Impact of Nutraceuticals on Type 1 and Type 2 Diabetes Mellitus-Induced Micro- and Macrovasculopathies
Abstract
:1. Introduction
2. Classifications of Microvascular and Macrovascular Complications of Diabetes Mellitus
2.1. Classifications of Microvascular Complications of Diabetes Mellitus
2.1.1. Diabetic Retinopathy (DR)
Diabetic Retinopathy (DR) Classification
Diabetic Retinopathy (DR) Prevalence
Diabetic Retinopathy (DR) Pathogenesis
Diabetic Retinopathy (DR) Risk Factors
2.1.2. Diabetic Peripheral Neuropathy (DPN) and Its Prevalence
2.1.3. Diabetic Nephropathy (DN)
Diabetic Nephropathy (DN) Prevalence
Diabetic Nephropathy (DN) Pathogenesis
Diabetic Nephropathy (DN) Risk Factors
2.1.4. Macrovascular Complications of Diabetes Mellitus
Prevalence of Diabetes Mellitus Macrovascular Complications
Diabetes Mellitus Macrovascular Complications Pathogenesis
Diabetes Mellitus Macrovascular Complications Risk Factors
3. Nutraceuticals
3.1. Nutraceuticals Classification and Their Potential Effects on Type 2 Diabetes Mellitus Treatment
3.1.1. Traditional Nutraceuticals
- (a)
- Functional Foods
- (b)
- Carotenoids
- (c)
- Dietary Fibers
- (d)
- Fatty Acids
- (e)
- Phytochemicals
- (i)
- Diabetic Retinopathy and Nutraceuticals (Cocoa) Treatment
- (ii)
- Diabetic Peripheral Neuropathy (DPN) and Cocoa Treatment
- (iii)
- Diabetic Nephropathy (DN) and Cocoa Treatment
- (iv)
- Diabetic Macrovascular Complications and Cocoa Treatment
- (f)
- Probiotics
- (g)
- Prebiotics
- (h)
- Postbiotics
- (i)
- Synbiotics
3.1.2. Non-Traditional Nutraceuticals:
- (a)
- Fortified nutraceuticals
- (b)
- Recombinant nutraceuticals
4. Conclusions
5. Future Studies/Recommendations
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shiferaw, W.S.; Akalu, T.Y.; Work, Y.; Aynalem, Y.A. Prevalence of diabetic peripheral neuropathy in Africa: A systematic review and meta-analysis. BMC Endocr. Disord. 2020, 20, 49. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.N.; Mbanya, J.C.; et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 2022, 183, 109119. [Google Scholar] [CrossRef] [PubMed]
- Fiseha, T.; Belete, A.G. Diabetes mellitus and its associated factors among human immunodeficiency virus-infected patients on anti-retroviral therapy in Northeast Ethiopia. BMC Res. Notes 2019, 12, 372. [Google Scholar] [CrossRef] [PubMed]
- Dicks, L.; Kirch, N.; Gronwald, D.; Wernken, K.; Zimmermann, B.F.; Helfrich, H.P.; Ellinger, S. Regular Intake of a Usual Serving Size of Flavanol-Rich Cocoa Powder Does Not Affect Cardiometabolic Parameters in Stably Treated Patients with Type 2 Diabetes and Hypertension-A Double-Blinded, Randomized, Placebo-Controlled Trial. Nutrients 2018, 10, 1435. [Google Scholar] [CrossRef] [PubMed]
- Kumar, H.K.; Kota, S.; Basile, A.; Modi, K. Profile of microvascular disease in type 2 diabetes in a tertiary health care hospital in India. Ann. Med. Health Sci. Res. 2012, 2, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, S.; Singh, P.; Kulothungan, V.; Sharma, T.A.; Raman, R. Relationship between triglyceride glucose index, retinopathy and nephropathy in Type 2 diabetes. Endocrinol. Diabetes Metab. 2020, 4, e00151. [Google Scholar] [CrossRef] [PubMed]
- Matos, A.L.; Bruno, D.F.; Ambrosio, A.F.; Santos, P.F. The Benefits of Flavonoids in Diabetic Retinopathy. Nutrients 2020, 12, 3169. [Google Scholar] [CrossRef] [PubMed]
- Sanjeevi, N.; Lipsky, L.M.; Nansel, T.R. Hyperglycemia and Carotenoid Intake Are Associated with Serum Carotenoids in Youth with Type 1 Diabetes. J. Acad. Nutr. Diet. 2019, 119, 1340–1348. [Google Scholar] [CrossRef]
