Fracture Resistance Evaluation and Failure Modes Rating Agreement for Two Endocrown Designs: An In Vitro Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
- a.
- The estimation of the weighted kappa uses linear weights (0–0.2 = non-agreement, 0.21–0.39 = minimal agreement, 0.4–0.59 = weak agreement, 0.6–0.79 = moderate agreement, 0.8–0.9 = strong agreement, >0.9 almost perfect agreement).
- b.
- Value does not depend on either null or alternative hypotheses.
- c.
- Estimates the asymptotic standard error assuming the null hypothesis that weighted kappa is zero.
4. Discussion
5. Conclusions
- There was no significant difference in fracture resistance between the two endocrown designs. However, there were differences in the failure mode.
- Differences between the evaluators of tooth fracture can be very extreme due to many factors which may affect the decision of classifying the tooth into restorable or non-restorable based on the catastrophic nature of the fracture line extension.
- Visualization of the fracture line and tracing their apical end by direct vision or other diagnostic tools is an essential part of the evaluation of failures of endocrowns. Extra care and enough time should be taken into consideration during the examination of possible fractures of teeth, especially endocrowns, which were examined in this study, to ensure thorough detection and decision on teeth restorability.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sorensen, J.A.; Martinoff, J.T. Intracoronal reinforcement and coronal coverage: A study of endodontically treated teeth. J. Prosthet. Dent. 1984, 51, 780–784. [Google Scholar] [CrossRef]
- Robbins, J.W. Guidelines for the restoration of endodontically treated teeth. J. Am. Dent. Assoc. 1990, 120, 558–566. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Wu, Y.; Smales, R.J. Identifying and reducing risks for potential fractures in endodontically treated teeth. J. Endod. 2010, 36, 609–617. [Google Scholar] [CrossRef]
- Zhang, H.; Li, H.; Cong, Q.; Zhang, Z.; Du, A.; Wang, Y. Effect of proximal box elevation on fracture resistance and microleakage of premolars restored with ceramic endocrowns. PLoS ONE 2021, 16, e0252269. [Google Scholar] [CrossRef]
- Helal, M.A.; Wang, Z. Biomechanical Assessment of Restored Mandibular Molar by Endocrown in Comparison to a Glass Fiber Post-Retained Conventional Crown: 3D Finite Element Analysis. J. Prosthodont. 2019, 28, 988–996. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; He, Y.; Ruan, W.; Ling, Z.; Zheng, C.; Gai, Y.; Yan, W. Biomechanical behavior of endocrown restorations with different CAD-CAM materials: A 3D finite element and in vitro analysis. J. Prosthet. Dent. 2021, 125, 890–899. [Google Scholar] [CrossRef]
- Lin, C.L.; Chang, Y.H.; Chang, C.Y.; Pai, C.A.; Huang, S.F. Finite element and Weibull analyses to estimate failure risks in the ceramic endocrown and classical crown for endodontically treated maxillary premolar. Eur. J. Oral Sci. 2010, 118, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Eraslan, O.; Eraslan, O.; Eskitascioglu, G.; Belli, S. Conservative restoration of severely damaged endodontically treated premolar teeth: A FEM study. Clin. Oral Investig. 2011, 15, 403–408. [Google Scholar] [CrossRef] [PubMed]
