Computer-Generated Holography Methods for Data Page Reconstruction Using Phase-Only Medium
Abstract
:1. Introduction
2. Data Page
3. Methods for Synthesizing Phase Fourier CGH of Data Page
- Holograms implemented with the phase medium can have high diffraction efficiency values [46];
- The most perspective SLMs with high spatial resolution and short response time (for example, ferroelectric SLM [28]) are purely phase devices;
- Phase holograms can be realized using different holographic materials such as photopolymers and photo-thermo-refractive glasses or printed as surface reflective or transmissive holograms.
3.1. Bipolar Intensity Method
3.2. Double-Phase Coding Method
3.3. Numerical Modeling
4. Experiments on Reconstructing Binary Data Page Images
5. Analysis of Reconstructed Data Page Images
- Without taking into account the presence of zeros next to units;
- Taking into account the presence of zeros next to units.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Curtis, K.; Dhar, L.; Hill, A.; Wilson, W.; Ayres, M. Holographic Data Storage; John Wiley & Sons: Hoboken, NJ, USA, 2011; ISBN 9780470975787. [Google Scholar]
- Yoneda, N.; Saita, Y.; Nomura, T. Binary Computer-Generated-Hologram-Based Holographic Data Storage. Appl. Opt. 2019, 58, 3083–3090. [Google Scholar] [CrossRef] [PubMed]
- Makowski, M.; Bomba, J.; Frej, A.; Kolodziejczyk, M.; Sypek, M.; Shimobaba, T.; Ito, T.; Kirilyuk, A.; Stupakiewicz, A. Dynamic Complex Opto-Magnetic Holography. Nat. Commun. 2022, 13, 7286. [Google Scholar] [CrossRef] [PubMed]
- Qiu, X.; Wang, K.; Lin, X.; Hao, J.; Lin, D.; Zheng, Q.; Chen, R.; Wang, S.; Tan, X. Combination Compensation Method to Improve the Tolerance of Recording Medium Shrinkage in Collinear Holographic Storage. Photonics 2022, 9, 149. [Google Scholar] [CrossRef]
- Hong, J.; Li, J.; Chu, D. Efficient Dynamic Control Method of Light Polarization Using Single Phase-Only Liquid Crystal on Silicon Spatial Light Modulators for Optical Data Storage. Appl. Opt. 2021, 61, B34–B42. [Google Scholar] [CrossRef]
- Drăgulinescu, A. Optical Correlators for Cryptosystems and Image Recognition: A Review. Sensors 2023, 23, 907. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Shen, X.; Zhou, B.; Liu, J.; Cai, J.; Liu, X.; Cheng, Y. Optical Asymmetric JTC Cryptosystem Based on Binary Phase Modulation and Image Superposition–Subtraction Operation. Appl. Opt. 2022, 61, 8711–8729. [Google Scholar] [CrossRef]
- Liu, Y.; Shen, X.; Liu, J.; Peng, K. Optical Asymmetric JTC Cryptosystem Based on Multiplication-Division Operation and RSA Algorithm. Opt. Laser Technol. 2023, 160, 109042. [Google Scholar] [CrossRef]
- Shaulskiy, D.V.; Evtikhiev, N.N.; Starikov, R.S.; Starikov, S.N.; Zlokazov, E.Y. MINACE Filter: Variants of Realization in 4-f Correlator. SPIE Proc. 2014, 9094, 90940K. [Google Scholar] [CrossRef]
- Nishchal, N.K. Optical Cryptosystems; IOP Publishing Ltd.: Philadelphia, PA, USA, 2019; ISBN 9780750322188. [Google Scholar] [CrossRef]
- Alfalou, A.; Brosseau, C. Optical Image Compression and Encryption Methods. Adv. Opt. Photonics 2009, 1, 589–636. [Google Scholar] [CrossRef] [Green Version]