- Chanda, S.; Tiwari, R.K.; Kumar, A.; Singh, K. Nutraceuticals Inspiring the Current Therapy for Lifestyle Diseases. Adv. Pharmacol. Sci. 2019, 2019, 6908716. [Google Scholar] [CrossRef]
- Ruchi, S.; Amanjot, K.; Sourav, T.; Keerti, B.; Sujit, A.B. Role of nutraceuticals in health care: A review. Int. J. Green. Pharm. 2017, 11, S385. [Google Scholar]
- Lee, C.-C.; Hsing, S.-C.; Lin, Y.-T.; Lin, C.; Chen, J.-T.; Chen, Y.-H.; Fang, A.W.-H. The Importance of Close Follow-Up in Patients with Early-Grade Diabetic Retinopathy: A Taiwan Population-Based Study Grading via Deep Learning Model. Int. J. Environ. Res. Public Health 2021, 18, 9768. [Google Scholar] [CrossRef] [PubMed]
- Alfonso-Munoz, E.A.; Burggraaf-Sanchez de Las Matas, R.; Mataix Boronat, J.; Molina Martin, J.C.; Desco, C. Role of Oral Antioxidant Supplementation in the Current Management of Diabetic Retinopathy. Int. J. Mol. Sci. 2021, 22, 4020. [Google Scholar] [CrossRef] [PubMed]
- Rossino, M.G.; Casini, G. Nutraceuticals for the Treatment of Diabetic Retinopathy. Nutrients 2019, 11, 771. [Google Scholar] [CrossRef] [PubMed]
- Park, S.Y.; Kim, J.; Son, J.I.; Rhee, S.Y.; Kim, D.Y.; Chon, S.; Lim, H.; Woo, J.T. Dietary glutamic acid and aspartic acid as biomarkers for predicting diabetic retinopathy. Sci. Rep. 2021, 11, 7244. [Google Scholar] [CrossRef] [PubMed]
- Fahmy, R.; Almutairi, N.M.; Al-Muammar, M.N.; Bhat, R.S.; Moubayed, N.; El-Ansary, A.A. Controlled diabetes amends oxidative stress as mechanism related to severity of diabetic retinopathy. Nature 2021, 11, 17670. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, Y.; Liu, S.; Gao, M.; Wang, W.; Chen, K.; Huang, L.; Liu, Y. Diabetic vascular diseases: Molecular mechanisms and therapeutic strategies. Signal Transduct. Target. Ther. 2023, 8, 152. [Google Scholar] [CrossRef]
- Ting, D.S.; Cheung, G.C.; Wong, T.Y. Diabetic retinopathy: Global prevalence, major risk factors, screening practices and public health challenges: A review. Clin. Exp. Ophthalmol. 2016, 44, 260–277. [Google Scholar] [CrossRef]
- Liu, Z.; Jiang, H.; Townsend, J.H.; Wang, J. Improved conjunctival microcirculation in diabetic retinopathy patients with MTHFR polymorphisms after Ocufolin Administration. Microvasc. Res. 2020, 132, 104066. [Google Scholar] [CrossRef]
- Tilahun, M.; Gobena, T.; Dereje, D.; Welde, M.; Yideg, G. Prevalence of Diabetic Retinopathy and Its Associated Factors among Diabetic Patients at Debre Markos Referral Hospital, Northwest Ethiopia, 2019: Hospital-Based Cross-Sectional Study. Diabetes Metab. Syndr. Obes. 2020, 13, 2179–2187. [Google Scholar] [CrossRef]
- Egeolu, M.; Caleon, R.L.; Manishimwe, E.; Zabala, Z.E.; Moazzami, B.; Gerges, A.; O′Keefe, G.D.; Navarrete, J.; Galindo, R.J.; McCoy, R.G.; et al. Diabetic retinopathy in African-Americans with end-stage kidney disease: A cross-sectional study on prevalence and impact on quality of life. BMJ Open Diabetes Res. Care 2023, 11, e003373. [Google Scholar] [CrossRef]
- Zhang, P.C.; Wu, C.R.; Wang, Z.L.; Wang, L.Y.; Han, Y.; Sun, S.L.; Li, Q.S.; Ma, L. Effect of lutein supplementation on visual function in nonproliferative diabetic retinopathy. Asia Pac. J. Clin. Nutr. 2017, 26, 406–411. [Google Scholar] [CrossRef] [PubMed]
- Lem, D.W.; Gierhart, D.L.; Davey, P.G. A Systematic Review of Carotenoids in the Management of Diabetic Retinopathy. Nutrients 2021, 13, 2441. [Google Scholar] [CrossRef] [PubMed]