- Cheung, W. A review of the management of endodontically treated teeth. Post, core and the final restoration. J. Am. Dent. Assoc. 2005, 136, 611–619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanat-Erturk, B.; Saridag, S.; Koseler, E.; Helvacioglu-Yigit, D.; Avcu, E.; Yildiran-Avcu, Y. Fracture strengths of endocrown restorations fabricated with different preparation depths and CAD/CAM materials. Dent. Mater. J. 2018, 37, 256–265. [Google Scholar] [CrossRef] [Green Version]
- Stavropoulou, A.F.; Koidis, P.T. A systematic review of single crowns on endodontically treated teeth. J. Dent. 2007, 35, 761–767. [Google Scholar] [CrossRef]
- Balkenhol, M.; Wöstmann, B.; Rein, C.; Ferger, P. Survival time of cast post and cores: A 10-year retrospective study. J. Dent. 2007, 35, 50–58. [Google Scholar] [CrossRef]
- Goracci, C.; Ferrari, M. Current perspectives on post systems: A literature review. Aust. Dent. J. 2011, 56, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Pegoretti, A.; Fambri, L.; Zappini, G.; Bianchetti, M. Finite element analysis of a glass fibre reinforced composite endodontic post. Biomaterials 2002, 23, 2667–2682. [Google Scholar] [CrossRef] [PubMed]
- Pedrollo Lise, D.; Van Ende, A.; De Munck, J.; Umeda Suzuki, T.Y.; Cardoso Vieira, L.C.; Van Meerbeek, B. Biomechanical behavior of endodontically treated premolars using different preparation designs and CAD/CAM materials. J. Dent. 2017, 59, 54–61. [Google Scholar] [CrossRef]
- Schwartz, R.S.; Robbins, J.W. Post placement and restoration of endodontically treated teeth: A literature review. J. Endod. 2004, 30, 289–301. [Google Scholar] [CrossRef] [PubMed]
- Bhuva, B.; Giovarruscio, M.; Rahim, N.; Bitter, K.; Mannocci, F. The restoration of root filled teeth: A review of the clinical literature. Int. Endod. J. 2021, 54, 509–535. [Google Scholar] [CrossRef]
- Pissis, P. Fabrication of a metal-free ceramic restoration utilizing the monobloc technique. Pract. Periodontics Aesthetic Dent. PPAD 1995, 7, 83–94. [Google Scholar]
- Bindl, A.; Mörmann, W.H. Clinical evaluation of adhesively placed Cerec endo-crowns after 2 years--preliminary results. J. Adhes. Dent. 1999, 1, 255–265. [Google Scholar] [PubMed]
- Tribst, J.P.M.; Dal Piva, A.M.O.; de Jager, N.; Bottino, M.A.; de Kok, P.; Kleverlaan, C.J. Full-Crown Versus Endocrown Approach: A 3D-Analysis of Both Restorations and the Effect of Ferrule and Restoration Material. J. Prosthodont. 2021, 30, 335–344. [Google Scholar] [CrossRef]
- Aktas, G.; Yerlikaya, H.; Akca, K. Mechanical Failure of Endocrowns Manufactured with Different Ceramic Materials: An In Vitro Biomechanical Study. J. Prosthodont. 2018, 27, 340–346. [Google Scholar] [CrossRef]
- Turkistani, A.A.; Dimashkieh, M.; Rayyan, M. Fracture resistance of teeth restored with endocrowns: An in vitro study. J. Esthet. Restor. Dent. 2020, 32, 389–394. [Google Scholar] [CrossRef]
- Hayes, A.; Duvall, N.; Wajdowicz, M.; Roberts, H. Effect of Endocrown Pulp Chamber Extension Depth on Molar Fracture Resistance. Oper. Dent. 2017, 42, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Taha, D.; Spintzyk, S.; Schille, C.; Sabet, A.; Wahsh, M.; Salah, T.; Geis-Gerstorfer, J. Fracture resistance and failure modes of polymer infiltrated ceramic endocrown restorations with variations in margin design and occlusal thickness. J. Prosthodont. Res. 2018, 62, 293–297. [Google Scholar] [CrossRef] [PubMed]
