Recognizing and Recovering Ball Motion Based on Low-Frame-Rate Monocular Camera
Abstract
:1. Introduction
2. Related Work
2.1. Projection Extraction
2.2. Trajectory Reconstruction
3. Method
3.1. Overview
3.2. Acquiring Contours
3.2.1. Fitting Streak Profiles
3.2.2. Candidate Block Detection
3.2.3. Concatenating Candidate Blocks
3.3. Matching Coupled Point Pairs
3.4. Reconstructing Trajectories
3.4.1. Determining Ball Positions
3.4.2. Determining Ball Speed
4. Experimental Results
4.1. Streak Detection Results
- True Positive (TP): The TP defines those images which are verified as containing a streak and also identified by the method as containing a streak.
- True Negative (TN): The TN defines those images which are verified as not containing a streak and also identified by the method as not containing a streak.
- False Positive (FP): The FP defines those images which are verified as not containing a streak and also identified by the method as containing a streak.
- False Negative (FN): The FP defines those images which are verified as containing a streak and also identified by the method as not containing a streak.
4.2. Trajectory Reconstruction Results
4.3. Motion Prediction Results
4.4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shugar, D.H.; Jacquemart, M.; Shean, D.; Bhushan, S.; Upadhyay, K.; Sattar, A.; Schwanghart, W.; McBride, S.; de Vries, M.V.W.; Mergili, M.; et al. A massive rock and ice avalanche caused the 2021 disaster at Chamoli, Indian Himalaya. Science 2021, 373, 300. [Google Scholar] [CrossRef] [PubMed]
- Ahrens, E.T.; Bulte, J.W.M. Tracking immune cells in vivo using magnetic resonance imaging. Nat. Rev. Immunol. 2013, 13, 755–763. [Google Scholar] [CrossRef] [PubMed]
- Wen, H.; Xiao, Z.; Li, Y.; Xu, Y. A Vision System for Shot Tracking and Thrown Distance Measurement. In Proceedings of the 2020 7th International Conference on Information Science and Control Engineering (ICISCE), Changsha, China, 18–20 December 2020; pp. 1647–1651. [Google Scholar]
- Wang, S.; Xu, Y.; Zheng, Y.; Zhu, M.; Yao, H.; Xiao, Z. Tracking a Golf Ball with High-Speed Stereo Vision System. IEEE Trans. Instrum. Meas. 2019, 68, 2742–2754. [Google Scholar] [CrossRef]
- Jia, L.Q.; Liu, H.M.; Wang, Z.H.; Chen, H. An effective non-HT circle detection for centers and radii. In Proceedings of the 2011 International Conference on Machine Learning and Cybernetics, Guilin, China, 12 September 2011; Volume 2, pp. 814–818. [Google Scholar]
- Wu, D.; Xiao, A. Deep Learning-Based Algorithm for Recognizing Tennis Balls. Appl. Sci. 2022, 12, 12116. [Google Scholar] [CrossRef]
- Jung, J.; Park, H.; Kang, S.; Lee, S.; Hahn, M. Measurement of Initial Motion of a Flying Golf Ball with Multi-Exposure images for Screen-golf. IEEE Trans. Consum. Electron. 2010, 56, 516–523. [Google Scholar] [CrossRef]
- Zhang, Y.h.; Wei, W.; Yu, D.; Zhong, C.w. A tracking and predicting scheme for ping pong robot. J. Zhejiang-Univ. Sci. Comput. Electron. 2011, 12, 110–115. [Google Scholar] [CrossRef]
- Wen, B.J.; Chang, C.R.; Lan, C.W.; Zheng, Y.C. Magnus-Forces Analysis of Pitched-Baseball Trajectories Using YOLOv3-Tiny Deep Learning Algorithm. Appl. Sci. 2022, 12, 5540. [Google Scholar] [CrossRef]
- Lin, H.Y.; Chang, C.H. Speed measurement of spherical objects using an off-the-shelf digital camera. J. Electron. Imaging 2008, 17. [Google Scholar] [CrossRef]
- Boracchi, G.; Caglioti, V.; Giusti, A. Ball Position and Motion Reconstruction from Blur in a Single Perspective Image. In Proceedings of the 14th International Conference on Image Analysis and Processing (ICIAP 2007), Modena, Italy, 10–14 September 2007; pp. 87–92. [Google Scholar]
- Caglioti, V.; Giusti, A. Recovering ball motion from a single motion-blurred image. Comput. Vis. Image Underst. 2009, 113, 590–597. [Google Scholar] [CrossRef]
- Rezvankhah, S.; Bagherzadeh, A.A.; Moradi, H.; Araabi, B.N. A real-time velocity estimation using motion blur in air hockey. In Proceedings of the 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO), Guangzhou, China, 11–14 December 2012; pp. 1767–1772. [Google Scholar]