- Karahmet, E.; Prnjavorac, B.; Bego, T.; Softić, A.; Begić, L.; Begić, E.; Karahmet, E.; Prnjavorac, L.; Prnjavorac, A.I. Clinical use of an analysis of oxidative stress and IL-6 as the promoters of diabetic polyneuropathy. Med. Glas. 2021, 18, 12–17. [Google Scholar] [CrossRef]
- Ardeleanu, V.; Toma, A.; Pafili, K.; Papanas, N.; Motofei, I.; Diaconu, C.C.; Rizzo, M.; Stoian, A.P. Current Pharmacological Treatment of Painful Diabetic Neuropathy: A Narrative Review. Medicina 2020, 56, 25. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Yu, D.; Yao, T.; Zhang, S.; Wen, L.; Gu, A.C. Retrospective study of the ultrasound characteristics of the tibial nerve in patients with type 2 diabetic peripheral neuropathy. Ann. Palliat. Med. 2021, 10, 8787–8796. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Niu, Z.; Hu, A.F. Study on Risk Factors of Peripheral Neuropathy in Type 2 Diabetes Mellitus and Establishment of Prediction Model. Diabetes Metab. J. 2021, 45, 526–538. [Google Scholar] [CrossRef]
- Muramatsu, K. Diabetes Mellitus-Related Dysfunction of the Motor System. Int. J. Mol. Sci. 2020, 21, 7485. [Google Scholar] [CrossRef]
- Beeve, A.T.; Brazill, J.M.; Scheller, E.L. Peripheral Neuropathy as a Component of Skeletal Disease in Diabetes. Curr. Osteoporos. Rep. 2019, 17, 256–269. [Google Scholar] [CrossRef]
- Callaghan, B.C.; Gallagher, G.; Fridman, V.; Feldman, E.L. Diabetic neuropathy: What does the future hold? Diabetologia 2020, 63, 891–897. [Google Scholar] [CrossRef]
- Hashem, M.M.; Esmael, A.; Nassar, A.K.; El-Sherif, A.M. The relationship between exacerbated diabetic peripheral neuropathy and metformin treatment in type 2 diabetes mellitus. Nat. Res. 2021, 11, 1940. [Google Scholar] [CrossRef]
- Zhang, X.; Bai, R.; Zou, L.; Zong, J.; Qin, Y.; Wang, A.Y. Brachial-Ankle Pulse Wave Velocity as a Novel Modality for Detecting Early Diabetic Nephropathy in Type 2 Diabetes Patient. J. Diabetes Res. 2021, 2021, 8862573. [Google Scholar] [CrossRef] [PubMed]
- Elhefnawy, K.A.E.; Ahmed, M.E. Prevalence of diabetic kidney disease in patients with type 2 diabetes mellitus. Egypt. J. Intern. Med. 2019, 31, 149–154. [Google Scholar] [CrossRef]
- Thipsawat, S. Early detection of diabetic nephropathy in patient with type 2 diabetes mellitus: A review of the literature. Diab. Vasc. Dis. Res. 2021, 18, 14791641211058856. [Google Scholar] [CrossRef] [PubMed]
- Pelle, M.C.; Provenzano, M.; Busutti, M.; Porcu, C.V.; Zaffina, I.; Stanga, L.; Arturi, F. Up-Date on Diabetic Nephropathy. Life 2022, 12, 1202. [Google Scholar] [CrossRef]
- Aberra, T.; Feleke, Y.; Tarekegn, G.; Bikila, D.; Melesse, M. Prevalence and associated factors of diabetic nephropathy at Tikur Anbessa Comprehensive Specialized University Hospital, Addis Ababa, Ethiopia. Afr. J. Nephrol. 2022, 25, 35–45. [Google Scholar] [CrossRef]
- Rao, V.R.A.L.B.V.; Tan, S.H.; Candasamy, M.; Bhattamisra, S.K. Diabetic nephropathy: An update on pathogenesis and drug development. Diabetes Metab. Syndr. Clin. Res. Rev. 2019, 13, 754762. [Google Scholar] [CrossRef]
- Samsu, N. Diabetic Nephropathy: Challenges in Pathogenesis, Diagnosis, and Treatment. Biomed. Res. Int. 2021, 2021, 1497449. [Google Scholar] [CrossRef]
- Natesan, V.; Kim, A.S.-J. Diabetic Nephropathy—A Review of Risk Factors, Progression, Mechanism, and Dietary Management. Biomol. Ther. 2021, 29, 365–372. [Google Scholar] [CrossRef]