- Einhorn, M.; DuVall, N.; Wajdowicz, M.; Brewster, J.; Roberts, H. Preparation Ferrule Design Effect on Endocrown Failure Resistance. J. Prosthodont. 2019, 28, e237–e242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Govare, N.; Contrepois, M. Endocrowns: A systematic review. J. Prosthet. Dent. 2020, 123, 411–418. [Google Scholar] [CrossRef]
- Al-Dabbagh, R.A. Survival and success of endocrowns: A systematic review and meta-analysis. J. Prosthet. Dent. 2021, 125, e411–e415. [Google Scholar] [CrossRef]
- Dartora, N.R.; de Conto Ferreira, M.B.; Moris, I.C.M.; Brazão, E.H.; Spazin, A.O.; Sousa-Neto, M.D.; Silva-Sousa, Y.T.; Gomes, E.A. Effect of Intracoronal Depth of Teeth Restored with Endocrowns on Fracture Resistance: In Vitro and 3-dimensional Finite Element Analysis. J. Endod. 2018, 44, 1179–1185. [Google Scholar] [CrossRef] [PubMed]
- Hassouneh, L.; Jum’ah, A.A.; Ferrari, M.; Wood, D.J. Post-fatigue fracture resistance of premolar teeth restored with endocrowns: An in vitro investigation. J. Dent. 2020, 100, 103426. [Google Scholar] [CrossRef]
- de Kuijper, M.; Cune, M.S.; Tromp, Y.; Gresnigt, M.M.M. Cyclic loading and load to failure of lithium disilicate endocrowns: Influence of the restoration extension in the pulp chamber and the enamel outline. J. Mech. Behav. Biomed. Mater. 2020, 105, 103670. [Google Scholar] [CrossRef]
- Silva-Sousa, A.C.; Moris, I.C.M.; Barbosa, A.F.S.; Silva-Sousa, Y.T.C.; Sousa-Neto, M.D.; Pires, C.R.F.; Gomes, E.A. Effect of restorative treatment with endocrown and ferrule on the mechanical behavior of anterior endodontically treated teeth: An in vitro analysis. J. Mech. Behav. Biomed. Mater. 2020, 112, 104019. [Google Scholar] [CrossRef] [PubMed]
- Dartora, N.R.; Maurício Moris, I.C.; Poole, S.F.; Bacchi, A.; Sousa-Neto, M.D.; Silva-Sousa, Y.T.; Gomes, E.A. Mechanical behavior of endocrowns fabricated with different CAD-CAM ceramic systems. J. Prosthet. Dent. 2021, 125, 117–125. [Google Scholar] [CrossRef] [PubMed]
- El-Damanhoury, H.M.; Haj-Ali, R.N.; Platt, J.A. Fracture resistance and microleakage of endocrowns utilizing three CAD-CAM blocks. Oper. Dent. 2015, 40, 201–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baba, N.Z.; Goodacre, C.J. Restoration of endodontically treated teeth: Contemporary concepts and future perspectives. Endod. Top. 2014, 31, 68–83. [Google Scholar] [CrossRef]
- Zitzmann, N.U.; Krastl, G.; Hecker, H.; Walter, C.; Waltimo, T.; Weiger, R. Strategic considerations in treatment planning: Deciding when to treat, extract, or replace a questionable tooth. J. Prosthet. Dent. 2010, 104, 80–91. [Google Scholar] [CrossRef]
- Goldstein, R.E.; Chan, D.C.N.; Myers, M.L.; Barrack, G.M. Chipped, Fractured, or Endodontically Treated Teeth. In Ronald E. Goldstein’s Esthetics in Dentistry; John Wiley & Sons: Hoboken, NJ, USA, 2018; pp. 720–746. [Google Scholar] [CrossRef]
- Bankoğlu Güngör, M.; Karakoca Nemli, S. Fracture resistance of CAD-CAM monolithic ceramic and veneered zirconia molar crowns after aging in a mastication simulator. J. Prosthet. Dent. 2018, 119, 473–480. [Google Scholar] [CrossRef]
