Dehydrated Sauerkraut Juice in Bread and Meat Applications and Bioaccessibility of Total Phenol Compounds after In Vitro Gastrointestinal Digestion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sauerkraut Juice and Dehydrated Sauerkraut Juice
2.2. Product Preparation
2.2.1. Bread
2.2.2. Meat Samples–Minced Pork Sausage
2.2.3. Samples and Abbreviations
2.3. Analytical Methods
2.3.1. Total Phenol Content and Antiradical Activity
2.3.2. Determination of Volatile Compounds
2.3.3. Sensory Evaluation
2.4. Static In Vitro Digestion Method
2.5. Statistical Analyses
3. Results
3.1. Description of Sauerkraut Juice and Dehydrated Sauerkraut Juice
3.1.1. Total Phenols, Antiradical Activity and Bioaccessibility of the SJ and DSJ Samples
3.1.2. Aromatic Volatiles in Sauerkraut Juice and Dehydrated Sauerkraut Juice
3.2. Bread Samples
3.2.1. Total Phenols, Antiradical Activity and Bioaccessibility of the Bread Samples
3.2.2. Aromatic Volatiles in the Bread Samples
3.3. Meat Samples
3.3.1. Total Phenols, Antiradical Activity and Bioaccessibility of the Meat Samples
3.3.2. Aromatic Volatiles in the Meat Samples
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peñas, E.; Martinez-Villaluenga, C.; Frias, J. Sauerkraut: Production, Composition, and Health Benefits. Fermented Foods Health Dis. Prev. 2017, 557–576. [Google Scholar] [CrossRef]
- Martínez, S.; Armesto, J.; Gómez-Limia, L.; Carballo, J. Impact of Processing and Storage on the Nutritional and Sensory Properties and Bioactive Components of Brassica Spp. A Review. Food Chem. 2020, 313, 126065. [Google Scholar] [CrossRef]
- Satora, P.; Skotniczny, M.; Strnad, S.; Piechowicz, W. Chemical Composition and Sensory Quality of Sauerkraut Produced from Different Cabbage Varieties. LWT 2021, 136, 110325. [Google Scholar] [CrossRef]
- Jansone, L.; Kampuse, S. Comparison of chemical composition of fresh and fermented cabbage juice. In Proceedings of the 13th Baltic Conference on Food Science and Technology “Food. Nutrition. Well-Being”, Jelgava, Latvia, 2–3 May 2019; pp. 160–164. [Google Scholar] [CrossRef]
- Martinez-Villaluenga, C.; Peñas, E.; Frias, J.; Ciska, E.; Honke, J.; Piskula, M.K.; Kozlowska, H.; Vidal-Valverde, C. Influence of Fermentation Conditions on Glucosinolates, Ascorbigen, and Ascorbic Acid Content in White Cabbage (Brassica oleracea Var. capitata Cv. Taler) Cultivated in Different Seasons. J. Food Sci. 2009, 74, C62–C67. [Google Scholar] [CrossRef]
- Jansone, L.; Kampuse, S.; Kruma, Z.; Lidums, I. Quality Parameters of Horizontally Spray-Dried Fermented Cabbage Juice. Proc. Latv. Acad. Sci. Sect. B. Nat. Exact Appl. Sci. 2022, 76, 96–102. [Google Scholar] [CrossRef]
- Jansone, L.; Kruma, Z.; Straumite, E. Evaluation of Chemical and Sensory Characteristics of Sauerkraut Juice Powder and Its Application in Food. Foods 2022, 12, 19. [Google Scholar] [CrossRef]
- Korus, A.; Witczak, M.; Korus, J.; Juszczak, L. Dough Rheological Properties and Characteristics of Wheat Bread with the Addition of Lyophilized Kale (Brassica oleracea L. Var. sabellica) Powder. Appl. Sci. 2023, 13, 29. [Google Scholar] [CrossRef]
- Sardabi, F.; Azizi, M.H.; Gavlighi, H.A.; Rashidinejad, A. The Effect of Moringa Peregrina Seed Husk on the in Vitro Starch Digestibility, Microstructure, and Quality of White Wheat Bread. LWT 2021, 136, 110332. [Google Scholar] [CrossRef]
