Effect of Heat Stress on the Behavior of Lactating Cows Housed in Compost Barns: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Survey Strategies
2.2. Eligibility Criteria
2.3. Data Extraction and Manipulation
3. Results and Discussion
3.1. Overview of Included Studies
3.2. Herd Characteristics
Reference | Country | Breed | Cows (n) | DO 1 | HIS 2 | MBV 3 | CC 4 | VS 5 | MF 6 |
---|---|---|---|---|---|---|---|---|---|
Endres and Barberg. [48] | Minnesota/US | Holstein and other breeds (not specified) | 147 | Nulliparous and multiparous | THI 7 | Automatic and visual | Non-informed | Not informed | Increased THI interfered with the lying rest of dairy cows. Cows remained to lie for 12.7 h/d when THI was <72. In contrast, when THI was ≥72, the cows remained at 7.9 h/d. Furthermore, cows increased the number of steps as THI increased from 71.6 steps/h with THI < 72 to 120.8 with THI ≥ 72. |
Vieira et al. [49] | Paraná/BR | Holstein and Jersey | 18 | Nulliparous and multiparous | THI 7 | Visual | The CB 8 was situated in a north–south direction. The confinement was 24.4 m wide, 31.4 m long, and 8 m high. The roof was made of galvanized tiles. The pen had eight fans with low volume and high speed. The fans were installed 3.5 m from the litter at an angle of 30°. The capacity ratio ranged from 12.35 to 17.02 m2/animal. | Natural and mechanical ventilation (fans) | Multiparous cows fed at the coolest hours of the day (8 a.m. and 8 p.m.), while nulliparous cows fed at the hottest times (after 9 a.m. until ~3 p.m.). In addition, multiparous cows were more prone to walk at the hottest times of the day. In contrast, multiparous cows were more probable to lie down and rest at the hottest times of the day in the bedding area where there was higher wind flow. |
Pilatti et al. [50] | Paraná/BR | Holstein and Jersey | 10 | Nulliparous and multiparous | THI 7 | Visual | The CB 8 was situated in an east–west direction. It was 45 m long and 20 m wide. The bedding area was 576 m2 (16.4 m2/animal). The confinement had seven fans with six blades and an airflow capacity of 34,000 m3/h. | Natural and mechanical ventilation (fans) | Nulliparous cows were more likely to walk between 09:20 a.m. (maximum THI = 78), 11:20 a.m. (maximum THI = 81) and 3:20 p.m. (maximum THI = 81). Additionally, at the hottest times of the day, the nulliparous cows showed the highest number of visit to the troughs, which was not observed in multiparous cows. |
Pilatti et al. [51] | Paraná/BR | Holstein and Jersey | 12 | Nulliparous and multiparous | THI 7 | Visual | O CB 8 was situated in an east–west direction. It was 45 m long and 20 m wide. Bedded area was 576 m2 (16.4 m2/animal). The confinement had seven fans with six blades and an airflow capacity of 34,000 m3/h. | Natural and mechanical ventilation (fans) | Multiparous cows showed a higher probability of agonistic behaviors (pushing, hitting, and chasing) and a higher probability of dyspnea as air temperature increased. At the hottest times of the day (maxima up to 35.9 °C and a UTI of 83 at 3:00 p.m.) multiparous cows competed more for ventilated areas, showing dominance behavior. On the other hand, the authors also observed a greater probability of cows to ruminate standing up as the temperature increased. Resting lying down was more likely between 09:20 and 11:20 a.m., while feeding was more likely at 08:00 a.m. |