- Aikaeli, F.; Njim, T.; Gissing, S.; Moyo, F.; Alam, U.; Mfinanga, S.G.; Okebe, J.; Ramaiya, K.; Webb, E.L.; Jaffar, S.; et al. Prevalence of microvascular and macrovascular complications of diabetes in newly diagnosed type 2 diabetes in low-and-middle-income countries: A systematic review and meta-analysis. PLoS Glob. Public Health 2022, 2, e0000599. [Google Scholar] [CrossRef]
- Venguidesvarane, G.A.; Jasmine, A.; Varadarajan, S.; Shriraam, V.; Muthuthandavan, A.R.; Durai, V.; Thiruvengadam, G.; Mahadevan, S. Prevalence of Vascular Complications among Type 2 Diabetic Patients in a Rural Health Center in South India. J. Prim. Care Community Health 2020, 11, 2150132720959962. [Google Scholar] [CrossRef]
- Al-Khawlani, A.; Atef, Z.A.; Al-Ansi, A. Macrovascular complications and their associated risk factors in type 2 diabetic patients in Sana’a city, Yemen. East. Mediterr. Health J. 2010, 16, 851–858. [Google Scholar] [CrossRef] [PubMed]
- Ajmera, P.; Sailaja, P.; Ramulu, P.R. Microvascular and Macrovascular Complications in Type 2 Diabetes Milletus. Acad. J. Med. 2020, 3, 16–19. [Google Scholar] [CrossRef]
- Rangel, E.B.; Rodrigues, C.O.; de Sa, J.R. Micro- and Macrovascular Complications in Diabetes Mellitus: Preclinical and Clinical Studies. J. Diabetes Res. 2019, 2019, 2161085. [Google Scholar] [CrossRef] [PubMed]
- Kosiborod, M.; Gomes, M.B.; Nicolucci, A.; Pocock, S.; Rathmann, W.; Shestakova, M.V.; Watada, H.; Shimomura, I.; Chen, H.; Cid-Ruzafa, J.; et al. Vascular complications in patients with type 2 diabetes: Prevalence and associated factors in 38 countries (the DISCOVER study program). Cardiovasc. Diabetol. 2018, 17, 150. [Google Scholar] [CrossRef] [PubMed]
- Ekoru, K.; Doumatey, A.; Bentley, A.R.; Chen, G.; Zhou, J.; Shriner, D.; Fasanmade, O.; Okafor, G.; Eghan, B., Jr.; Agyenim-Boateng, K.; et al. Type 2 diabetes complications and comorbidity in Sub-Saharan Africans. EClinicalMedicine 2019, 16, 30–41. [Google Scholar] [CrossRef] [PubMed]
- Bos, M.; Agyemang, A.C. Prevalence and complications of diabetes mellitus in Northern Africa, a systematic review. BMC Public Health 2013, 13, 387. [Google Scholar] [CrossRef]
- Hafidh, K.; Malek, R.; Al-Rubeaan, K.; Kok, A.; Bayram, F.; Echtay, A.; Rajadhyaksha, V.; Hadaoui, A. Prevalence and risk factors of vascular complications in type 2 diabetes mellitus: Results from discover Middle East and Africa cohort. Front. Endocrinol. 2022, 13, 940309. [Google Scholar] [CrossRef]
- Machado, R.S.; Mathias, K.; Joaquim, L.; Willig de Quadros, R.; Petronilho, F.; Tezza Rezin, G. From diabetic hyperglycemia to cerebrovascular Damage: A narrative review. Brain Res. 2023, 1821, 148611. [Google Scholar] [CrossRef]
- Al-Nozha, M.M.; Ismail, H.M.; Al Nozha, O.M. Coronary artery disease and diabetes mellitus. J. Taibah Univ. Med. Sci. 2016, 11, 330–338. [Google Scholar] [CrossRef]
- Singh, M.V.; Dokun, A.O. Diabetes mellitus in peripheral artery disease: Beyond a risk factor. Front. Cardiovasc. Med. 2023, 10, 1148040. [Google Scholar] [CrossRef]
- Chopra, A.S.; Lordan, R.; Horbanczuk, O.K.; Atanasov, A.G.; Chopra, I.; Horbanczuk, J.O.; Jozwik, A.; Huang, L.; Pirgozliev, V.; Banach, M.; et al. The current use and evolving landscape of nutraceuticals. Pharmacol. Res. 2022, 175, 106001. [Google Scholar] [CrossRef] [PubMed]
- Golovinskaia, O.; Wang, C.-K. The hypoglycemic potential of phenolics from functional foods and their mechanisms. Food Sci. Human Wellness 2023, 12, 986–1007. [Google Scholar] [CrossRef]