- Rocca, G.T.; Daher, R.; Saratti, C.M.; Sedlacek, R.; Suchy, T.; Feilzer, A.J.; Krejci, I. Restoration of severely damaged endodontically treated premolars: The influence of the endo-core length on marginal integrity and fatigue resistance of lithium disilicate CAD-CAM ceramic endocrowns. J. Dent. 2018, 68, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Bindl, A.; Richter, B.; Mörmann, W.H. Survival of ceramic computer-aided design/manufacturing crowns bonded to preparations with reduced macroretention geometry. Int. J. Prosthodont. 2005, 18, 219–224. [Google Scholar] [CrossRef]
- El Ghoul, W.; Özcan, M.; Silwadi, M.; Salameh, Z. Fracture resistance and failure modes of endocrowns manufactured with different CAD/CAM materials under axial and lateral loading. J. Esthet. Restor. Dent. 2019, 31, 378–387. [Google Scholar] [CrossRef]
- Tribst, J.P.M.; Dal Piva, A.M.O.; Madruga, C.F.L.; Valera, M.C.; Borges, A.L.S.; Bresciani, E.; de Melo, R.M. Endocrown restorations: Influence of dental remnant and restorative material on stress distribution. Dent. Mater. 2018, 34, 1466–1473. [Google Scholar] [CrossRef] [Green Version]
- Rathi, A.; Chowdhry, P.; Kaushik, M.; Reddy, P.; Roshni; Mehra, N. Effect of different periodontal ligament simulating materials on the incidence of dentinal cracks during root canal preparation. J. Dent. Res. Dent. Clin. Dent. Prospect. 2018, 12, 196–200. [Google Scholar] [CrossRef]
- Fráter, M.; Sáry, T.; Braunitzer, G.; Balázs Szabó, P.; Lassila, L.; Vallittu, P.K.; Garoushi, S. Fatigue failure of anterior teeth without ferrule restored with individualized fiber-reinforced post-core foundations. J. Mech. Behav. Biomed. Mater. 2021, 118, 104440. [Google Scholar] [CrossRef]
- Altier, M.; Erol, F.; Yildirim, G.; Dalkilic, E. Fracture resistance and failure modes of lithium disilicate or composite endocrowns. Niger. J. Clin. Pract. 2018, 21, 821–826. [Google Scholar] [CrossRef] [PubMed]
- Biacchi, G.R.; Basting, R.T. Comparison of fracture strength of endocrowns and glass fiber post-retained conventional crowns. Oper. Dent. 2012, 37, 130–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forberger, N.; Göhring, T.N. Influence of the type of post and core on in vitro marginal continuity, fracture resistance, and fracture mode of lithia disilicate-based all-ceramic crowns. J. Prosthet. Dent. 2008, 100, 264–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bankoğlu Güngör, M.; Turhan Bal, B.; Yilmaz, H.; Aydin, C.; Karakoca Nemli, S. Fracture strength of CAD/CAM fabricated lithium disilicate and resin nano ceramic restorations used for endodontically treated teeth. Dent. Mater. J. 2017, 36, 135–141. [Google Scholar] [CrossRef] [Green Version]
- Haralur, S.B.; Alamri, A.A.; Alshehri, S.A.; Alzahrani, D.S.; Alfarsi, M. Influence of Occlusal Thickness and Radicular Extension on the Fracture Resistance of Premolar Endocrowns from Different All-Ceramic Materials. Appl. Sci. 2020, 10, 2696. [Google Scholar] [CrossRef] [Green Version]
- Tribst, J.P.M.; Lo Giudice, R.; dos Santos, A.F.C.; Borges, A.L.S.; Silva-Concílio, L.R.; Amaral, M.; Lo Giudice, G. Lithium Disilicate Ceramic Endocrown Biomechanical Response According to Different Pulp Chamber Extension Angles and Filling Materials. Materials 2021, 14, 1307. [Google Scholar] [CrossRef]
- Ghoul, W.E.; Özcan, M.; Tribst, J.P.M.; Salameh, Z. Fracture resistance, failure mode and stress concentration in a modified endocrown design. Biomater. Investig. Dent. 2020, 7, 110–119. [Google Scholar] [CrossRef]