Yameogo et al. [52] | Minas Gerais/BR | Holstein and Jersey | 85 | Nulliparous and multiparous | THI 7 | Visual and video recording | O CB 8 was situated in a northwest–southeast direction. The housing enclosure was 55 m long and 26.8 m wide. The litter area was 880 m2 (10.35 m2/animal). The roof was made of galvanized tiles. On the sides there were blue polyethylene curtains. Inside the facility, there were five deflectors. The confinement had an evaporative cooling system with five cellulose fiber panels. | Wind tunnel | Cows decreased time lying down as THI increased. Standing behavior increased with increasing THI. Feeding behavior was affected by THI. |
Peixoto et al. [53] | Ceará/BR | Not informed | 20 | Not informed | Air temperature and relative humidity | Visual | O CB 8 was located in an east–west direction. The barn had a litter area of 540 m2 (27 m2/animal) and 4.5 m of headroom. The roof was made of galvanized tiles. | Natural and mechanical ventilation (fans) | Animal discomfort was observed during the region’s dry period, reflecting greater behavioral changes. Cows spent more time lying down in areas where the airflow was higher due to artificial ventilation and bedding temperature was lower. While during the rainy season, cows spent more time feeding and resting lying down. |
Laurindo et al. [54] | Minas Gerais/BR | Girolando | 51 | Not informed | THI 7 | Automatic and visual | The CB had a bed area of 15.7 × 54.0 m and a total area of 23.0 × 54.0 m. The foot-right of the CB was 4.8 m. The CB had two ventilators (HVLS). | Natural and mechanical ventilation (Fans) | Cows spent less time lying down and more time standing when THI was >70. |
3.3. Thermal Stress Indicators
Reference | THI Equations | Indicators of Stress | Studies |
---|---|---|---|
West et al. [63] | THI = td − (0.55 − 0.55RH) (td − 58) | Not informed | [48] |
Hahn. [64] | THI = Ta + (0.36 × Tdp) + 41.5 | Normal 74; alert 75–78; danger 79–83; emergency 84 | [49,50,51,52] |
Mader et al. [65] | THI = (0.8 × Tdb) + [(RH/100) × (Tdb − 14.3)] + 46.4 | Normal 69; alert 70–74; danger 75–79; emergency 80–84 | [53] |
Thom. [56] | THI = Ta + 0.36 × (Tdp) + 41.5 | Normal 69; alert 70–75; danger 75–79; emergency 80 | [54] |
3.4. Behavior
3.5. Study Limitations and Future Directions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gauly, M.; Ammer, S. Review: Challenges for dairy cow production systems arising from climate changes. Animal 2020, 14, S196–S203. [Google Scholar] [CrossRef]
- Shahzad, A.; Ullah, S.; Dar, A.A.; Sardar, M.F.; Mehmood, T.; Tufail, M.A.; Shakoor, A.; Haris, M. Nexus on climate change: Agriculture and possible solution to cope future climate change stresses. Environ. Sci. Pollut. Res. 2021, 28, 14211–14232. [Google Scholar] [CrossRef]
- Pasqui, M.; Di Giuseppe, E. Climate change, future warming, and adaptation in Europe. Anim. Front. 2019, 9, 6–11. [Google Scholar] [CrossRef] [PubMed]
- Wankar, A.K.; Rindhe, S.N.; Doijad, N.S. Heat stress in dairy animals and current milk production trends, economics, and future perspectives: The global scenario. Trop. Anim. Health Prod. 2021, 53, 70. [Google Scholar] [CrossRef]
- Calciolari, F.; Novikova, A.; Rocchi, L. Climate change and lithuania’s livestock farms: Awareness and reactions, an explorative study. Sustainability 2021, 13, 10567. [Google Scholar] [CrossRef]
- Bernabucci, U. Climate chabge: Impact on livestock and how can we adapt. Anim. Front. 2019, 9, 3–5. [Google Scholar] [CrossRef]
- Beniston, M.; Stephenson, D.B.; Christensen, O.B.; Ferro, C.A.T.; Frei, C.; Goyette, S.; Halsnaes, K.; Holt, T.; Jylhä, K.; Koffi, B.; et al. Future extreme events in European climate: An exploration of regional climate model projections. Clim. Chang. 2007, 81, 71–95. [Google Scholar] [CrossRef]
- de Castro Júnior, S.L.; Silva, I.J.O. da The specific enthalpy of air as an indicator of heat stress in livestock animals. Int. J. Biometeorol. 2021, 65, 149–161. [Google Scholar] [CrossRef]