- Mansoria, P.; Singh, S.B. Unlocking the therapeutic potential of Millets: A path to Diabetes Control. J. Ayurveda Integr. Med. Sci. 2023, 8, 152–157. [Google Scholar] [CrossRef]
- Bruls, Y.M.H.; Op den Kamp, Y.J.M.; Phielix, E.; Lindeboom, L.; Havekes, B.; Schaart, G.; Moonen-Kornips, E.; Wildberger, J.E.; Hesselink, M.K.C.; Schrauwen, P.; et al. L-carnitine infusion does not alleviate lipid-induced insulin resistance and metabolic inflexibility. PLoS ONE 2020, 15, e0239506. [Google Scholar] [CrossRef] [PubMed]
- Josef, R.; Jitka, P.; Martina, Z.; Vlastimil, K.; Ivana, S.; Lucie, D.R.; Vaclav, V. Concentration of NK cells after beta-glucan and vitamin D supplementation in patients with diabetic retinopathy. Folia Microbiol. 2020, 65, 755–761. [Google Scholar] [CrossRef] [PubMed]
- Yeung, S.; Soliternik, J.; Mazzola, N. Nutritional supplements for the prevention of diabetes mellitus and its complications. J. Nutr. Intermed. Metab. 2018, 14, 16–21. [Google Scholar] [CrossRef]
- Marcelino, G.; Machate, D.J.; Freitas, K.C.; Hiane, P.A.; Maldonade, I.R.; Pott, A.; Asato, M.A.; Candido, C.J.; Guimaraes, R.C.A. beta-Carotene: Preventive Role for Type 2 Diabetes Mellitus and Obesity: A Review. Molecules 2020, 25, 5803. [Google Scholar] [CrossRef] [PubMed]
- Ucci, M.; Di Tomo, P.; Tritschler, F.; Cordone, V.G.P.; Lanuti, P.; Bologna, G.; Di Silvestre, S.; Di Pietro, N.; Pipino, C.; Mandatori, D.; et al. Anti-inflammatory Role of Carotenoids in Endothelial Cells Derived from Umbilical Cord of Women Affected by Gestational Diabetes Mellitus. Oxid. Med. Cell Longev. 2019, 2019, 8184656. [Google Scholar] [CrossRef]
- Shalini, T.; Jose, S.S.; Prasanthi, P.S.; Balakrishna, N.; Viswanath, K.; Reddy, G.B. Carotenoid status in type 2 diabetes patients with and without retinopathy. Food Funct. 2021, 12, 4402–4410. [Google Scholar] [CrossRef]
- Roohbakhsh, A.; Karimi, G.; Iranshahi, M. Carotenoids in the treatment of diabetes mellitus and its complications: A mechanistic review. Biomed. Pharmacother. 2017, 91, 31–42. [Google Scholar] [CrossRef]
- Trozzi, C.; Raffaelli, F.; Vignini, A.; Nanetti, L.; Gesuita, R.; Mazzanti, L. Evaluation of antioxidative and diabetes-preventive properties of an ancient grain, KAMUT((R)) khorasan wheat, in healthy volunteers. Eur. J. Nutr. 2019, 58, 151–161. [Google Scholar] [CrossRef] [PubMed]
- Venkatakrishnan, K.; Chiu, H.-F.; Wang, C.-K. Popular functional foods and herbs for the management of type-2-diabetes mellitus: A comprehensive review with special reference to clinical trials and its proposed mechanism. J. Funct. Foods 2019, 57, 425–438. [Google Scholar] [CrossRef]
- Partula, V.; Deschasaux, M.; Druesne-Pecollo, N.; Latino-Martel, P.; Desmetz, E.; Chazelas, E.; Kesse-Guyot, E.; Julia, C.; Fezeu, L.K.; Galan, P.; et al. Associations between consumption of dietary fibers and the risk of cardiovascular diseases, cancers, type 2 diabetes, and mortality in the prospective NutriNet-Sante cohort. Am. J. Clin. Nutr. 2020, 112, 195–207. [Google Scholar] [CrossRef] [PubMed]
- Aberg, S.; Mann, J.; Neumann, S.; Ross, A.B.; Reynolds, A.N. Whole-Grain Processing and Glycemic Control in Type 2 Diabetes: A Randomized Crossover Trial. Diabetes Care 2020, 43, 1717–1723. [Google Scholar] [CrossRef] [PubMed]
