Water Softener Regeneration Effects on the Operation of Domestic Wastewater Treatment Plants: A Preliminary Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Septic Tank Study
2.2. Annual Costs of Water Softener Use
- ▪
- Water—3.98 PLN/m3;
- ▪
- Sewage—9.86 PLN/m3;
- ▪
- Electricity—0.9 PLN/kWh;
- ▪
- Salt—60 PLN/25 kg.
2.3. Study of the Effect of Brine on the Hydraulic Conductivity of the Soil
- KS—hydraulic conductivity, m·s−1;
- r—opening radius, m;
- t—water subsidence time, s;
- H0—initial water level in the opening, m;
- H1—final water level in the opening, m [31].
3. Results and Discussion
3.1. Changes in NaCl Concentration within the Septic Tank
3.2. Temperature Value on Outflow from the Septic Tank
3.3. Hydraulic Conductivity of Soil—Semi-Technical Scale Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Gallagher, J.; Gill, L.W. The Life Cycle Environmental Performance of On-Site or Decentralised Wastewater Treatment Systems for Domestic Homes. Water 2021, 13, 2542. [Google Scholar] [CrossRef]
- D’Amato, V.A.; Bahe, A.; Bounds, T.; Comstock, B.; Konsler, T.; Liehr, S.K.; Long, S.K.; Ratanaphruks, K.; Rock, C.A.; Sherman, K. Factors Affecting the Performance of Primary Treatment in Decentralized Wastewater Systems; Raport WERF 04-DEC-7; IWA Publishing: London, UK, 2008. [Google Scholar]
- Saeed, T.; Afrin, R.; Al-Muyeed, A.; Miah, J.; Jahan, H. Bioreactor septic tank for on-site wastewater treatment: Floating constructed wetland integration. J. Environ. Chem. Eng. 2021, 9, 105606. [Google Scholar] [CrossRef]
- Adhikari, J.R.; Lohani, S.P. Design, installation, operation and experimentation of septic tank—UASB wastewater treatment system. Renew. Energy 2019, 143, 1406–1415. [Google Scholar] [CrossRef]
- Pishgar, R.; Morin, D.; Young, S.J.; Schwartz, J.; Chu, A. Characterization of domestic wastewater released from ‘green’ households and field study of the performance of onsite septic tanks retrofitted into aerobic bioreactors in cold climate. Sci. Total Environ. 2021, 755, 142446. [Google Scholar] [CrossRef] [PubMed]
- Perumal, M.; Karikalacholan, S.; Parimannan, N.; Arichandran, J.; Ravi, K.S.R.; Jayapandiyan, S.; Jayakumar, S.; Mohandas, T. Integrated anaerobic-aerobic processes for treatment of high strength wastewater: Consolidated application, new trends, perspectives, and challenges. In Integrated Environmental Technologies for Wastewater Treatment and Sustainable Development; Elsevier Science: Amsterdam, The Netherlands, 2022; pp. 457–481. [Google Scholar]
- Chandra, S.; Jagdale, P.; Medha, I.; Tiwari, A.K.; Bartoli, M.; Nino, A.D.; Olivito, F. Biochar-Supported TiO2-Based Nanocomposites for the Photocatalytic Degradation of Sulfamethoxazole in Water—A Review. Toxics 2021, 9, 313. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, R.; Kim, J.K.; Kim, J.H.; Kim, J. Nanostructured Ceramic Photocatalytic Membrane Modified with a Polymer Template for Textile Wastewater Treatment. Appl. Sci. 2017, 7, 1284. [Google Scholar] [CrossRef] [Green Version]
