The Impact Assessment of Water Supply DMA Formation on the Monitoring System Sensitivity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model Network
2.2. Case Study Network
3. Results and Discussion
3.1. Model Network
3.1.1. First Phase Analysis
3.1.2. Second Phase Analysis
3.2. Case Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lambert, A.; Hirner, W. Losses from Water Supply Systems: Standard Terminology and Recommended Performance Measures; IWA Blue Pages, International Water Association: London, UK, 2000. [Google Scholar]
- Ortega, A.; Ballesteros, D.; Rodríguez, M.; Jesus, A.; Moreno, P. Advances in Leakage Control and Energy Consumption Optimization in Drinking Water Distribution Networks. Energies 2022, 15, 5484. [Google Scholar] [CrossRef]
- Heryanto, T.; Sharma, S.K.; Daniel, K.; Kennedy, M. Estimating the Economic Level of Water Losses (ELWL) in the Water Distribution System of the City of Malang, Indonesia. Sustainability 2021, 13, 6604. [Google Scholar] [CrossRef]
- Jabari, I.; Shahrour, J.; Khattabi, E. Assessment of the Urban Water Security in a Severe Water Stress Area–Application to Palestinian Cities. Water 2020, 12, 2060. [Google Scholar] [CrossRef]
- Salehi, M. Global water shortage and potable water safety; Today’s concern and tomorrow’s crisis. Environ. Int. 2022, 158, 106936. [Google Scholar] [CrossRef]
- Suchorab, P.; Kowalski, D. Water Resources Protection by Controlling Water Supply Network Leakages. Int. J. Conserv. Sc. 2021, 12, 745–754. [Google Scholar]
- Official Journal of the European Union. Directive (EU) 2020/2184 of the European Parliament and of the Council of 16.12. 2020 on the Quality of Water Intended for Human Consumption. 2020, p. L 435/1. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32020L2184&from=EN (accessed on 28 December 2022).
- Palermo, S.A.; Maiolo, M.; Brusco, A.C.; Turco, M.; Pirouz, B.; Greco, E.; Spezzano, D.; Piro, P. Smart Technologies for Water Resource Management: An Overview. Sensors 2022, 22, 6225. [Google Scholar] [CrossRef]
- Ahmad, F.Z.; Eddy, H.S.; Badronnisa, Y.; Syazwani, I. Water leak detection method in water distribution network. IOP Conf. Series Earth Environ. Sci. 2019, 357, 012033. [Google Scholar] [CrossRef]
- Puust, R.; Kapelan, Z.; Savic, D.A.; Koppel, T. A review of methods for leakage management in pipe networks. Urban Water J. 2010, 7, 25–45. [Google Scholar] [CrossRef]
- Muhlbauer, W.K. Pipeline Risk Management Manual; Gulf Professional Publishing: Houston, TA, USA, 2004. [Google Scholar] [CrossRef]
- Ramadevi, R.; Jaiganesh, J.; Krishnamoorthy, N.R. Leak Detection Methods—A Technical Review. Int. Conf. Comm. Cyb. Physical Eng. ICCCE 2018, 2018, 125–139. [Google Scholar]
- Kiran, J.; Ashok, K.; Sharma, S.; van Staden, R. Development of an Intelligent Urban Water Network System. Water 2022, 14, 1320. [Google Scholar] [CrossRef]
- De Schaetzen, W.; Smith, M.R.; Savic, D.A.; Walters, G.A. Optimal Logger Density in Water Distribution Network Calibration. In Proceedings Water Industry Systems: Modelling and Optimisation Applications; Savic, D.A., Walters, G.A., Eds.; Research Studies Press: Exeter, UK, 1999; Volume 1, pp. 301–307. [Google Scholar]
- Ostfeld, A.; Uber, J.G.; Salomons, E.; Berry, J.W.; Hart, W.E.; Phillips, C.A.; Watson, J.-P.; Dorini, G.; Jonkergouw, P.; Kapelan, Z.; et al. The Battle of the Water Sensor Networks (BWSN): A Design Challenge for Engineers and Algorithms. J. Water Resour. Plan. Manag. 2008, 134, 556–568. [Google Scholar] [CrossRef] [Green Version]
- Aksela, K.; Aksela, M.; Vahala, R. Leakage detection in a real distribution network using a SOM. Urban Water J. 2009, 6, 279–289. [Google Scholar] [CrossRef]
- Farley, B.; Mounce, S.; Boxall, J. Field testing of an optimal sensor placement methodology for event detection in an urban water distribution network. Urban Water J. 2010, 7, 345–356. [Google Scholar] [CrossRef]
- Perez, R.; Puig, V.; Pascual, J.; Peralta, A.; Landeros, E.; Jordanas, L. Pressure sensor distribution for leak detection in Barcelona water distribution network. Water Sci. Technol. 2009, 9, 715–721. [Google Scholar] [CrossRef]
- Kapelan, Z. Calibration of Water Distribution System Hydraulic Models. Ph.D. Thesis, University of Exeter, Exeter, UK, 2002. [Google Scholar]
- Morrison, J.; Tooms, S.; Rogers, D. District Metered Areas: Guidance Notes. International Water Association. 2007. Available online: https://iwa-network.org/learn_resources/district-metered-areas-guidance-notes/ (accessed on 28 December 2022).