- Mota-Rojas, D.; Titto, C.G.; Orihuela, A.; Martínez-Burnes, J.; Gómez-Prado, J.; Torres-Bernal, F.; Flores-Padilla, K.; Carvajal-De la Fuente, V.; Wang, D. Physiological and behavioral mechanisms of thermoregulation in mammals. Animals 2021, 11, 1733. [Google Scholar] [CrossRef]
- Mota-Rojas, D.; Titto, C.G.; Geraldo, A.D.M.; Mart, J.; Jocelyn, G.; Hern, I.; Casas, A.; Dom, A.; Jos, N.; Bertoni, A.; et al. Efficacy and Function of Feathers, Hair, and Glabrous Skin in the Thermoregulation Strategies of Domestic Animals. Animals 2021, 11, 3472. [Google Scholar] [CrossRef]
- Rhoads, M.L.; Rhoads, R.P.; VanBaale, M.J.; Collier, R.J.; Sanders, S.R.; Weber, W.J.; Crooker, B.A.; Baumgard, L.H. Effects of heat stress and plane of nutrition on lactating Holstein cows: I. Production, metabolism, and aspects of circulating somatotropin. J. Dairy Sci. 2009, 92, 1986–1997. [Google Scholar] [CrossRef] [PubMed]
- Kasimanickam, R.; Kasimanickam, V. Impact of heat stress on embryonic development during first 16 days of gestation in dairy cows. Sci. Rep. 2021, 11, 14839. [Google Scholar] [CrossRef] [PubMed]
- Joo, S.S.; Lee, S.J.; Park, D.S.; Kim, D.H.; Gu, B.H.; Park, Y.J.; Rim, C.Y.; Kim, M.; Kim, E.T. Article changes in blood metabolites and immune cells in Holstein and Jersey dairy cows by heat stress. Animals 2021, 11, 974. [Google Scholar] [CrossRef] [PubMed]
- Corazzin, M.; Romanzin, A.; Foletto, V.; Fabro, C.; Da Borso, F.; Baldini, M.; Bovolenta, S.; Piasentier, E. Heat stress and feeding behaviour of dairy cows in late lactation. Ital. J. Anim. Sci. 2021, 20, 600–610. [Google Scholar] [CrossRef]
- Polsky, L.; von Keyserlingk, M.A.G. Invited review: Effects of heat stress on dairy cattle welfare. J. Dairy Sci. 2017, 100, 8645–8657. [Google Scholar] [CrossRef]
- Fontoura, A.B.P.; Javaid, A.; Sáinz de la Maza-Escolà, V.; Salandy, N.S.; Fubini, S.L.; Grilli, E.; McFadden, J.W. Heat stress develops with increased total-tract gut permeability, and dietary organic acid and pure botanical supplementation partly restores lactation performance in Holstein dairy cows. J. Dairy Sci. 2022, 105, 7842–7860. [Google Scholar] [CrossRef]
- Liu, Z.; Ezernieks, V.; Wang, J.; Wanni Arachchillage, N.; Garner, J.B.; Wales, W.J.; Cocks, B.G.; Rochfort, S. Heat Stress in Dairy Cattle Alters Lipid Composition of Milk. Sci. Rep. 2017, 7, 961. [Google Scholar] [CrossRef]
- Radavelli, W.M.; Danieli, B.; Zotti, M.L.A.N.; Gomes, F.J.; Endres, M.I.; Schogor, A.L. Compost barns in Brazilian Subtropical region (Part 1): Facility, barn management and herd characteristics Compost. Res. Soc. Dev. 2020, 2020, 5–24. [Google Scholar] [CrossRef]
- Janni, K.A.; Endres, M.I.; Reneau, J.K.; Schoper, W.W. Compost dairy barn layout and management recommendations. Appl. Eng. Agric. 2007, 23, 97–102. [Google Scholar] [CrossRef]
- Leso, L.; Barbari, M.; Lopes, M.A.; Damasceno, F.A.; Galama, P.; Taraba, J.L.; Kuipers, A. Invited review: Compost-bedded pack barns for dairy cows. J. Dairy Sci. 2020, 103, 1072–1099. [Google Scholar] [CrossRef]
- Silva, G.G.B.S.; Ferraz, P.F.P.; Damasceno, F.A.; Zotti, M.L.A.N.; Barbari, M. Compost Barns: A Bibliometric Analysis. Animals 2022, 12, 2492. [Google Scholar] [CrossRef]
- Andrade, R.R.; de Tinôco, I.F.F.; Damasceno, F.A.; E Silva Ferraz, G.A.; da Silva Ramos Freitas, L.C.; de Fátima Souza Ferreira, C.; Barbari, M.; de Jesus Folgôa Baptista, F.; de Rezende Coelho, D.J. Spatial distribution of bed variables, animal welfare indicators, and milk production in a closed compost-bedded pack barn with a negative tunnel ventilation system. J. Therm. Biol. 2022, 105, 103111. [Google Scholar] [CrossRef]