- Lin, Z.-X.; Pan, Z.-X.; Ye, Q.-Q.; Zheng, Z.-Q.; Lin, J. Effect of occlusal thickness design on the fracture resistance of endocrowns restored with lithium disilicate ceramic and zirconia. Hua Xi Kou Qiang Yi Xue Za Zhi 2020, 38, 647–651. [Google Scholar] [CrossRef]
- Biacchi, G.R.; Mello, B.; Basting, R.T. The Endocrown: An Alternative Approach for Restoring Extensively Damaged Molars. J. Esthet. Restor. Dent. 2013, 25, 383–390. [Google Scholar] [CrossRef] [PubMed]
- Al-khafaji, S.; Jasim, H. Fracture Resistance of Endodontically Treated Teeth Restored by Full Crown and Two Endocrowns Preparation Design Made from Lithium Disilicate Material (A Comparative in Vitro Study). Int. Med. J. 2020, 25, 2531–2542. [Google Scholar]
- Mühlemann, H.R. 10 Years of Tooth-Mobility Measurements. J. Periodontol. 1960, 31, 110–122. [Google Scholar] [CrossRef]
- Rosentritt, M.; Behr, M.; Gebhard, R.; Handel, G. Influence of stress simulation parameters on the fracture strength of all-ceramic fixed-partial dentures. Dent. Mater. 2006, 22, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Ali, I.L.; Yunus, N.; Abu-Hassan, M.I. Hardness, flexural strength, and flexural modulus comparisons of three differently cured denture base systems. J. Prosthodont. 2008, 17, 545–549. [Google Scholar] [CrossRef] [PubMed]
- Aksel, H.; Askerbeyli, S.; Sungur, D. Vertical root fracture resistance of simulated immature permanent teeth filled with MTA using different vehicles. J. Clin. Exp. Dent. 2017, 9, e178. [Google Scholar] [CrossRef] [PubMed]
- Pavithra, A.H.; Prashanth, G.; Mathew, S.; Shekar, S.; Patil, S. Analysis of Stress in the Periodontal Ligament and Alveolar Bone of the Maxillary First Molars during Intrusion with Microscrew Implants: A 3D Finite Element Study. World J. Dent. 2014, 5, 11–16. [Google Scholar] [CrossRef]
- Chang, Y.-I.; Shin, S.-J.; Baek, S.-H. Three-dimensional finite element analysis in distal en masse movement of the maxillary dentition with the multiloop edgewise archwire. Eur. J. Orthod. 2004, 26, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Scherrer, S.S.; de Rijk, W.G. The fracture resistance of all-ceramic crowns on supporting structures with different elastic moduli. Int. J. Prosthodont. 1993, 6, 462–467. [Google Scholar] [PubMed]
- Soares, C.J.; Pizi, E.C.G.; Fonseca, R.B.; Martins, L.R.M. Influence of root embedment material and periodontal ligament simulation on fracture resistance tests. Braz. Oral Res. 2005, 19, 11–16. [Google Scholar] [CrossRef] [Green Version]
- Sterzenbach, G.; Kalberlah, S.; Beuer, F.; Frankenberger, R.; Naumann, M. In-vitro simulation of tooth mobility for static and dynamic load tests: A pilot study. Acta Odontol. Scand. 2011, 69, 316–318. [Google Scholar] [CrossRef] [PubMed]
- Delben, J.A.; dos Santos, P.; Rezende, M.C.; Louzada, M.J.; Barao, V.; Assuno, W.G. Evaluation of Elastic Modulus of Different Resins for Bone Simulation. In Proceedings of the 2011 IADR/AADR/CADR General Session, San Diego, CA, USA, 16 March 2011. [Google Scholar]
- Rayyan, M.R.; Alauti, R.Y.; Abanmy, M.A.; AlReshaid, R.M.; Bin Ahmad, H.A. Endocrowns versus post-core retained crowns for restoration of compromised mandibular molars: An in vitro study. Int. J. Comput. Dent. 2019, 22, 39–44. [Google Scholar]
- Sahebi, M.; Ghodsi, S.; Berahman, P.; Amini, A.; Zeighami, S. Comparison of retention and fracture load of endocrowns made from zirconia and zirconium lithium silicate after aging: An in vitro study. BMC Oral Health 2022, 22, 41. [Google Scholar] [CrossRef] [PubMed]