- Gómez-García, R.; Vilas-Boas, A.A.; Machado, M.; Campos, D.A.; Aguilar, C.N.; Madureira, A.R.; Pintado, M. Impact of Simulated in Vitro Gastrointestinal Digestion on Bioactive Compounds, Bioactivity and Cytotoxicity of Melon (Cucumis melo L. inodorus) Peel Juice Powder. Food Biosci. 2022, 47, 101726. [Google Scholar] [CrossRef]
- Gawlik-Dziki, U.; Dziki, D.; Świeca, M.; Sȩczyk, Ł.; Rózyło, R.; Szymanowska, U. Bread Enriched with Chenopodium Quinoa Leaves Powder—The Procedures for Assessing the Fortification Efficiency. LWT 2015, 62, 1226–1234. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, H.; Brennan, M.; Brennan, C.; Qin, Y.; Cheng, G.; Liu, Y. Physical, Chemical, Sensorial Properties and in Vitro Digestibility of Wheat Bread Enriched with Yunnan Commercial and Wild Edible Mushrooms. LWT 2022, 169, 113923. [Google Scholar] [CrossRef]
- Đurović, S.; Vujanović, M.; Radojković, M.; Filipović, J.; Filipović, V.; Gašić, U.; Tešić, Ž.; Mašković, P.; Zeković, Z. The Functional Food Production: Application of Stinging Nettle Leaves and Its Extracts in the Baking of a Bread. Food Chem. 2020, 312, 126091. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Ivane, N.M.A.; Haruna, S.A.; Zekrumah, M.; Elysé, F.K.R.; Tahir, H.E.; Wang, G.; Wang, C.; Zou, X. Recent Trends in the Micro-Encapsulation of Plant-Derived Compounds and Their Specific Application in Meat as Antioxidants and Antimicrobials. Meat Sci. 2022, 191, 108842. [Google Scholar] [CrossRef]
- Goff, S.A.; Klee, H.J. Plant Volatile Compounds: Sensory Cues for Health and Nutritional Value? Science 2006, 311, 815–819. [Google Scholar] [CrossRef] [PubMed]
- Gawlik-Dziki, U.; Dziki, D.; Baraniak, B.; Lin, R. The Effect of Simulated Digestion in Vitro on Bioactivity of Wheat Bread with Tartary Buckwheat Flavones Addition. LWT-Food Sci. Technol. 2009, 42, 137–143. [Google Scholar] [CrossRef]
- Wieca, M.S.; Gawlik-Dziki, U.; Dziki, D.; Baraniak, B. Wheat Bread Enriched with Green Coffee—In Vitro Bioaccessibility and Bioavailability of Phenolics and Antioxidant Activity. Food Chem. 2016, 221, 1451–1457. [Google Scholar] [CrossRef]
- Jafari, S.; Jafari, S.M.; Ebrahimi, M.; Kijpatanasilp, I.; Assatarakul, K. A Decade Overview and Prospect of Spray Drying Encapsulation of Bioactives from Fruit Products: Characterization, Food Application and in Vitro Gastrointestinal Digestion. Food Hydrocoll. 2023, 134, 108068. [Google Scholar] [CrossRef]
- Mackie, A.; Mulet-Cabero, A.I.; Torcello-Gomez, A. Simulating Human Digestion: Developing Our Knowledge to Create Healthier and More Sustainable Foods. Food Funct. 2020, 11, 9397–9431. [Google Scholar] [CrossRef]
- Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carrière, F.; Boutrou, R.; Corredig, M.; Dupont, D.; et al. A Standardised Static in Vitro Digestion Method Suitable for Food–An International Consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef] [Green Version]
- Jakubczyk, A.; Kiersnowska, K.; Ömeroglu, B.; Gawlik-Dziki, U.; Tutaj, K.; Rybczyńska-Tkaczyk, K.; Szydłowska-Tutaj, M.; Złotek, U.; Baraniak, B. The Influence of Hypericum perforatum L. Addition to Wheat Cookies on Their Antioxidant, Anti-Metabolic Syndrome, and Antimicrobial Properties. Foods 2021, 10, 1379. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Rokayya, S.; Li, C.J.; Zhao, Y.; Li, Y.; Sun, C.H. Cabbage (Brassica oleracea L. Var. capitata) Phytochemicals with Antioxidant and Anti-Inflammatory Potential. Asian Pac. J. Cancer Prev. 2013, 14, 6657–6662. [Google Scholar] [CrossRef] [Green Version]