- Gonelas, K.; Chondronasios, A.; Kanakoudis, V.; Patelis, M.; Korkana, P. Forming DMAs in a water distribution network considering the operating pressure and the chlorine residual concentration as the design parameters. J. Hydroinform. 2017, 19, 900–910. [Google Scholar] [CrossRef] [Green Version]
- Alvisi, S.; Franchini, M. A Procedure for the Design of District Metered Areas in Water Distribution Systems. Procedia Eng. 2014, 70, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Laucelli, D.B.; Simone, A.; Berardi, L.; Giustolisi, O. Optimal Design of District Metering Areas. Procedia Eng. 2016, 162, 403–410. [Google Scholar] [CrossRef] [Green Version]
- Bui, X.K.; Jeong, G.; Kang, D. Adaptive DMA Design and Operation under Multiscenarios in Water Distribution Networks. Sustainability 2022, 14, 3692. [Google Scholar] [CrossRef]
- Bentley Communities. Available online: https://communities.bentley.com/products/hydraulics___hydrology/ (accessed on 28 December 2022).
- Savić, D.; Ferrarib, G. Design and Performance of District Metering Areas in Water Distribution Systems. Procedia Eng. 2014, 89, 1136–1143. [Google Scholar] [CrossRef] [Green Version]
- Xin, K.; Tao, T.; Lu, Y.; Xiong, X.; Li, F. Apparent Losses Analysis in District Metered Areas of Water Distribution Systems. Water Resour. Manag. 2014, 28, 683–696. [Google Scholar] [CrossRef]
- Chondronasios, A.; Gonelas, K.; Kanakoudis, V.; Patelis, M.; Korkana, P. Optimizing DMAs’ formation in a water pipe network: The water aging and the operating pressure factors. Hydroinformatics 2017, 19, 890–899. [Google Scholar] [CrossRef] [Green Version]
- Perez, R.; Cuguero, M.A.; Cuguero, J.; Sanz, G. Accuracy assessment of leak localisation method depending on available measurements. Proc. Eng. 2014, 70, 1304–1313. [Google Scholar] [CrossRef]
- Steffelbauer, D.B.; Fuchs-Hanusch, D. Efficient Sensor Placement for Leak Localization Considering Uncertainties. Water Res. Manag. 2016, 30, 5517–5533. [Google Scholar] [CrossRef] [Green Version]
- Greyvenstein, B.; Van Zyl, J.E. An experimental investigation into the pressure leakage relationship of some failed water pipes. J. Water Supply 2007, 56, 117–124. [Google Scholar] [CrossRef]
- Wong, B.; McCann, J.A. Failure Detection Methods for Pipeline Networks: From Acoustic Sensing to Cyber-Physical Systems. Sensors 2021, 21, 4959. [Google Scholar] [CrossRef]
- Babazadeh, M.; Kartakis, S.; McCann, J.A. Highly-distributed sensor processing using IoT for critical infrastructure monitoring. In Proceedings of the 2017 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), Kuala Lumpur, Malaysia, 12–15 December 2017; pp. 1065–1074. [Google Scholar]
- Zhang, L.; Wu, Y.; Guo, L.; Cai, P. Design and Implementation of Leak Acoustic Signal Correlator for Water Pipelines. Inf. Technol. J. 2013, 12, 2195–2200. [Google Scholar] [CrossRef] [Green Version]
- Bentoumi, M.; Chikouche, D.; Mezache, A.; Bakhti, H. Wavelet DT Method for Water Leak-Detection Using a Vibration Sensor: An Experimental Analysis. IET Signal Process. 2017, 11, 396–405. [Google Scholar] [CrossRef]
- Falconer, K.J. Fractal Geometry: Mathematical Foundations and Applications; John Wiley: Chichester, UK, 1990. [Google Scholar]
- Viduel, G.; Tannier, C.; Frankhauser, P. Fractalyse 3.0. 2022. Available online: https://sourcesup.renater.fr/www/fractalyse/ (accessed on 29 December 2022).