- Damasceno, F.A.; Brandão, L.F. Projeto de isntalações compost barn. In Compost Barn Como Alternativa Para a Pecuária Leiteira, 1st ed.; Amaral, J., Ed.; Gulliver: Divinópolis, Brazil, 2020; Volume 1, pp. 55–90. [Google Scholar]
- Dos Santos, M.P.; Deniz, M.; de Sousa, K.T.; Klein, D.R.; Branco, T.; Pacheco, P.S.; Do Vale, M.M. Efficiency of cooling systems in broiler houses during hot da. Cienc. Rural 2021, 51, e20200941. [Google Scholar] [CrossRef]
- Marumo, J.L.; Lusseau, D.; Speakman, J.R.; Mackie, M.; Hambly, C. Influence of environmental factors and parity on milk yield dynamics in barn-housed dairy cattle. J. Dairy Sci. 2022, 105, 1225–1241. [Google Scholar] [CrossRef] [PubMed]
- De Masi, R.F.; Ruggiero, S.; Tariello, F.; Vanoli, G.P. Passive envelope solutions to aid design of sustainable livestock buildings in Mediterranean climate. J. Clean. Prod. 2021, 311, 127444. [Google Scholar] [CrossRef]
- Firfiris, V.K.; Martzopoulou, A.G.; Kotsopoulos, T.A. Passive cooling systems in livestock buildings towards energy saving: A critical review. Energy Build. 2019, 202, 109368. [Google Scholar] [CrossRef]
- Tucker, C.B.; Jensen, M.B.; de Passillé, A.M.; Hanninen, L.; Rushen, J. Invited review: Lying time and the welfare of dairy cows. J. Dairy Sci. 2021, 104, 20–46. [Google Scholar] [CrossRef] [PubMed]
- Thompson, A.J.; Weary, D.M.; Bran, J.A.; Daros, R.R.; Hötzel, M.J.; von Keyserlingk, M.A.G. Lameness and lying behavior in grazing dairy cows. J. Dairy Sci. 2019, 102, 6373–6382. [Google Scholar] [CrossRef]
- Neave, H.W.; Lomb, J.; Weary, D.M.; LeBlanc, S.J.; Huzzey, J.M.; von Keyserlingk, M.A.G. Behavioral changes before metritis diagnosis in dairy cows. J. Dairy Sci. 2018, 101, 4388–4399. [Google Scholar] [CrossRef]
- Herbut, P.; Hoffmann, G.; Angrecka, S.; Godyń, D.; Vieira, F.M.C.; Adamczyk, K.; Kupczyński, R. The effects of heat stress on the behaviour of dairy cows-A review. Ann. Anim. Sci. 2021, 21, 385–402. [Google Scholar] [CrossRef]
- Leliveld, L.M.C.; Riva, E.; Mattachini, G.; Finzi, A.; Lovarelli, D.; Provolo, G. Dairy Cow Behavior Is Affected by Period, Time of Day and Housing. Animals 2022, 12, 512. [Google Scholar] [CrossRef]
- Allen, J.D.; Hall, L.W.; Collier, R.J.; Smith, J.F. Effect of core body temperature, time of day, and climate conditions on behavioral patterns of lactating dairy cows experiencing mild to moderate heat stress. J. Dairy Sci. 2015, 98, 118–127. [Google Scholar] [CrossRef]
- Gebremedhin, K.G.; Wu, B. Modeling heat loss from the udder of a dairy cow. J. Therm. Biol. 2016, 59, 34–38. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Altman, D.; Antes, G.; Atkins, D.; Barbour, V.; Barrowman, N.; Berlin, J.A.; et al. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed]
- Whiting, P.; Savović, J.; Higgins, J.P.T.; Caldwell, D.M.; Reeves, B.C.; Shea, B.; Davies, P.; Kleijnen, J.; Churchill, R. ROBIS: A new tool to assess risk of bias in systematic reviews was developed. J. Clin. Epidemiol. 2016, 69, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Emanuelson, U.; Brügemann, K.; Klopčič, M.; Leso, L.; Ouweltjes, W.; Zentner, A.; Blanco-Penedo, I. Animal Health in Compost-Bedded Pack and Cubicle Dairy Barns in Six European Countries. Animals 2022, 12, 396. [Google Scholar] [CrossRef] [PubMed]
- Kappes, R.; Knob, D.A.; Thaler, A.; Alessio, D.R.M.; Rodrigues, W.B.; Scholz, A.M.; Bonotto, R. Cow’s functional traits and physiological status and their relation with milk yield and milk quality in a compost bedded pack barn system. Rev. Bras. Zootec. 2020, 49, e20190213. [Google Scholar] [CrossRef]