- Yu, N.; Xi, S.; Wang, X.; Lang, L.; Wang, X.; Zhang, L.; Han, H.; Dong, Z.; Jiao, X.; Wang, H.; et al. Optical Implementation of Image Encryption Based on Digital Holography and Computer Generated Hologram. J. Opt. 2020, 22, 075702. [Google Scholar] [CrossRef]
- Qu, G.; Meng, X.; Yin, Y.; Wu, H.; Yang, X.; Peng, X.; He, W. Optical Color Image Encryption Based on Hadamard Single-Pixel Imaging and Arnold Transformation. Opt. Lasers Eng. 2021, 137, 106392. [Google Scholar] [CrossRef]
- Macfaden, A.J.; Gordon, G.S.D.; Wilkinson, T.D. An Optical Fourier Transform Coprocessor with Direct Phase Determination. Sci. Rep. 2017, 7, 13667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zuo, Y.; Li, B.; Zhao, Y.; Jiang, Y.; Chen, Y.-C.; Chen, P.; Jo, G.-B.; Liu, J.; Du, S. All-Optical Neural Network with Nonlinear Activation Functions. Optica 2019, 6, 1132–1137. [Google Scholar] [CrossRef]
- Zhou, T.; Lin, X.; Wu, J.; Chen, Y.; Xie, H.; Li, Y.; Fan, J.; Wu, H.; Fang, L.; Dai, Q. Large-Scale Neuromorphic Optoelectronic Computing with a Reconfigurable Diffractive Processing Unit. Nat. Photonics 2021, 15, 367–373. [Google Scholar] [CrossRef]
- Zhang, D.; Tan, Z. A Review of Optical Neural Networks. Appl. Sci. 2022, 12, 5338. [Google Scholar] [CrossRef]
- Panda, S.S.; Hegde, R.S. Fault Tolerance and Noise Immunity in Freespace Diffractive Optical Neural Networks. Eng. Res. Express 2022, 4, 011301. [Google Scholar] [CrossRef]
- Dong, C.; Cai, Y.; Dai, S.; Wu, J.; Tong, G.; Wang, W.; Wu, Z.; Zhang, H.; Xia, J. An Optimized Optical Diffractive Deep Neural Network with OReLU Function Based on Genetic Algorithm. Opt. Laser Technol. 2023, 160, 109104. [Google Scholar] [CrossRef]
- Honma, S.; Sekiguchi, T. Multilevel Phase and Amplitude Modulation Method for Holographic Memories with Programmable Phase Modulator. Opt. Rev. 2014, 21, 597–598. [Google Scholar] [CrossRef]
- Sui, X.; Wu, Q.; Liu, J.; Chen, Q.; Gu, G. A Review of Optical Neural Networks. IEEE Access 2020, 8, 70773–70783. [Google Scholar] [CrossRef]
- Xu, R.; Lv, P.; Xu, F.; Shi, Y. A Survey of Approaches for Implementing Optical Neural Networks. Opt. Laser Technol. 2021, 136, 106787. [Google Scholar] [CrossRef]
- Yin, K.; Hsiang, E.-L.; Zou, J.; Li, Y.; Yang, Z.; Yang, Q.; Lai, P.-C.; Lin, C.-L.; Wu, S.-T. Advanced Liquid Crystal Devices for Augmented Reality and Virtual Reality Displays: Principles and Applications. Light Sci. Appl. 2022, 11, 161. [Google Scholar] [CrossRef]
- Kukołowicz, R.; Chlipala, M.; Martinez-Carranza, J.; Idicula, M.S.; Kozacki, T. Fast 3D Content Update for Wide-Angle Holographic Near-Eye Display. Appl. Sci. 2021, 12, 293. [Google Scholar] [CrossRef]
- Fatkhiev, D.M.; Butt, M.A.; Grakhova, E.P.; Kutluyarov, R.V.; Stepanov, I.V.; Kazanskiy, N.L.; Khonina, S.N.; Lyubopytov, V.S.; Sultanov, A.K. Recent Advances in Generation and Detection of Orbital Angular Momentum Optical Beams—A Review. Sensors 2021, 21, 4988. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.K.; Adachi, Y.; Kinashi, K.; Tsutsumi, N.; Sakai, W.; Jackin, B.J. Tailoring Large Asymmetric Laguerre–Gaussian Beam Array Using Computer-Generated Holography. Photonics 2023, 10, 247. [Google Scholar] [CrossRef]