- De Nino, A.; Olivito, F.; Algieri, V.; Costanzo, P.; Jiritano, A.; Tallarida, M.A.; Maiuolo, L. Efficient and Fast Removal of Oils from Water Surfaces via Highly Oleophilic Polyurethane Composites. Toxics 2021, 9, 186. [Google Scholar] [CrossRef]
- Lohani, S.P.; Khanal, S.N.; Bakke, R. A simple anaerobic and filtration combined system for domestic wastewater treatment. Water-Energy Nexus (WEN) 2020, 3, 41–45. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, S.; Cheng, R.; Liu, R.; Liu, Z.; Yang, Q. Effects of nZVI and Fe3O4 NPs on anaerobic methanogenesis, microbial communities and metabolic pathways for treating domestic wastewater at ambient temperature. J. Water Proc. Eng. 2022, 48, 102845. [Google Scholar] [CrossRef]
- Sanchez, L.; Carrier, M.; Cartier, J.; Charmette, C.; Heran, M.; Steyer, J.P.; Lesage, G. Enhanced organic degradation and biogas production of domestic wastewater at psychrophilic temperature through submerged granular anaerobic membrane bioreactor for energy-positive treatment. Bioresour. Technol. 2022, 353, 127145. [Google Scholar] [CrossRef]
- Pawlak, M.; Skiba, M.; Spychała, M.; Nieć, J. The investigation of density currents and rate of outflow from a septic tank. J. Ecol. Eng. 2015, 16, 103–110. [Google Scholar] [CrossRef] [Green Version]
- Mahon, J.M.; Jan Knappe, J.; Gill, L.W. Sludge accumulation rates in septic tanks used as part of the on-site treatment of domestic wastewater in a northern maritime temperate climate. J. Environ. Manag. 2022, 304, 114199. [Google Scholar] [CrossRef]
- Amerian, T.; Farnood, R.; Sarathy, S.; Santoro, D. Effects of total suspended solids, particle size, and effluent temperature on the kinetics of peracetic acid decomposition in municipal wastewater. Water Sci. Technol. 2019, 80, 2299–2309. [Google Scholar] [CrossRef] [PubMed]
- Toor, G.S.; Lusk, M.; Obreza, T. Onsite Sewage Treatment and Disposal Systems: An Overview. University of Florida IFAS Extension. 2011. Available online: https://edis.ifas.ufl.edu/pdffiles/SS/SS54900.pdf (accessed on 15 June 2011).
- Jowett, E.C.; Lay, R. Importance of Laminar Flow Design in Septic Tank; Waterloo Biofilter Systems: Guelph, ON, Canada, 2006. [Google Scholar]
- Parsons, S.A. The effect of domestic ion–exchange water softeners on the microbiological quality of drinking water. Water Res. 2000, 34, 2369–2375. [Google Scholar] [CrossRef]
- Lahnafi, A.; Elgamouz, A.; Jaber, L.; Tijani, N.; Kawde, A.N. NaA zeolite-clay composite membrane formulation and its use as cost-effective water softener. Microporous Mesoporous Mater. 2023, 348, 112339. [Google Scholar] [CrossRef]
- Skipton, S.O.; Dvorak, B.I.; Niemeyer, S.M. Drinking Water Treatment: Water Softening (Ion Exchange). University of Nebraska-Lincoln Extension. 2003–2014. Available online: https://www.ianrpubs.unl.edu/live/g1491/build/g1491.pdf (accessed on 9 September 2014).