- Machado, N.A.F.; Da Costa, L.B.S.; Barbosa-Filho, J.A.D.; De Oliveira, K.P.L.; De Sampaio, L.C.; Peixoto, M.S.M.; Damasceno, F.A. Using infrared thermography to detect subclinical mastitis in dairy cows in compost barn systems. J. Therm. Biol. 2021, 97, 102881. [Google Scholar] [CrossRef]
- Sjostrom, L.S.; Heins, B.J.; Endres, M.I.; Moon, R.D.; Sorge, U.S. Effects of winter housing system on hygiene, udder health, frostbite, and rumination of dairy cows. J. Dairy Sci. 2019, 102, 10606–10615. [Google Scholar] [CrossRef]
- Heins, B.J.; Sjostrom, L.S.; Endres, M.I.; Carillo, M.R.; King, R.; Moon, R.D.; Sorge, U.S. Effects of winter housing systems on production, economics, body weight, body condition score, and bedding cultures for organic dairy cows. J. Dairy Sci. 2019, 102, 706–714. [Google Scholar] [CrossRef] [Green Version]
- Black, R.A.; Taraba, J.L.; Day, G.B.; Damasceno, F.A.; Bewley, J.M. Compost bedded pack dairy barn management, performance, and producer satisfaction. J. Dairy Sci. 2013, 96, 8060–8074. [Google Scholar] [CrossRef]
- Wagner, P.; Yin, T.; Brügemann, K.; Engel, P.; Weimann, C.; Schlez, K.; König, S. Genome-wide associations for microscopic differential somatic cell count and specific mastitis pathogens in holstein cows in compost-bedded pack and cubicle farming systems. Animals 2021, 11, 1839. [Google Scholar] [CrossRef] [PubMed]
- Nogara, K.F.; Busanello, M.; Haygert-Velho, I.M.P.; Zopollatto, M.; Frigeri, K.D.M.; Almeida, P.S.G. Characterization and relationship between bulk tank milk composition and compost bedded variables from dairy barns in Rio Grande do Sul state, Brazil. Turkish J. Vet. Anim. Sci. 2021, 45, 890–900. [Google Scholar] [CrossRef]
- Leso, L.; Uberti, M.; Morshed, W.; Barbari, M. A survey of Italian compost dairy barns. J. Agric. Eng. 2013, 44, 120–124. [Google Scholar] [CrossRef]
- Eckelkamp, E.A.; Taraba, J.L.; Akers, K.A.; Harmon, R.J.; Bewley, J.M. Understanding compost bedded pack barns: Interactions among environmental factors, bedding characteristics, and udder health. Livest. Sci. 2016, 190, 35–42. [Google Scholar] [CrossRef]
- De Oliveira Silva, G.R.; Lopes, M.A.; Lima, A.L.R.; Da Costa, G.M.; Damasceno, F.A.; Barros, V.P.; Barbari, M. Profitability analysis of compost barn and free stall milk-production systems: A comparison. Semin. Agrar. 2019, 40, 1165–1183. [Google Scholar] [CrossRef]
- Endres, M.I.; Barberg, A.E. Behavior of dairy cows in an alternative bedded-pack housing system. J. Dairy Sci. 2007, 90, 4192–4200. [Google Scholar] [CrossRef]
- Vieira, F.M.C.; Soares, A.A.; Herbut, P.; de Vismara, E.S.; Godyń, D.; Dos Santos, A.C.Z.; Lambertes, T. da S.; Caetano, W.F. Spatio-thermal variability and behaviour as bio-thermal indicators of heat stress in dairy cows in a compost barn: A case study. Animals 2021, 11, 1197. [Google Scholar] [CrossRef]
- Pilatti, J.A.; Vieira, F.M.C.; dos Santos, L.F.; Vismara, E.S.; Herbut, P. Behaviour, hygiene, and lameness of dairy cows in a com-post barn during cold seasons in a subtropical climate. Ann. Anim. Sci. 2021, 21, 1555–1569. [Google Scholar] [CrossRef]
- Pilatti, J.A.; Vieira, F.M.C.; Rankrape, F.; Vismara, E.S. Diurnal behaviors and herd characteristics of dairy cows housed in a compost-bedded pack barn system under hot and humid conditions. Animal 2019, 13, 399–406. [Google Scholar] [CrossRef] [Green Version]
- Yameogo, B.; Andrade, R.R.; Júnior, C.G.S.T.; Laud, G.S.; Becciolini, V.; Leso, L.; Rossi, G.; Barbari, M. Behavioural patterns of cows housed in two different typologies of compost-bedded pack barns. Agron. Res. 2021, 19, 1205–1215. [Google Scholar] [CrossRef]