- Galoburda, R.; Straumite, E.; Sabovics, M.; Kruma, Z. Dynamics of Volatile Compounds in Triticale Bread with Sourdough: From Flour to Bread. Foods 2020, 9, 1837. [Google Scholar] [CrossRef] [PubMed]
- Mammasse, N.; Schlich, P. Adequate Number of Consumers in a Liking Test. Insights from Resampling in Seven Studies. Food Qual. Prefer. 2014, 31, 124–128. [Google Scholar] [CrossRef]
- Quatrin, A.; Rampelotto, C.; Pauletto, R.; Maurer, L.H.; Nichelle, S.M.; Klein, B.; Rodrigues, R.F.; Maróstica, M.R., Jr.; Fonseca, B.d.S.; de Menezes, C.R.; et al. Bioaccessibility and Catabolism of Phenolic Compounds from Jaboticaba (Myrciaria trunciflora) Fruit Peel during in Vitro Gastrointestinal Digestion and Colonic Fermentation. J. Funct. Foods 2020, 65, 103714. [Google Scholar] [CrossRef]
- Leyva-López, R.; Palma-Rodríguez, H.M.; López-Torres, A.; Capataz-Tafur, J.; Bello-Pérez, L.A.; Vargas-Torres, A. Use of Enzymatically Modified Starch in the Microencapsulation of Ascorbic Acid: Microcapsule Characterization, Release Behavior and in Vitro Digestion. Food Hydrocoll. 2019, 96, 259–266. [Google Scholar] [CrossRef]
- Tchabo, W.; Kaptso, G.K.; Ngolong Ngea, G.L.; Wang, K.; Bao, G.; Ma, Y.; Wang, X.; Mbofung, C.M. In Vitro Assessment of the Effect of Microencapsulation Techniques on the Stability, Bioaccessibility and Bioavailability of Mulberry Leaf Bioactive Compounds. Food Biosci. 2022, 47, 101461. [Google Scholar] [CrossRef]
- Wieczorek, M.N.; Drabińska, N. Flavour Generation during Lactic Acid Fermentation of Brassica Vegetables—Literature Review. Appl. Sci. 2022, 12, 5598. [Google Scholar] [CrossRef]
- Ahmed, Z.S.; Abozed, S.S. Functional and Antioxidant Properties of Novel Snack Crackers Incorporated with Hibiscus Sabdariffa By-Product. J. Adv. Res. 2015, 6, 79–87. [Google Scholar] [CrossRef] [Green Version]
- Tomsone, L.; Galoburda, R.; Kruma, Z.; Majore, K. Physicochemical Properties of Biscuits Enriched with Horseradish (Armoracia rusticana L.) Products and Bioaccessibility of Phenolics after Simulated Human Digestion. Pol. J. Food Nutr. Sci. 2020, 70, 419–428. [Google Scholar] [CrossRef]
- Wichchukit, S.; O’Mahony, M. The 9-Point Hedonic Scale and Hedonic Ranking in Food Science: Some Reappraisals and Alternatives. J. Sci. Food Agric. 2015, 95, 2167–2178. [Google Scholar] [CrossRef]
- Cheng, J.-R.; Liu, X.-M.; Zhang, W.; Chen, Z.-Y.; Wang, X.-P. Stability of Phenolic Compounds and Antioxidant Capacity of Concentrated Mulberry Juice-Enriched Dried-Minced Pork Slices during Preparation and Storage. Food Control. 2018, 89, 187–195. [Google Scholar] [CrossRef] [Green Version]
- Miedzianka, J.; Lachowicz-Wiśniewska, S.; Nemś, A.; Kowalczewski, P.Ł.; Kita, A. Comparative Evaluation of the Antioxidative and Antimicrobial Nutritive Properties and Potential Bioaccessibility of Plant Seeds and Algae Rich in Protein and Polyphenolic Compounds. Appl. Sci. 2022, 12, 8136. [Google Scholar] [CrossRef]
- Draijer, R.; van Dorsten, F.A.; Zebregs, Y.E.; Hollebrands, B.; Peters, S.; Duchateau, G.S.; Grün, C.H. Impact of Proteins on the Uptake, Distribution, and Excretion of Phenolics in the Human Body. Nutrients 2016, 8, 814. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, Y.; Ponnampalam, E.N.; Le, H.H.; Artaiz, O.; Muir, S.K.; Jacobs, J.L.; Cottrell, J.J.; Dunshea, F.R. In Vitro Bioaccessibility of Polyphenolic Compounds: The Effect of Dissolved Oxygen and Bile. Food Chem. 2023, 404, 134490. [Google Scholar] [CrossRef]