- Magne, P.; Schlichting, L.H.; Maia, H.P.; Baratieri, L.N. In vitro fatigue resistance of CAD/CAM composite resin and ceramic posterior occlusal veneers. J. Prosthet. Dent. 2010, 104, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Gresnigt, M.M.M.; Özcan, M.; van den Houten, M.L.A.; Schipper, L.; Cune, M.S. Fracture strength, failure type and Weibull characteristics of lithium disilicate and multiphase resin composite endocrowns under axial and lateral forces. Dent. Mater. 2016, 32, 607–614. [Google Scholar] [CrossRef]
- Dartora, G.; Rocha Pereira, G.K.; Varella de Carvalho, R.; Zucuni, C.P.; Valandro, L.F.; Cesar, P.F.; Caldas, R.A.; Bacchi, A. Comparison of endocrowns made of lithium disilicate glass-ceramic or polymer-infiltrated ceramic networks and direct composite resin restorations: Fatigue performance and stress distribution. J. Mech. Behav. Biomed. Mater. 2019, 100, 103401. [Google Scholar] [CrossRef] [PubMed]
- Elliott, A.; Woodward, W. Statistical Analysis Quick Reference Guidebook; SAGE Publications: Thousand Oaks, CA, USA, 2007. [Google Scholar] [CrossRef]
- Gibbs, C.H.; Mahan, P.E.; Mauderli, A.; Lundeen, H.C.; Walsh, E.K. Limits of human bite strength. J. Prosthet. Dent. 1986, 56, 226–229. [Google Scholar] [CrossRef]
- Waltimo, A.; Könönen, M. A novel bite force recorder and maximal isometric bite force values for healthy young adults. Scand. J. Dent. Res. 1993, 101, 171–175. [Google Scholar] [CrossRef]
- Zortuk, M.; Bolpaca, P.; Kilic, K.; Ozdemir, E.; Aguloglu, S. Effects of Finger Pressure Applied By Dentists during Cementation of All-Ceramic Crowns. Eur. J. Dent. 2010, 4, 383–388. [Google Scholar] [CrossRef] [Green Version]
- Xible, A.A.; de Jesus Tavarez, R.R.; de Araujo Cdos, R.; Conti, P.C.; Bonachella, W.C. Effect of cyclic loading on fracture strength of endodontically treated teeth restored with conventional and esthetic posts. J Appl Oral Sci 2006, 14, 297–303. [Google Scholar] [CrossRef] [PubMed]
- Kongkiatkamon, S.; Booranasophone, K.; Tongtaksin, A.; Kiatthanakorn, V.; Rokaya, D. Comparison of Fracture Load of the Four Translucent Zirconia Crowns. Molecules 2021, 26, 5308. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.Y.; Won, H.Y.; Choe, H.C.; Son, M.K. Fracture Characteristics of Dental Ceramic Crown according to Zirconia Coping Design. Procedia Engineering 2011, 10, 1561–1566. [Google Scholar] [CrossRef] [Green Version]
- Shin, Y.; Park, S.; Park, J.W.; Kim, K.M.; Park, Y.B.; Roh, B.D. Evaluation of the marginal and internal discrepancies of CAD-CAM endocrowns with different cavity depths: An in vitro study. J. Prosthet. Dent. 2017, 117, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Gaintantzopoulou, M.D.; El-Damanhoury, H.M. Effect of Preparation Depth on the Marginal and Internal Adaptation of Computer-aided Design/Computer-assisted Manufacture Endocrowns. Oper. Dent. 2016, 41, 607–616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Endocrown Design | N | Mean (N) | Standard Deviation | p * |
---|---|---|---|---|
Conventional | 9 | 1196.971 | 318.364 | 0.142 |
proximal boxes | 10 | 1019.766 | 266.348 |
Assessment | Weighted Kappa | Asymptotic | Zc | Sig. | 95% Asymptotic Confidence Interval | |
---|---|---|---|---|---|---|
Std. Error | Lower Bound | Upper Bound | ||||