- Osonoi, T.; Matsuoka, T.; Ofuchi, K.; Katoh, M.; Kobayashi, T.; Mochizuki, K. Effects of barley intake on glycemic control in Japanese patients with type 2 diabetes mellitus undergoing antidiabetic therapy: A prospective study. Diabetol. Int. 2022, 13, 387–395. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.L.; Zhao, T.; Zhou, Y.; Shi, X.; Zou, Y.; Zhao, G. Effect of Oat β-Glucan Intake on Glycaemic Control and Insulin Sensitivity of Diabetic Patients: A Meta-Analysis of Randomized Controlled Trials. Nutrients 2016, 8, 39. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Dang, Q.; Liu, L.; Ma, Z.; Zhao, X.; Zhang, M.; Xiao, Z.; Yijiati, A.; Ren, L.; Yu, H. Oat nutritious meal has beneficial effect on lipid metabolism in type 2 diabetes mellitus: A 3-month randomized controlled trial. J. Funct. Foods 2022, 95, 105156. [Google Scholar] [CrossRef]
- Delgado, G.; Kleber, M.E.; Kramer, B.K.; Morcos, M.; Humpert, P.M.; Wiegand, K.; Mauldin, A.; Kusterer, K.; Enghofer, M.; Marz, W.; et al. Dietary Intervention with Oatmeal in Patients with uncontrolled Type 2 Diabetes Mellitus—A Crossover Study. Exp. Clin. Endocrinol. Diabetes 2019, 127, 623–629. [Google Scholar] [CrossRef]
- Ghannadias, F.; Lomer, B.B. Nutraceutical in the Management of Diabetes Mellitus: A Review. Iran. J. Diabetes Obes. 2022, 14, 240–247. [Google Scholar] [CrossRef]
- Cardoso, N.S.; Cruz, J.R.d.S.; Paula, R.A.d.O.; Duarte, S.M.d.S.; Rodrigues, M.R.; Paula, F.B.d.A. Unsaturated fatty acid as functional food for the treatment of Diabetes mellitus type 2. Res. Soc. Dev. 2021, 10, e41410917231. [Google Scholar] [CrossRef]
- Tanghe, A.; Celie, B.; Shadid, S.; Rietzschel, E.; Op′t Roodt, J.; Reesink, K.D.; Heyman, E.; Calders, P. Acute Effects of Cocoa Flavanols on Blood Pressure and Peripheral Vascular Reactivity in Type 2 Diabetes Mellitus and Essential Hypertension: A Protocol for an Acute, Randomized, Double-Blinded, Placebo-Controlled Cross-Over Trial. Front. Cardiovasc. Med. 2021, 8, 602086. [Google Scholar] [CrossRef] [PubMed]
- Hasniyati, R.; Yuniritha, E.; Fadri, R.A. The Efficacy of Therapeutic-Diabetes Mellitus Functional Drink on Blood Glucose and Plasma Malondialdehyde (MDA) Levels of Type 2 Diabetes Mellitus Patients. Earth Environ. Sci. 2022, 1097, 012021. [Google Scholar] [CrossRef]
- Manzoor, M.S.; Mustafa, A.Z.U. Prebiotics and their activity for the handling of diabetes: Literature review. J. Food Sci. Nutr. Ther. 2019, 5, 7–10. [Google Scholar] [CrossRef]
- Megur, A.; Daliri, E.B.; Baltriukiene, D.; Burokas, A. Prebiotics as a Tool for the Prevention and Treatment of Obesity and Diabetes: Classification and Ability to Modulate the Gut Microbiota. Int. J. Mol. Sci. 2022, 23, 6097. [Google Scholar] [CrossRef] [PubMed]
- Ojo, O.; Wang, X.; Ojo, O.O.; Brooke, J.; Jiang, Y.; Dong, Q.; Thompson, T. The Effect of Prebiotics and Oral Anti-Diabetic Agents on Gut Microbiome in Patients with Type 2 Diabetes: A Systematic Review and Network Meta-Analysis of Randomised Controlled Trials. Nutrients 2022, 14, 5139. [Google Scholar] [CrossRef]
- Abdelazez, A.; Alshehry, G.; Algarni, E.; Jumayi, H.A.; Abdel-Motaal, H.; Meng, A.X.-C. Postbiotic Gamma-Aminobutyric Acid and Camel Milk Intervention as Innovative Trends against Hyperglycemia and Hyperlipidemia in Streptozotocin-Induced C57. BL/6J Diabetic Mice. Front. Microbiol. 2022, 13, 943930. [Google Scholar] [CrossRef]
- Antony, A.; Chowdhury, A.; Edem, D.; Raj, R.; Nain, P.; Joglekar, M.; Verma, V.; Kant, R. Gut microbiome supplementation as therapy for metabolic syndrome. World J. Diabetes 2023, 14, 1502–1513. [Google Scholar] [CrossRef]