- Wang, X.; Yu, H.; Li, P.; Zhang, Y.; Wen, Y.; Qiu, Y.; Liu, Z.; Li, Y.; Liu, L. Femtosecond Laser-Based Processing Methods and Their Applications in Optical Device Manufacturing: A Review. Opt. Laser Technol. 2021, 135, 106687. [Google Scholar] [CrossRef]
- Zlokazov, E.Y. Methods and Algorithms for Computer Synthesis of Holographic Elements to Obtain a Complex Impulse Response of Optical Information Processing Systems Based on Modern Spatial Light Modulators. Quantum Electron. 2020, 50, 643–652. [Google Scholar] [CrossRef]
- Matsushima, K. Introduction to Computer Holography: Creating Computer-Generated Holograms as the Ultimate 3D Image; Springer: Cham, Switzerland, 2020; ISBN 9783030384357. [Google Scholar] [CrossRef]
- Betin, A.Y.; Bobrinev, V.I.; Odinokov, S.B.; Evtikhiev, N.N.; Starikov, R.S.; Starikov, S.N.; Zlokazov, E.Y. Holographic Memory Optical System Based on Computer-Generated Fourier Holograms. Appl. Opt. 2013, 52, 8142–8145. [Google Scholar] [CrossRef] [PubMed]
- Odinokov, S.; Zlokazov, E.; Donchenko, S.; Verenikina, N. Optical Memory System Based on Incoherent Recorder and Coherent Reader of Multiplexed Computer Generated One-Dimensional Fourier Transform Holograms. Jpn. J. Appl. Phys. 2017, 56, 09NA02. [Google Scholar] [CrossRef]
- Betin, A.Y.; Bobrinev, V.I.; Donchenko, S.S.; Odinokov, S.B.; Evtikhiev, N.N.; Starikov, R.S.; Starikov, S.N.; Zlokazov, E.Y. Holographic Memory System Based on Projection Recording of Computer-Generated 1D Fourier Holograms. Appl. Opt. 2014, 53, 6591–6597. [Google Scholar] [CrossRef]
- Gerchberg, R.W.; Saxton, W.O. A Practical Algorithm for the Determination of Phase from Image and Diffraction Plane Pictures. Optik 1971, 2, 237–246. [Google Scholar] [CrossRef]
- Laude, V.; Réfrégier, P. Multicriteria Characterization of Coding Domains with Optimal Fourier Spatial Light Modulator Filters. Appl. Opt. 1994, 33, 4465. [Google Scholar] [CrossRef] [Green Version]
- Cheremkhin, P.A.; Evtikhiev, N.N.; Krasnov, V.V.; Starikov, R.S.; Zlokazov, E.Y. Iterative synthesis of binary inline Fresnel holograms for high-quality reconstruction in divergent beams with DMD. Opt. Lasers Eng. 2022, 150, 106859. [Google Scholar] [CrossRef]
- Mendoza-Yero, O.; Mínguez-Vega, G.; Lancis, J. Encoding Complex Fields by Using a Phase-Only Optical Element. Opt. Lett. 2014, 39, 1740–1743. [Google Scholar] [CrossRef] [Green Version]
- Hsueh, C.K.; Sawchuk, A.A. Computer-Generated Double-Phase Holograms. Appl. Opt. 1978, 17, 3874–3883. [Google Scholar] [CrossRef]
- Arrizón, V.; Sánchez-de-la-Llave, D. Double-Phase Holograms Implemented with Phase-Only Spatial Light Modulators: Performance Evaluation and Improvement. Appl. Opt. 2002, 41, 3436–3447. [Google Scholar] [CrossRef] [PubMed]
- Evtikhiev, N.N.; Zlokazov, E.Y.; Starikov, R.S.; Starikov, S.N.; Bobrinev, V.I.; Odinokov, S.B. Specificities of Data Page Representation in Projection Type Optical Holographic Memory System. Opt. Mem. Neural Netw. 2015, 24, 272–278. [Google Scholar] [CrossRef]
- King, B.M.; Burr, G.W.; Neifeld, M.A. Experimental Demonstration of Gray-Scale Sparse Modulation Codes in Volume Holographic Storage. Appl. Opt. 2003, 42, 2546–2559. [Google Scholar] [CrossRef] [Green Version]