- Walski, T.M.; Chase, D.V.; Savic, D.A.; Grayman, W.; Beckwith, S.; Koelle, E. Advanced Water Distribution Modeling and Management; Haestad Press: Waterbury, Connecticut, 2004. [Google Scholar]
- Walski, T.M.; Bezts, W.; Posluszny, E.T.; Weir, W.H.; Whitman, B.E. Modeling leakage reduction through pressure control. J. AWWA 2006, 98, 147–155. [Google Scholar] [CrossRef]
- Lambert, A. What Do We Know About Pressure/Leakage Relationships in Distribution Systems. In Proceedings of the IWA Specialised Conference on System approach to Leakage Control and Water Distribution System Management, Brno, Czech Republic, 16–18 May 2001; pp. 89–96. Available online: https://www.studiomarcofantozzi.it/BRNOP4.1.pdf (accessed on 29 December 2022).
- Kouassi, D.K.; Kouame, I.K.; Koffi, K.; Douagui, A.G.; Sandu, A.V.; Sandu, I. Assessment of the quality of quaternary groundwater under the influence of anthropogenic activities in the low-income neighbourhoods of the Treichville municipality (Abidjan, Cote d'Ivoire). Appl. Sci. 2020, 2, 1716. [Google Scholar] [CrossRef]
Network | A | B | C | D | E | F | G | H | I | J | K | L |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Total length (m) | 2400 | 2400 | 2400 | 2600 | 2600 | 2600 | 2700 | 2800 | 2900 | 3200 | 3200 | 4000 |
Number of loops (-) | 0 | 0 | 0 | 1 | 1 | 1 | 4 | 4 | 4 | 8 | 8 | 16 |
Fractal dimension (-) | 1.010 | 1.013 | 1.039 | 1.055 | 1.056 | 1.044 | 1.070 | 1.075 | 1.069 | 1.092 | 1.092 | 1.109 |
Open hydrant | The number of nodes detecting a pressure drop equal to or above 0.8 m H2O | |||||||||||
H1 H2 H3 | 2 4 0 | 1 5 0 | 8 7 0 | 10 10 6 | 6 3 0 | 7 7 0 | 7 7 0 | 3 4 0 | 10 10 0 | 3 3 0 | 6 7 0 | 3 3 0 |
Average (nodes number) | 2 | 2 | 5 | 9 | 3 | 5 | 5 | 2 | 7 | 2 | 4 | 2 |
Network | A | B | C | D | E | F | G | H | I | J | K | L |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Open hydrant | q0, p0 | |||||||||||
H1 H2 H3 | 900 900 900 | 1100 100 900 | 900 300 500 | 500 300 500 | 100 300 800 | 200 400 200 | 200 200 400 | 600 400 400 | 0 0 800 | 300 500 300 | 200 400 500 | 500 500 300 |
average | 900 | 700 | 567 | 433 | 400 | 267 | 267 | 467 | 267 | 367 | 367 | 433 |
Open hydrant | q0, p0, p1 | |||||||||||
H1 H2 H3 | 600 0 0 | 100 100 100 | 500 0 100 | 0 0 100 | 0 0 300 | 200 100 200 | 0 0 400 | 0 0 300 | 0 0 300 | 0 0 300 | 0 0 100 | 0 0 300 |
average | 200 | 100 | 200 | 33 | 100 | 167 | 133 | 100 | 100 | 100 | 33 | 100 |
Open hydrant | q0, p0, p1, p2 | |||||||||||