- Peixoto, M.S.M.; Barbosa Filho, J.A.D.; Farias Machado, N.A.; Viana, V.D.S.S.; Costa, J.F.M. Thermoregulatory behavior of dairy cows submitted to bedding temperature variations in Compost barn systems. Biol. Rhythm Res. 2021, 52, 1120–1129. [Google Scholar] [CrossRef]
- Laurindo, G.M.; Ferraz, G.A.E.S.; Damasceno, F.A.; Nascimento, J.A.C.D.; Santos, G.H.R.D.; Ferraz, P.F.P. Thermal Environment and Behavior Analysis of Confined Cows in a Compost Barn. Animals 2022, 12, 2214. [Google Scholar] [CrossRef]
- Thom, E.C. The Discomfort Index. Weatherwise 1959, 12, 57–61. [Google Scholar] [CrossRef]
- Nasceu, H.; Cyrine, D.; Khaoula, A.; EL, Z.I.; Refka, K.; Hanane, D.; Rahma, B.; Lamjed, M.; Moez, A. Modelling THI effects on milk production and lactation curve parameters of Holstein dairy cows. J. Therm. Biol. 2021, 99, 102917. [Google Scholar] [CrossRef]
- Pinto, S.; Hoffmann, G.; Ammon, C.; Amon, T. Critical THI thresholds based on the physiological parameters of lactating dairy cows. J. Therm. Biol. 2020, 88, 102523. [Google Scholar] [CrossRef]
- Yan, G.; Li, H.; Zhao, W.; Shi, Z. Evaluation of thermal indices based on their relationships with some physiological responses of housed lactating cows under heat stress. Int. J. Biometeorol. 2020, 64, 2077–2091. [Google Scholar] [CrossRef]
- Wang, X.; Bjerg, B.S.; Choi, C.Y.; Zong, C.; Zhang, G. A review and quantitative assessment of cattle-related thermal indices. J. Therm. Biol. 2018, 77, 24–37. [Google Scholar] [CrossRef]
- Bohmanova, J.; Misztal, I.; Cole, J.B. Temperature-humidity indices as indicators of milk production losses due to heat stress. J. Dairy Sci. 2007, 90, 1947–1956. [Google Scholar] [CrossRef]
- Foroushani, S.; Amon, T. Thermodynamic assessment of heat stress in dairy cattle: Lessons from human biometeorology. Int. J. Biometeorol. 2022, 66, 1811–1827. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, G.; Herbut, P.; Pinto, S.; Heinicke, J. ScienceDirect Special Issue: Environmental stressors Review determining heat stress in dairy cows. Biosyst. Eng. 2019, 9. [Google Scholar]
- West, J.W.; Mullinix, B.G.; Bernard, J.K. Effects of hot, humid weather on milk temperature, dry matter intake, and milk yield of lactating dairy cows. J. Dairy Sci. 2003, 86, 232–242. [Google Scholar] [CrossRef]
- Hahn, G.L. Dynamic responses of cattle to thermal heat loads. J. Anim. Sci. 1999, 77 (Suppl. S2), 10–20. [Google Scholar] [CrossRef]
- Mader, T.L.; Davis, M.S.; Brown-Brandl, T. Environmental factors influencing heat stress in feedlot cattle. J. Anim. Sci. 2006, 84, 712–719. [Google Scholar] [CrossRef] [PubMed]
- Becker, C.A.; Stone, A.E. Graduate Student Literature Review: Heat abatement strategies used to reduce negative effects of heat stress in dairy cows. J. Dairy Sci. 2020, 103, 9667–9675. [Google Scholar] [CrossRef]
- Baile, C.A.; Forbes, J.M. Control of feed intake and regulation of energy balance in ruminants. Physiol. Rev. 1974, 54, 160–214. [Google Scholar] [CrossRef] [PubMed]
- Rhoads, R.P.; Baumgard, L.H.; Suagee, J.K.; Sanders, S.R. Nutritional Interventions to Alleviate the Negative Consequences of Heat Stress. Am. Soc. Nutr. 2013, 4, 267–276. [Google Scholar] [CrossRef]
- Liu, J.; Li, L.; Chen, X.; Lu, Y.; Wang, D. Effects of heat stress on body temperature, milk production, and reproduction in dairy cows: A novel idea for monitoring and evaluation of heat stress—A review. Asian-Australas. J. Anim. Sci. 2019, 32, 1332–1339. [Google Scholar] [CrossRef]
- Koch, F.; Albrecht, D.; Görs, S.; Kuhla, B. Jejunal mucosa proteomics unravel metabolic adaptive processes to mild chronic heat stress in dairy cows. Sci. Rep. 2021, 11, 12484. [Google Scholar] [CrossRef] [PubMed]