- Berger, G.; Dietz, M.; Denz, C. Hybrid Multinary Modulation Codes for Page-Oriented Holographic Data Storage. J. Opt. A: Pure Appl. Opt. 2008, 10, 115305. [Google Scholar] [CrossRef]
- Joseph, J.; Waldman, D.A. Homogenized Fourier Transform Holographic Data Storage Using Phase Spatial Light Modulators and Methods for Recovery of Data from the Phase Image. Appl. Opt. 2006, 45, 6374. [Google Scholar] [CrossRef]
- Zukeran, K.; Okamoto, A.; Takabayashi, M.; Shibukawa, A.; Sato, K.; Tomita, A. Double-Referential Holography and Spatial Quadrature Amplitude Modulation. Jpn. J. Appl. Phys. 2013, 52, 09LD13. [Google Scholar] [CrossRef]
- Yoneda, N.; Saita, Y.; Komuro, K.; Nobukawa, T.; Nomura, T. Transport-of-Intensity Holographic Data Storage Based on a Computer-Generated Hologram. Appl. Opt. 2018, 57, 8836–8840. [Google Scholar] [CrossRef]
- Bunsen, M.; Umetsu, S.; Takabayashi, M.; Okamoto, A. Method of Phase and Amplitude Modulation/Demodulation Using Datapages with Embedded Phase-Shift for Holographic Data Storage. Jpn. J. Appl. Phys. 2013, 52, 09LD04. [Google Scholar] [CrossRef]
- Evtikhiev, N.N.; Starikov, S.N.; Cheremkhin, P.A.; Kurbatova, E.A. Evaluation of Diffraction Efficiency and Image Quality in Optical Reconstruction of Digital Fresnel Holograms. Radiophys. Quantum Electron. 2015, 57, 635–649. [Google Scholar] [CrossRef]
- Kim, S.-C.; Kim, E.-S. Effective Generation of Digital Holograms of Three-Dimensional Objects Using a Novel Look-up Table Method. Appl. Opt. 2008, 47, D55. [Google Scholar] [CrossRef] [PubMed]
- Leith, E.N.; Upatnieks, J. Wavefront Reconstruction with Diffused Illumination and Three-Dimensional Objects. J. Opt. Soc. Am. 1964, 54, 1295–1301. [Google Scholar] [CrossRef]
Synthesis Method | M1 | M0 | σ1 | σ0 | SNR | BER |
---|---|---|---|---|---|---|
Double-phase coding | 13.24 | 0 | 1.14 | 6.42 | 1.8 | 6.4 × 10−3 |
Bipolar intensity | 15.04 | 0 | 0.23 | 6.21 | 2.3 | 4.8 × 10−4 |
Synthesis Method | M1 | M0 | σ1 | σ0 | SNR | BER |
---|---|---|---|---|---|---|
Double-phase coding | 13.25 | 0 | 1.14 | 4.75 | 2.24 | 7.4 × 10−4 |
Bipolar intensity | 15.05 | 0 | 0.23 | 3.81 | 3.73 | 6.6 × 10−8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Minikhanov, T.Z.; Zlokazov, E.Y.; Cheremkhin, P.A.; Starikov, R.S.; Evtikhiev, N.N. Computer-Generated Holography Methods for Data Page Reconstruction Using Phase-Only Medium. Appl. Sci. 2023, 13, 4479. https://doi.org/10.3390/app13074479
Minikhanov TZ, Zlokazov EY, Cheremkhin PA, Starikov RS, Evtikhiev NN. Computer-Generated Holography Methods for Data Page Reconstruction Using Phase-Only Medium. Applied Sciences. 2023; 13(7):4479. https://doi.org/10.3390/app13074479
Chicago/Turabian StyleMinikhanov, Timur Z., Evgenii Y. Zlokazov, Pavel A. Cheremkhin, Rostislav S. Starikov, and Nikolay N. Evtikhiev. 2023. "Computer-Generated Holography Methods for Data Page Reconstruction Using Phase-Only Medium" Applied Sciences 13, no. 7: 4479. https://doi.org/10.3390/app13074479
APA StyleMinikhanov, T. Z., Zlokazov, E. Y., Cheremkhin, P. A., Starikov, R. S., & Evtikhiev, N. N. (2023). Computer-Generated Holography Methods for Data Page Reconstruction Using Phase-Only Medium. Applied Sciences, 13(7), 4479. https://doi.org/10.3390/app13074479