H1 H2 H3 | 100 200 0 | 100 0 100 | 0 0 0 | 0 0 0 | 100 300 0 | 0 200 100 | 0 200 0 | 0 0 0 | 0 0 100 | 0 0 0 | 0 0 100 | 0 0 300 |
average | 100 | 67 | 0 | 0 | 133 | 100 | 67 | 0 | 33 | 0 | 33 | 100 |
Open hydrant | q0, p0, p1, p1, p3 | |||||||||||
H1 H2 H3 | 0 0 0 | 200 100 100 | 0 100 0 | 0 0 0 | 0 200 0 | 0 200 100 | 0 200 0 | 0 0 0 | 0 0 100 | 0 0 0 | 0 0 100 | 0 0 300 |
average | 0 | 133 | 33 | 0 | 67 | 100 | 67 | 0 | 33 | 0 | 33 | 100 |
Total length (m) | 2400 | 2400 | 2400 | 2600 | 2600 | 2600 | 2700 | 2800 | 2900 | 3200 | 3200 | 4000 |
Loops number (-) | 0 | 0 | 0 | 1 | 1 | 1 | 4 | 4 | 4 | 8 | 8 | 16 |
Fractal dimension | 1.010 | 1.013 | 1.039 | 1.055 | 1.056 | 1.044 | 1.07 | 1.075 | 1.069 | 1.092 | 1.092 | 1.109 |
Open Hydrant Hydrant ID: | H01 69669 | H02 69714 | H03 69984 | H04 351864 | H05 69717 | Normal Conditions | |
Monitoring Points | Unit | Measurement Indication | |||||
KP1 KP1 KP2 | (m3/h) (m H2O) (m H2O) | 58,45 40,28 58,45 | 58,45 40,28 46,70 | 58,45 40,28 42,58 | 58,45 40,28 48,03 | 58,45 40,28 48,03 | 22,45 41,69 50,40 |
J1 J2 J3 J4 J5 | (m H2O) (m H2O) (m H2O) (m H2O) (m H2O) | 11,11 43,79 43,82 43,92 40,68 | 43,77 43,36 43,71 44,17 40,68 | 39,65 44,18 43,92 43,41 40,68 | 45,10 44,74 44,09 44,24 33,83 | 44,47 44,03 43,68 44,19 40,68 | 47,47 47,11 46,45 46,61 43,05 |
Q1 Q2 | (m3/h) (m3/h) | 10,90 33,60 | 4,03 40,47 | 17,49 25,99 | 1,29 7,21 | 2,88 41,62 | 1,29 7,20 |
Open Hydrant Hydrant ID: | H01 69669 | H02 69714 | H03 69984 | H04 351864 | H05 69717 | Average |
---|---|---|---|---|---|---|
Monitoring Points | Length Error (m) | |||||
KP1, KP2 | 178 | 1299 | 381 | 155 | 762 | 555 |
KP1, KP2 J1–J5 | 32 | 1 | 635 | 192 | 234 | 219 |
KP1, KP2 J1–J5 Q1, Q2 | 32 | 301 | 635 | 207 | 13 | 238 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kowalski, D.; Suchorab, P. The Impact Assessment of Water Supply DMA Formation on the Monitoring System Sensitivity. Appl. Sci. 2023, 13, 1554. https://doi.org/10.3390/app13031554
Kowalski D, Suchorab P. The Impact Assessment of Water Supply DMA Formation on the Monitoring System Sensitivity. Applied Sciences. 2023; 13(3):1554. https://doi.org/10.3390/app13031554
Chicago/Turabian StyleKowalski, Dariusz, and Paweł Suchorab. 2023. "The Impact Assessment of Water Supply DMA Formation on the Monitoring System Sensitivity" Applied Sciences 13, no. 3: 1554. https://doi.org/10.3390/app13031554
APA StyleKowalski, D., & Suchorab, P. (2023). The Impact Assessment of Water Supply DMA Formation on the Monitoring System Sensitivity. Applied Sciences, 13(3), 1554. https://doi.org/10.3390/app13031554