- AlAli, M.; Alqubaisy, M.; Aljaafari, M.N.; AlAli, A.O.; Baqais, L.; Molouki, A.; Abushelaibi, A.; Lai, K.S.; Lim, S.E. Nutraceuticals: Transformation of Conventional Foods into Health Promoters/Disease Preventers and Safety Considerations. Molecules 2021, 26, 2540. [Google Scholar] [CrossRef]
- Damian, M.R.; Cortes-Perez, N.G.; Quintana, E.T.; Ortiz-Moreno, A.; Garfias Noguez, C.; Cruceno-Casarrubias, C.E.; Sanchez Pardo, M.E.; Bermudez-Humaran, L.G. Functional Foods, Nutraceuticals and Probiotics: A Focus on Human Health. Microorganisms 2022, 10, 1065. [Google Scholar] [CrossRef]
- Ashwlayan, V.D.; Nimesh, S. Nutraceuticals in the management of diabetes mellitus. Pharm. Pharmacol. Int. J. 2018, 6, 114–120. [Google Scholar] [CrossRef]
- Cahyawardani, C.; Sulistyowati, E.; Widajati, E. Carbohydrate and Fiber Intake on Fasting Blood Glucose Levels in Patients with Type 2 Diabetes Mellitus after Intervention of Brown Rice Diet. Indones. J. Human Nutr. 2023, 10, 1–11. [Google Scholar] [CrossRef]
- Rajia, S.; Yeasmin, M.; Mostofa Kamal, A.H.M.; Khanam, K. Antidiabetic and Antihyperlipidemic Activity of β-carotene on Streptozotocin-induced Diabetic Rats. J. Pharm. Res. Int. 2022, 34, 36–44. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, L.; Lin, J.; Ba, M.; Liao, J.; Zhang, P.; Zhao, C. Association between fatty acids and the risk of impaired glucose tolerance and type 2 diabetes mellitus in American adults: NHANES 2005–2016. Nutr Diabetes 2023, 13, 8. [Google Scholar] [CrossRef] [PubMed]
- Murugan, P. A Review on Some Phytochemicals on Diabetes. Int. J. Curr. Res. Life Sci. 2015, 4, 250–253. [Google Scholar]
- Rahman, S.; Jan, G.; Jan, F.G.; Rahim, H.U. Phytochemical Analysis and hypoglycemic potential of Filago hurdwarica (Wall. ex DC.) Wagenitz in alloxan induced diabetic mice. Braz. J. Biol. 2022, 84, e261518. [Google Scholar] [CrossRef] [PubMed]
- Kadri, R.; Vishwanath, P.; Parameshwar, D.; Hegde, S.; Kudva, A.A.A. Dietary associations with diabetic retinopathy—A cohort study. Indian J. Ophthalmol. 2021, 69, 661. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Han, X.; Wu, C.; Keel, S.; Shang, X.; Zhang, L.; He, M. Does daily dietary intake affect diabetic retinopathy progression? 10-year results from the 45 and Up Study. Br. J. Ophthalmol. 2020, 104, 1774–1780. [Google Scholar] [CrossRef]
- Scuderi, G.; Ciancimino, C.; D'Apolito, F.; Maurizi Enrici, M.; Guglielmelli, F.; Scuderi, L.; Abdolrahimzadeh, S. Short-Term Effects of Dark Chocolate on Retinal and Choriocapillaris Perfusion in Young, Healthy Subjects Using Optical Coherence Tomography Angiography. Nutrients 2020, 12, 664. [Google Scholar] [CrossRef]
- Kababie-Ameo, R.; Rabadan-Chavez, G.M.; Vazquez-Manjarrez, N.; Gutierrez-Salmean, G. Potential applications of cocoa (Theobroma cacao) on diabetic neuropathy: Mini-review. Front. Biosci. 2022, 27, 57. [Google Scholar] [CrossRef]
- De Feo, M.; Paladini, A.; Ferri, C.; Carducci, A.; Del Pinto, R.; Varrassi, G.; Grassi, D. Anti-Inflammatory and Anti-Nociceptive Effects of Cocoa: A Review on Future Perspectives in Treatment of Pain. Pain Ther. 2020, 9, 231–240. [Google Scholar] [CrossRef]
- Rabbani, N.; Thornalley, P.J. Emerging role of thiamine therapy for prevention and treatment of early-stage diabetic nephropathy. Diabetes Obes. Metab. 2011, 13, 577–583. [Google Scholar] [CrossRef] [PubMed]
- Rostami, A.; Khalili, M.; Haghighat, N.; Eghtesadi, S.; Shidfar, F.; Heidari, I.; Ebrahimpour-Koujan, S.; Eghtesadi, M. High-cocoa polyphenol-rich chocolate improves blood pressure in patients with diabetes and hypertension. ARYA Atheroscler. 2014, 11, 21. [Google Scholar]