- Heinicke, J.; Hoffmann, G.; Ammon, C.; Amon, B.; Amon, T. Effects of the daily heat load duration exceeding determined heat load thresholds on activity traits of lactating dairy cows. J. Therm. Biol. 2018, 77, 67–74. [Google Scholar] [CrossRef]
- Heinicke, J.; Ibscher, S.; Belik, V.; Amon, T. Cow individual activity response to the accumulation of heat load duration. J. Therm. Biol. 2019, 82, 23–32. [Google Scholar] [CrossRef]
- Soriani, N.; Panella, G.; Calamari, L. Rumination time during the summer season and its relationships with metabolic conditions and milk production. J. Dairy Sci. 2013, 96, 5082–5094. [Google Scholar] [CrossRef] [PubMed]
- Nardone, A.; Ronchi, B.; Lacetera, N.; Ranieri, M.S.; Bernabucci, U. Effects of climate changes on animal production and sustainability of livestock systems. Livest. Sci. 2010, 130, 57–69. [Google Scholar] [CrossRef]
- Tao, S.; Orellana, R.M.; Weng, X.; Marins, T.N.; Dahl, G.E.; Bernard, J.K. Symposium review: The influences of heat stress on bovine mammary gland function. J. Dairy Sci. 2018, 101, 5642–5654. [Google Scholar] [CrossRef]
- West, J.W. Effects of Heat-Stress on Production in Dairy Cattle. J. Dairy Sci. 2003, 86, 2131–2144. [Google Scholar] [CrossRef] [PubMed]
- Laporta, J.; Ferreira, F.C.; Ouellet, V.; Dado-Senn, B.; Almeida, A.K.; De Vries, A.; Dahl, G.E. Late-gestation heat stress impairs daughter and granddaughter lifetime performance. J. Dairy Sci. 2020, 103, 7555–7568. [Google Scholar] [CrossRef] [PubMed]
- Ternman, E.; Hänninen, L.; Pastell, M.; Agenäs, S.; Nielsen, P.P. Sleep in dairy cows recorded with a non-invasive EEG technique. Appl. Anim. Behav. Sci. 2012, 140, 25–32. [Google Scholar] [CrossRef]
- Tullo, E.; Mattachini, G.; Riva, E.; Finzi, A.; Provolo, G.; Guarino, M. Effects of Climatic Conditions on the Lying Behavior of a Group of Primiparous Dairy Cows. Animals 2019, 9, 869. [Google Scholar] [CrossRef]
- Das, R.; Sailo, L.; Verma, N.; Bharti, P.; Saikia, J.; Imtiwati, K.R.; Kumar, R. Impact of heat stress on health and performance of dairy animals: A review. Vet. World 2016, 9, 260–268. [Google Scholar] [CrossRef]
- Frigeri, K.D.M.; Kachinski, K.D.; Ghisi, D.C.; Deniz, M.; Damasceno, F.A.; Barbari, M.; Herbut, P.; Vieira, F.M.C. Effects of Heat Stress in Dairy Cows Raised in the Confined System: A Scientometric Review. Animals 2023, 13, 350. [Google Scholar] [CrossRef]
- Mudroň, P. Prevalence of sole ulcer in dairy cows. Med. Vet. 2022, 66, 17–21. [Google Scholar] [CrossRef]
- Herbut, P.; Angrecka, S. Relationship between THI level and dairy cows’ behaviour during summer period. Ital. J. Anim. Sci. 2018, 17, 226–233. [Google Scholar] [CrossRef]
- Van Os, J.M.C.; Weary, D.M.; Costa, J.H.C.; Hötzel, M.J.; von Keyserlingk, M.A.G. Sampling strategies for assessing lameness, injuries, and body condition score on dairy farms. J. Dairy Sci. 2019, 102, 8290–8304. [Google Scholar] [CrossRef] [PubMed]
- Correa-calder, A.; Avenda, L.; Mac, U.; California, B.; Agr, C. Heat stress in dairy cattle with emphasis on milk production and feed and water intake habits. Review. Rev Mex Cienc Pecu 2022, 13, 488–509. [Google Scholar]
- Pereira, A.M.F.; Titto, E.A.L.; Almeida, J.A.A. Influência do Estresse Térmico na Fisiologia e Produtividade dos Animais. In Adaptação dos Ruminantes aos Climas Quentes, 1st ed.; Coelho, A.V.A., Caetano, M., Coelho, S.C.A., Eds.; Editora Appris: Curitiba, Brazil, 2019; Volume 1, pp. 11–32. [Google Scholar]
- McDonald, P.V.; von Keyserlingk, M.A.G.; Weary, D.M. Hot weather increases competition between dairy cows at the drinker. J. Dairy Sci. 2020, 103, 3447–3458. [Google Scholar] [CrossRef] [PubMed]
