 | 976.78 |
29 | Myricetin | 15.12 | 15.32 | 4.43 |
30 | Naringin | n.d. | n.d. | n.d. |
31 | Kaempferol-3-glucoside | 112.56 | 241.29 | 112.70 |
32 | Hesperidin | 32.58 | n.d. | 42.87 |
33 | Ellagic acid | n.d. | n.d. | n.d. |
34 | trans-cinnamic acid | 13.79 | 15.11 | 10.46 |
35 | Quercetin | 2007.43 | 4195.62 | 2433.79 |
36 | Phloretin | 0.49 | 0.43 | 0.15 |
37 | Kaempferol | 59.80 | 111.60 | 73.24 |
38 | Isorhamnetin | n.d. | n.d. | n.d. |
Total | 38,799.59 | 65,276.51 | 22,857.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piatti, D.; Marconi, R.; Caprioli, G.; Angeloni, S.; Ricciutelli, M.; Zengin, G.; Maggi, F.; Pagni, L.; Sagratini, G. Assessment and Comparison of Phytochemical Constituents and Biological Activities between Full Flowering and Late Flowering of Hypericum perforatum L. Appl. Sci. 2023, 13, 13304. https://doi.org/10.3390/app132413304
Piatti D, Marconi R, Caprioli G, Angeloni S, Ricciutelli M, Zengin G, Maggi F, Pagni L, Sagratini G. Assessment and Comparison of Phytochemical Constituents and Biological Activities between Full Flowering and Late Flowering of Hypericum perforatum L. Applied Sciences. 2023; 13(24):13304. https://doi.org/10.3390/app132413304
Chicago/Turabian StylePiatti, Diletta, Riccardo Marconi, Giovanni Caprioli, Simone Angeloni, Massimo Ricciutelli, Gokhan Zengin, Filippo Maggi, Luca Pagni, and Gianni Sagratini. 2023. "Assessment and Comparison of Phytochemical Constituents and Biological Activities between Full Flowering and Late Flowering of Hypericum perforatum L." Applied Sciences 13, no. 24: 13304. https://doi.org/10.3390/app132413304
APA StylePiatti, D., Marconi, R., Caprioli, G., Angeloni, S., Ricciutelli, M., Zengin, G., Maggi, F., Pagni, L., & Sagratini, G. (2023). Assessment and Comparison of Phytochemical Constituents and Biological Activities between Full Flowering and Late Flowering of Hypericum perforatum L. Applied Sciences, 13(24), 13304. https://doi.org/10.3390/app132413304