- Jiang, S.; Xue, D.; Zhang, Z.; Shan, K.; Ke, W.; Zhang, M.; Zhao, D.; Nian, Y.; Xu, X.; Zhou, G.; et al. Effect of Sous-Vide Cooking on the Quality and Digestion Characteristics of Braised Pork. Food Chem. 2022, 375, 131683. [Google Scholar] [CrossRef] [PubMed]
- Gao, B.; Wang, J.; Wang, Y.; Xu, Z.; Li, B.; Meng, X.; Sun, X.; Zhu, J. Influence of Fermentation by Lactic Acid Bacteria and in Vitro Digestion on the Biotransformations of Blueberry Juice Phenolics. Food Control. 2022, 133, 956–7135. [Google Scholar] [CrossRef]
- Herranz, B.; Fernández-Jalao, I.; Dolores Álvarez, M.; Quiles, A.; Sánchez-Moreno, C.; Hernando, I.; de Ancos, B. Phenolic Compounds, Microstructure and Viscosity of Onion and Apple Products Subjected to in Vitro Gastrointestinal Digestion. Innov. Food Sci. Emerg. Technol. 2019, 51, 114–125. [Google Scholar] [CrossRef]
- Cantele, C.; Rojo-Poveda, O.; Bertolino, M.; Ghirardello, D.; Cardenia, V.; Barbosa-Pereira, L.; Zeppa, G. In Vitro Bioaccessibility and Functional Properties of Phenolic Compounds from Enriched Beverages Based on Cocoa Bean Shell. Foods 2020, 9, 715. [Google Scholar] [CrossRef]
- Tuohy, K.M.; Conterno, L.; Gasperotti, M.; Viola, R. Up-Regulating the Human Intestinal Microbiome Using Whole Plant Foods, Polyphenols, and/or Fiber. J. Agric. Food Chem. 2012, 60, 8776–8782. [Google Scholar] [CrossRef]
- Rajkumar, G.; Shanmugam, S.; de Sousa Galvâo, M.; Dutra Sandes, R.D.; Leite Neta, M.T.S.; Narain, N.; Mujumdar, A.S. Comparative Evaluation of Physical Properties and Volatiles Profile of Cabbages Subjected to Hot Air and Freeze Drying. LWT 2017, 80, 501–509. [Google Scholar] [CrossRef]
- Banerjee, A.; Penna, S.; Variyar, P.S. Allyl Isothiocyanate Enhances Shelf Life of Minimally Processed Shredded Cabbage. Food Chem. 2015, 183, 265–272. [Google Scholar] [CrossRef]
- Klopsch, R.; Baldermann, S.; Hanschen, F.S.; Voss, A.; Rohn, S.; Schreiner, M.; Neugart, S. Brassica-Enriched Wheat Bread: Unraveling the Impact of Ontogeny and Breadmaking on Bioactive Secondary Plant Metabolites of Pak Choi and Kale. Food Chem. 2019, 295, 412–422. [Google Scholar] [CrossRef] [PubMed]
- Glube, N.; von Moos, L.; Duchateau, G. Capsule Shell Material Impacts the in Vitro Disintegration and Dissolution Behaviour of a Green Tea Extract. Results Pharma Sci. 2013, 3, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Ren, N.; Ma, Z.; Li, X.; Hu, X. Preparation of Rutin-Loaded Microparticles by Debranched Lentil Starch-Based Wall Materials: Structure, Morphology and in Vitro Release Behavior. Int. J. Biol. Macromol. 2021, 173, 293–306. [Google Scholar] [CrossRef]
- Rusinek, R.; Gawrysiak-Witulska, M.; Siger, A.; Oniszczuk, A.; Ptaszyńska, A.A.; Ptaszyńska, P.; Knaga, J.; Malaga-Toboła, U.; Gancarz, M.; Dymerski, M. Effect of Supplementation of Flour with Fruit Fiber on the Volatile Compound Profile in Bread. Sensors 2021, 21, 2812. [Google Scholar] [CrossRef]
- Drabińska, N.; Ciska, E.; Szmatowicz, B.; Krupa-Kozak, U. Broccoli By-Products Improve the Nutraceutical Potential of Gluten-Free Mini Sponge Cakes. Food Chem. 2018, 267, 170–177. [Google Scholar] [CrossRef]
- Malav, O.P.; Sharma, B.D.; Kumar, R.R.; Talukder, S.; Ahmed, S.R.; Irshad, A. Antioxidant Potential and Quality Characteristics of Functional Mutton Patties Incorporated with Cabbage Powder. Nutr. Food Sci. 2015, 45, 542–563. [Google Scholar] [CrossRef]