- Daros, R.R.; Bran, J.A.; Hötzel, M.J.; Von Keyserlingk, M.A.G. Readily available water access is associated with greater milk production in grazing dairy herds. Animals 2019, 9, 48. [Google Scholar] [CrossRef]
- Izhboldina, O.; Mylostyvyi, R.; Khramkova, O.; Pavlenko, O.; Kapshuk, N.; Chernenko, O.; Matsyura, A.; Hoffmann, G. Effectiveness of additional mechanical ventilation in naturally ventilated dairy housing barns during heat waves. Ukr. J. Ecol. 2020, 10, 56–62. [Google Scholar] [CrossRef]
- Lovarelli, D.; Riva, E.; Mattachini, G.; Guarino, M.; Provolo, G. Assessing the effect of barns structures and environmental conditions in dairy cattle farms monitored in Northern Italy. J. Agric. Eng. 2021, 52, 35–42. [Google Scholar] [CrossRef]
- Damasceno, F.A.; Oliveira, C.E.A.; Ferraz, G.A.S.; Nascimento, J.A.C.; Barbari, M.; Ferraz, P.F.P. Spatial distribution of thermal variables, acoustics and lighting in compost dairy barn with climate control system. Agron. Res. 2019, 17, 385–395. [Google Scholar] [CrossRef]
- Oliveira, C.E.A.; de Tinôco, I.F.F.; Damasceno, F.A.; de Oliveira, V.C.; Ferraz, G.A. e S.; Sousa, F.C. de; Andrade, R.R.; Barbari, M. Mapping of the Thermal Microenvironment for Dairy Cows inan Open Compost-Bedded Pack Barn System withPositive-Pressure Ventilation. Animals 2022, 12, 2055. [Google Scholar] [CrossRef]
- Ramón-moragues, A.; Carulla, P.; Mínguez, C.; Villagrá, A.; Estellés, F. Dairy cows activity under heat stress: A case study in Spain. Animals 2021, 11, 2305. [Google Scholar] [CrossRef] [PubMed]
- Jensen, M.B.; Tolstrup, R.B. A survey on management and housing of peri-parturient dairy cows and their calves. Animal 2021, 15, 100388. [Google Scholar] [CrossRef] [PubMed]
- Yan, G.; Li, H.; Shi, Z. Evaluation of thermal indices as the indicators of heat stress in dairy cows in a temperate climate. Animals 2021, 11, 2459. [Google Scholar] [CrossRef] [PubMed]
Acronym | Search String |
---|---|
Population | (cattle OR cow OR milking OR lactating OR “lactating cows” OR dairy OR “dairy cow” OR “dairy cattle”) |
Interventions | (“confined system” OR “confinement system” OR “compost-bedded pack barn” OR “compost barn” OR “compost-bedded pack barn system”) |
Outcome | (climate OR heat OR “heat stress” OR “thermal comfort” OR temperature OR “relative humidity” OR “temperature humidity index” OR THI) AND (behavior OR behaviour OR “lying rest” OR feeding OR “standing rest” OR walking OR “water intake”) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frigeri, K.D.M.; Deniz, M.; Damasceno, F.A.; Barbari, M.; Herbut, P.; Vieira, F.M.C. Effect of Heat Stress on the Behavior of Lactating Cows Housed in Compost Barns: A Systematic Review. Appl. Sci. 2023, 13, 2044. https://doi.org/10.3390/app13042044
Frigeri KDM, Deniz M, Damasceno FA, Barbari M, Herbut P, Vieira FMC. Effect of Heat Stress on the Behavior of Lactating Cows Housed in Compost Barns: A Systematic Review. Applied Sciences. 2023; 13(4):2044. https://doi.org/10.3390/app13042044
Chicago/Turabian StyleFrigeri, Karen Dal’ Magro, Matheus Deniz, Flávio Alves Damasceno, Matteo Barbari, Piotr Herbut, and Frederico Márcio Corrêa Vieira. 2023. "Effect of Heat Stress on the Behavior of Lactating Cows Housed in Compost Barns: A Systematic Review" Applied Sciences 13, no. 4: 2044. https://doi.org/10.3390/app13042044
APA StyleFrigeri, K. D. M., Deniz, M., Damasceno, F. A., Barbari, M., Herbut, P., & Vieira, F. M. C. (2023). Effect of Heat Stress on the Behavior of Lactating Cows Housed in Compost Barns: A Systematic Review. Applied Sciences, 13(4), 2044. https://doi.org/10.3390/app13042044