- Koul, B.; Yadav, D.; Singh, S.; Kumar, M.; Song, M. Insights into the Domestic Wastewater Treatment (DWWT) Regimes: A Review. Water 2022, 14, 3542. [Google Scholar] [CrossRef]
- Ali, M.E.A. Nanofiltration process for enhanced treatment of RO brine discharge. Membranes 2021, 11, 212. [Google Scholar] [CrossRef]
- Sánchez-Aldana, D.; Ortega-Corral, N.; Rocha-Gutiérrez, B.A.; Ballinas-Casarrubias, L.; Pérez-Domínguez, E.J.; Nevárez-Moorillon, G.V.; Soto-Salcido, L.A.; Ortega-Hernández, S.; Cardenas-Félix, G.; González-Sánchez, G. Hypochlorite generation from a water softener spent brine. Water 2018, 10, 1733. [Google Scholar] [CrossRef] [Green Version]
- Semaha, P.; Lei, Z.; Yuan, T.; Zhang, Z.; Shimizu, K. Transition of biological wastewater treatment from flocculent activated sludge to granular sludge systems towards circular economy. Bioresour. Technol. Rep. 2023, 21, 101294. [Google Scholar] [CrossRef]
- Liu, C.; Liu, F.; Andersen, M.N.; Wang, G.; Wu, K.; Zhao, Q.; Ye, Z. Domestic wastewater infiltration process in desert sandy soil and its irrigation prospect analysis. Ecotoxicol. Environ. Saf. 2021, 208, 111419. [Google Scholar] [CrossRef]
- Gross, M.; Bounds, T. The effect of water softener backwash brine in onsite wastewater treatment systems. In Proceedings of the Eleventh Individual and Small Community Sewage Systems Conference Proceedings, Warwick, RI, USA, 20–24 October 2007; pp. 72–105. [Google Scholar]
- Higgins, M.J.; Novak, J.T. Dewatering and settling of activated sludges: The case for using cation analysis. Water Environ. Res. 1997, 69, 225–232. [Google Scholar] [CrossRef]
- Harris, S.; Tsalidis, G.; Corbera, J.B.; Gallart, J.J.E.; Tegstedt, F. Application of LCA and LCC in the early stages of wastewater treatment design: A multiple case study of brine effluents. J. Clean. Prod. 2021, 307, 127298. [Google Scholar] [CrossRef]
- Naik, B.; Pradhan, S.S.; Bagal, D.K. Mechanical characterization based on partial replacement analysis of portland pozzolana cement with industrial waste in M30 grade concrete. Int. J. Appl. Eng. Res. 2019, 14, 1–53. [Google Scholar]
- Gonzalez-Martinez, S.; Gonzalez-Barcelo, O.; Flores-Torres, C.A. Wastewater treatment in an anaerobic filter using small lava stones as filter media without temperature control. Water Sci. Technol. 2011, 63, 1188–1195. [Google Scholar] [CrossRef]
- Nieć, J.; Spychała, M. Hydraulic conductivity estimation test impact on long-term acceptance rate and soil absorption system design. Water 2014, 6, 2808–2820. [Google Scholar] [CrossRef] [Green Version]
- Błażejewski, R. The Sewerage of the Village; Polish Association of Sanitary Engineers and Technicians: Poznań, Poland, 2003. (In Polish) [Google Scholar]
- Norm DTU 64. Implementation of autonomous sanitation systems—Single-family houses. French and European standards (Mise en oeuvre des dispositifs d’assainissement autonome—Maisons d’habitation individuelle), 1998.
- Laak, R. Wastewater Engineering Design for Unsewered Areas, 2nd ed.; Technomic Publ. Co.: Lancaster, PA, USA, 1986. [Google Scholar]
- Kargi, F.; Dincer, A.R. Salt inhibition in biological treatment of saline wastewater in RBC. J. Environ. Eng. 1999, 125, 966–971. [Google Scholar] [CrossRef]
- Uygur, A.; Kargi, F. Salt inhibition on biological nutrient removal from saline wastewater in a sequencing batch reactor. Enzym. Microb. Technol. 2004, 34, 313–318. [Google Scholar] [CrossRef]
- Harrison, J.F.; Michaud, C.F. Home water treatment system discharges to on-site wastewater systems. Water Cond. Purific. (WC&P) 2005, 12, 34–39. [Google Scholar]
- Murthy, S.N.; Novak, J.T.; De Haas, R.D. Monitoring cations to predict and improve activated sludge settling and dewatering properties of industrial wastewaters. Water Sci. Technol. 1998, 38, 119–126. [Google Scholar] [CrossRef]
- Davis, M.L. Water and Wastewater Engineering: Design Principles and Practice; The McGraw-Hill Companies, Inc.: New York, NY, USA, 2011. [Google Scholar]
- WQRF Softened Water Benefits Study—Energy Savings (Issue VI, Article 1) In: WQA Recertification Kit. 2012. Available online: https://wqa.org/wp-content/uploads/2022/09/Article-1-Softened-Water-Benefits-Study-Vol.-VI-Copy.pdf (accessed on 12 May 2012).