- Moroney, N.C.; O’grady, M.N.; Ad Lordan, S.; Stanton, C.; Kerry, J.P. Marine Drugs Seaweed Polysaccharides (Laminarin and Fucoidan) as Functional Ingredients in Pork Meat: An Evaluation of Anti-Oxidative Potential, Thermal Stability and Bioaccessibility. Mar. Drugs 2015, 13, 2447–2464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iqbal, Y.; Ponnampalam, E.N.; Le, H.H.; Artaiz, O.; Muir, S.K.; Jacobs, J.L.; Cottrell, J.J.; Dunshea, F.R. Assessment of Feed Value of Chicory and Lucerne for Poultry, Determination of Bioaccessibility of Their Polyphenols and Their Effects on Caecal Microbiota. Fermentation 2022, 8, 237. [Google Scholar] [CrossRef]
- Rashidinejad, A.; Birch, E.J.; Sun-Waterhouse, D.; Everett, D.W. Addition of Milk to Tea Infusions: Helpful or Harmful? Evidence from in Vitro and in Vivo Studies on Antioxidant Properties. Crit. Rev. Food Sci. Nutr. 2017, 57, 3188–3196. [Google Scholar] [CrossRef] [PubMed]
- Flores, F.P.; Singh, R.K.; Kerr, W.L.; Pegg, R.B.; Kong, F. Total Phenolics Content and Antioxidant Capacities of Microencapsulated Blueberry Anthocyanins during In Vitro Digestion. Food Chem. 2013, 153, 272–278. [Google Scholar] [CrossRef] [PubMed]
- Lou, X.; Xiong, J.; Tian, H.; Yu, H.; Chen, C.; Huang, J.; Yuan, H.; Hanna, M.; Yuan, L.; Xu, H. Effect of High-Pressure Processing on the Bioaccessibility of Phenolic Compounds from Cloudy Hawthorn Berry (Crataegus pinnatifida) Juice. J. Food Compos. Anal. 2022, 110, 104540. [Google Scholar] [CrossRef]
Sample | Abbreviation |
---|---|
Sauerkraut juice | SJ |
Dehydrated sauerkraut juice | DSJ |
Bread control sample | Bread C |
Bread with dehydrated sauerkraut juice | Bread DSJ |
Meat control sample | Meat C |
Meat with dehydrated sauerkraut juice | Meat DSJ |
Parameters | SJ | DSJ |
---|---|---|
TPC, mg 100 g GAE, dw * | 713.7 ± 43.2 a ** | 359.5 ± 7.7 b |
ABTS, mg TE 100−1, dw | 15.50 ± 1.84 a | 28.62 ± 2.03 b |
Parameters | Bread C | Bread DSJ |
---|---|---|
TPC, mg 100 g GAE, dw * | 54.36 ± 1.33 a ** | 82.56 ± 0.98 b |
ABTS, mg TE 100−1, dw | 4.614 ± 0.241 a | 8.232 ± 0.563 b |
Parameters | Meat C | Meat DSJ |
---|---|---|
TPC, mg 100 g GAE, dw * | 39.37 ± 1.62 a ** | 61.21 ± 1.03 b |
ABTS, mg TE 100−1, dw | 2.924 ± 0.121 a | 5.721 ± 0.171 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jansone, L.; Kruma, Z.; Majore, K.; Kampuse, S. Dehydrated Sauerkraut Juice in Bread and Meat Applications and Bioaccessibility of Total Phenol Compounds after In Vitro Gastrointestinal Digestion. Appl. Sci. 2023, 13, 3358. https://doi.org/10.3390/app13053358
Jansone L, Kruma Z, Majore K, Kampuse S. Dehydrated Sauerkraut Juice in Bread and Meat Applications and Bioaccessibility of Total Phenol Compounds after In Vitro Gastrointestinal Digestion. Applied Sciences. 2023; 13(5):3358. https://doi.org/10.3390/app13053358
Chicago/Turabian StyleJansone, Liene, Zanda Kruma, Kristine Majore, and Solvita Kampuse. 2023. "Dehydrated Sauerkraut Juice in Bread and Meat Applications and Bioaccessibility of Total Phenol Compounds after In Vitro Gastrointestinal Digestion" Applied Sciences 13, no. 5: 3358. https://doi.org/10.3390/app13053358
APA StyleJansone, L., Kruma, Z., Majore, K., & Kampuse, S. (2023). Dehydrated Sauerkraut Juice in Bread and Meat Applications and Bioaccessibility of Total Phenol Compounds after In Vitro Gastrointestinal Digestion. Applied Sciences, 13(5), 3358. https://doi.org/10.3390/app13053358