Location/End Level Apically | ||||||
Between the two evaluators | 0.312 | 0.136 | 2.201 | 0.028 | 0.046 | 0.578 |
Between evaluator 1 and consensus | 0.571 | 0.145 | 4.076 | <0.001 | 0.287 | 0.855 |
Between evaluator 2 and consensus | 0.596 | 0.204 | 3.408 | <0.001 | 0.196 | 0.995 |
Fracture line involvement Endocrown/tooth structure | ||||||
Between the two evaluators | 0.321 | 0.195 | 1.593 | 0.111 | −0.061 | 0.704 |
Between evaluator 1 and consensus | 0.565 | 0.222 | 2.489 | 0.013 | 0.131 | 0.999 |
Between evaluator 2 and consensus | 0.646 | 0.152 | 3.313 | <0.001 | 0.348 | 0.944 |
Catastrophic/non-restorability | ||||||
Between the two evaluators | 0.255 | 0.176 | 1.428 | 0.153 | −0.090 | 0.600 |
Between evaluator 1 and consensus | 0.315 | 0.144 | 1.990 | 0.047 | 0.033 | 0.598 |
Between evaluator 2 and consensus | 0.787 | 0.139 | 3.509 | <0.001 | 0.513 | 1.060 |
Number of pieces and separation | ||||||
Between the two evaluators | 0.734 | 0.122 | 4.714 | <0.001 | 0.494 | 0.974 |
Between evaluator 1 and consensus | 0.782 | 0.118 | 5.077 | <0.001 | 0.551 | 1.013 |
Between evaluator 2 and consensus | 0.944 | 0.056 | 6.121 | <0.001 | 0.834 | 1.053 |
Fracture direction | ||||||
Between the two evaluators | 0.491 | 0.146 | 2.836 | 0.005 | 0.204 | 0.777 |
Between evaluator 1 and consensus | 0.885 | 0.072 | 4.512 | <0.001 | 0.744 | 1.026 |
Between evaluator 2 and consensus | 0.483 | 0.154 | 2.804 | 0.005 | 0.181 | 0.786 |
Assessment | Criteria | Proximal Boxes | Conventional | ||
---|---|---|---|---|---|
Mean (N) | Count | Mean (N) | Count | ||
Fracture Location/End Level Apically |
| - | - | - | - |
| - | - | 1240.13 | 1 | |
| - | - | - | - | |
| 1104.05 | 7 | 1161.88 | 5 | |
| 823.10 | 3 | 1241.07 | 3 | |
Fracture line involvement Endocrown/tooth structure |
| - | - | - | |
| 746.85 | 2 | 1435.62 | 2 | |
| 1087.99 | 8 | 1128.79 | 7 | |
Catastrophic/Non-reparability |
| 1053.88 | 8 | 1169.36 | 4 |
| 883.33 | 2 | 1219.06 | 5 | |
Number of pieces and separation |
| 791.07 | 1 | 1071.44 | 3 |
| 1238.86 | 5 | 1215.48 | 5 | |
| 739.67 | 2 | 1481.01 | 1 | |
| 866.48 | 2 | - | - | |
Fracture direction |
| 756.80 | 3 | 991.98 | 2 |
| - | - | 1481.01 | 1 | |
| - | - | 1420.84 | 1 | |
| - | - | 1450.40 | 1 | |
| - | - | - | ||
| 1132.47 | 7 | 1109.14 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alzahrani, S.J.; Hajjaj, M.S.; Yeslam, H.E.; Marghalani, T.Y. Fracture Resistance Evaluation and Failure Modes Rating Agreement for Two Endocrown Designs: An In Vitro Study. Appl. Sci. 2023, 13, 3001. https://doi.org/10.3390/app13053001
Alzahrani SJ, Hajjaj MS, Yeslam HE, Marghalani TY. Fracture Resistance Evaluation and Failure Modes Rating Agreement for Two Endocrown Designs: An In Vitro Study. Applied Sciences. 2023; 13(5):3001. https://doi.org/10.3390/app13053001
Chicago/Turabian StyleAlzahrani, Saeed J., Maher S. Hajjaj, Hanin E. Yeslam, and Thamer Y. Marghalani. 2023. "Fracture Resistance Evaluation and Failure Modes Rating Agreement for Two Endocrown Designs: An In Vitro Study" Applied Sciences 13, no. 5: 3001. https://doi.org/10.3390/app13053001
APA StyleAlzahrani, S. J., Hajjaj, M. S., Yeslam, H. E., & Marghalani, T. Y. (2023). Fracture Resistance Evaluation and Failure Modes Rating Agreement for Two Endocrown Designs: An In Vitro Study. Applied Sciences, 13(5), 3001. https://doi.org/10.3390/app13053001