- Bounds, T.R. Design and Performance of Septic Tanks. Site Characterization and Design of Onsite Septic Systems ASTM STP 901; Bedinger, M.S., Johnson, A.I., Fleming, J.S.J., Eds.; American Society for Testing Materials: Philadelphia, PA, USA, 1997. [Google Scholar]
- Leverenz, H.L.; Tchobanoglous, G.; Darby, J.L. Evaluation of Greenhouse Gas Emissions from Septic Systems; Report WERF DEC1R09; IWA Publishing: London, UK, 2010. [Google Scholar]
- Patterson, R.A. Temporal Variability of Septic Tank Effluent in Future Directions for On-site Systems: Best Management Practice. In Proceedings of the On-Site ’03 Conference, Armidale, Australia, 30 September–2 October 2003; Patterson, R.A., Jones, M.J., Eds.; Lanfax Laboratories: Armidale, Australia, 2003; pp. 305–312, ISBN 0-9579438-1-4. [Google Scholar]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning: With Applications in R, 2nd ed.; Springer Publishing: New York, NY, USA, 2021. [Google Scholar]
- Travis, M.J.; Wiel-Shafran, A.; Weisbrod, N.; Adar, E.; Gross, A. Greywater reuse for irrigation: Effect on soil properties. Sci. Total Environ. 2010, 408, 2501–2508. [Google Scholar] [CrossRef]
- Bolaños-Benítez, V.; McDermott, F.; Gill, L.; Knappe, J. Engineered silver nanoparticle (Ag-NP) behaviour in domestic on-site wastewater treatment plants and in sewage sludge amended-soils. Sci. Total Environ. 2020, 722, 137794. [Google Scholar] [CrossRef] [PubMed]
- Frenk, S.; Hadar, Y.; Minz, D. Resilience of soil bacterial community to irrigation with water of different qualities under Mediterranean climate. Environ. Microbiol. 2014, 16, 559–569. [Google Scholar] [CrossRef] [PubMed]
Column Marking | Solution Type | Differences in Liquid Level (cm·h−1) |
---|---|---|
1a | Wastewater | 0.3 |
1b | 0.3 | |
1c | 0.1 | |
2a | Wastewater + brine | 0.6 |
2b | 0.9 | |
2c | 0.7 | |
3a | Water | 0.4 |
3b | 0.8 | |
3c | 0.6 |
Option | 1 | 2 | 3 |
---|---|---|---|
1 | ˗ | 0.008653 | 0.030791 |
2 | 0.008653 | ˗ | 0.346422 |
3 | 0.030791 | 0.346422 | ˗ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pawlak, M.; Pilarska, A.A.; Zimnicka, K.; Kujawiak, S.; Matz, R. Water Softener Regeneration Effects on the Operation of Domestic Wastewater Treatment Plants: A Preliminary Study. Appl. Sci. 2023, 13, 2853. https://doi.org/10.3390/app13052853
Pawlak M, Pilarska AA, Zimnicka K, Kujawiak S, Matz R. Water Softener Regeneration Effects on the Operation of Domestic Wastewater Treatment Plants: A Preliminary Study. Applied Sciences. 2023; 13(5):2853. https://doi.org/10.3390/app13052853
Chicago/Turabian StylePawlak, Maciej, Agnieszka A. Pilarska, Katarzyna Zimnicka, Sebastian Kujawiak, and Radosław Matz. 2023. "Water Softener Regeneration Effects on the Operation of Domestic Wastewater Treatment Plants: A Preliminary Study" Applied Sciences 13, no. 5: 2853. https://doi.org/10.3390/app13052853
APA StylePawlak, M., Pilarska, A. A., Zimnicka, K., Kujawiak, S., & Matz, R. (2023). Water Softener Regeneration Effects on the Operation of Domestic Wastewater Treatment Plants: A Preliminary Study. Applied Sciences, 13(5), 2853. https://doi.org/10.3390/app13052853