- Ren, J.; Orwell, J.; Jones, G.; Xu, M. A general framework for 3D soccer ball estimation and tracking. In Proceedings of the 2004 International Conference on Image Processing, ICIP ’04, Singapore, 24–27 October 2004; Volume 3, pp. 1935–1938. [Google Scholar]
- Caglioti, V.; Giusti, A. Reconstruction of canal surfaces from single images under exact perspective. In Proceedings of the 9th European Conference on Computer Vision (ECCV 2006), Graz, Austria, 7–13 May 2006; pp. 289–300. [Google Scholar]
- Cheng, X.; Sun, J.; Zhou, F. A Fully Convolutional Network-Based Tube Contour Detection Method Using Multi-Exposure Images. Sensors 2021, 21, 4095. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Liu, R.; Ping-Zeng; Pan, S.W. Improved Canny Algorithm for Edge Detection of Core Image. Open Autom. Control Syst. J. 2015, 6, 426–432. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, N.; Yu, W.; Hu, S.; Wang, X.; Liang, H. Improved Canny-based algorithm for image edge detection. In Proceedings of the 2021 36th Youth Academic Annual Conference of Chinese Association of Automation (YAC), Nanchang, China, 28–30 May 2021; pp. 678–683. [Google Scholar]
- Cheng, X.; Sun, J.; Zhou, F.; Xie, Y. Shape from apparent contours for bent pipes with constant diameter under perspective projection. Measurement 2021, 182, 109787. [Google Scholar] [CrossRef]
- Muhuri, A.; Gascoin, S.; Menzel, L.; Kostadinov, T.S.; Harpold, A.A.; Sanmiguel-Vallelado, A.; Lopez-Moreno, I.J. Performance Assessment of Optical Satellite-Based Operational Snow Cover Monitoring Algorithms in Forested Landscapes. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2021, 14, 7159–7178. [Google Scholar] [CrossRef]
- Raskar, R.; Dhillon, R.; Kapa, S.; Pahwa, D.; Falgas, R.; Sinha, L.; Prasad, A.; Singh, A.; Nuzzo, A.; Iyer, R.; et al. Comparing manual contact tracing and digital contact advice. arXiv 2020, arXiv:2008.07325. [Google Scholar]
- Demir, I.; Koperski, K.; Lindenbaum, D.; Pang, G.; Huang, J.; Basu, S.; Hughes, F.; Tuia, D.; Raskar, R. DeepGlobe 2018: A Challenge to Parse the Earth through Satellite Images. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lake City, UT, USA, 18–22 June 2018. [Google Scholar]
- Garrido-Jurado, S.; Munoz-Salinas, R.; Madrid-Cuevas, F.J.; Marin-Jimenez, M.J. Automatic generation and detection of highly reliable fiducial markers under occlusion. Pattern Recognit. 2014, 47, 2280–2292. [Google Scholar] [CrossRef]
- Pingali, G.; Opalach, A.; Jean, Y. Ball tracking and virtual replays for innovative tennis broadcasts. In Proceedings of the Proceedings 15th International Conference on Pattern Recognition. ICPR-2000, Barcelona, Spain, 3–7 September 2000; Volume 4, pp. 152–156. [Google Scholar]
Name | Value |
---|---|
T | 3 |
15,000 | |
150 | |
0.33 | |
3.1 | |
0.8 |
True Label | |||
---|---|---|---|
Has streak | No streak | ||
Predict Label | Has streak | 78 (TP) | 1 (FN) |
No streak | 4 (FP) | 89 (TN) |
Streak Length Interval (pixel) | ||
---|---|---|
CPM | ICPPM | |
60–120 | 0.417 | 0.979 |
120–160 | 0.632 | 0.917 |
160–200 | 0.731 | 0.940 |
200+ | 0.829 | 0.990 |
Distance (R) | Average Error (R) | ||
---|---|---|---|
Method in [11] | Method in [12] | The Proposed Method | |
20–110 | 33.2 | 21.5 | 20.7 |
110–130 | 37.4 | 22.5 | 23.6 |
130–150 | 79.6 | 40.7 | 25.2 |
150–200 | 42.7 | 30.6 | 27.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Zhang, Y.; Zhao, Y.; Zhang, B. Recognizing and Recovering Ball Motion Based on Low-Frame-Rate Monocular Camera. Appl. Sci. 2023, 13, 1513. https://doi.org/10.3390/app13031513
Zhang W, Zhang Y, Zhao Y, Zhang B. Recognizing and Recovering Ball Motion Based on Low-Frame-Rate Monocular Camera. Applied Sciences. 2023; 13(3):1513. https://doi.org/10.3390/app13031513
Chicago/Turabian StyleZhang, Wendi, Yin Zhang, Yuli Zhao, and Bin Zhang. 2023. "Recognizing and Recovering Ball Motion Based on Low-Frame-Rate Monocular Camera" Applied Sciences 13, no. 3: 1513. https://doi.org/10.3390/app13031513
APA StyleZhang, W., Zhang, Y., Zhao, Y., & Zhang, B. (2023). Recognizing and Recovering Ball Motion Based on Low-Frame-Rate Monocular Camera. Applied Sciences, 13(3), 1513. https://doi.org/10.3390/app13031513