- Álvarez-Cilleros, D.; López-Oliva, M.E.; Martín, M.Á.; Ramos, S. Cocoa ameliorates renal injury in Zucker diabetic fatty rats by preventing oxidative stress, apoptosis and inactivation of autophagy. Food Funct. 2019, 10, 7926–7939. [Google Scholar] [CrossRef]
- Adamo, M.; Labate, A.M.; Ferrulli, A.; Macri, C.; Terruzzi, I.; Luzi, L. Effects of hazelnuts and cocoa on vascular reactivity in healthy subjects: A randomised study. Int. J. Food Sci. Nutr. 2018, 69, 223–234. [Google Scholar] [CrossRef] [PubMed]
- Parsaeyan, N.; Mozaffari-Khosravi, H.; Absalan, A.; Mozayan, M.R. Beneficial effects of cocoa on lipid peroxidation and inflammatory markers in type 2 diabetic patients and investigation of probable interactions of cocoa active ingredients with prostaglandin synthase-2 (PTGS-2/COX-2) using virtual analysis. J. Diabetes Metab. Disord. 2014, 13, 30. [Google Scholar] [CrossRef] [PubMed]
- Rittiphairoj, T.; Pongpirul, K.; Mueller, N.T.; Li, T. Probiotics for glycemic control in patients with type 2 diabetes mellitus: Protocol for a systematic review. Syst. Rev. 2019, 8, 227. [Google Scholar] [CrossRef] [PubMed]
- Bourebaba, Y.; Marycz, K.; Mularczyk, M.; Bourebaba, L. Postbiotics as potential new therapeutic agents for metabolic disorders management. Biomed. Pharmacother. 2022, 153, 113138. [Google Scholar] [CrossRef]
- Ruby, D.S.; Prakash, S.; Kumar, V.P.; Kumar, T.P.; Prathab, S. A Comprehensive Review on Nutraceuticals. Int. J. Pharm. Sci. Rev. Res. 2021, 68, 136–148. [Google Scholar] [CrossRef]
- Adhav, N.R.; Deore, B.V. Role of Nutraceuticals in Metabolic Syndrome. World J. Pharm. Res. 2022, 11, 782–809. [Google Scholar]
Classification of Nutraceuticals | |||||
---|---|---|---|---|---|
Type of Nutraceutical | Source | Active Chemical | Mechanism of Action | Disease/Illness | Reference |
Traditional Nutraceuticals | |||||
Functional Foods | |||||
Polyphenols | Fruits, vegetables, berries, grains, spices | Phenolic acids | Alpha-glucosidase inhibition, antioxidant, anti-inflammatory | Diabetes mellitus | [52] |
Millets | Grains | Soluble and insoluble fibers, zinc, magnesium, iron, flavanols, phenolics | Delays carbohydrate metabolism, glycemic control, antioxidants, anti-diabetic, anti-inflammation | Diabetes mellitus | [53] |
L-carnitine | Dietary sources (meat, dairy products), biosynthesis from lysine and methionine | Antioxidants, lipid-lowering properties | Enhances insulin sensitivity, lowering insulin resistance | Diabetes mellitus, atherosclerosis | [54] |
Vitamin D | Diet | Increases production of inflammatory cytokines, suppressing release of pro-inflammatory cytokines | Cardiovascular diseases, hypertension, obesity, inflammation, diabetes mellitus | [55] | |
Nicotinamide (vitamin B3) | Dietary sources (fish, legumes, eggs, nuts) | Nicotinamide | Inhibition of DNA repair enzyme (poly-ADP-ribose polymerase), protects against beta cell destruction | Type 1 diabetes mellitus | [56] |
Carotenoids | Fruits and vegetables | β-carotene, α-carotene, lutein zeaxanthin, β-cryptoxanthin | Anti-diabetic and anti-inflammatory properties | Type 1 and type 2 diabetes mellitus, cardiovascular diseases, obesity | [8,57] |
Lycopene | Anti-diabetic and antioxidants properties | Cardiovascular disease, diabetes mellitus, diabetic retinopathy | [58,59] | ||
Astaxanthin | Antioxidant properties, anti-inflammatory properties, anti-hyperglycemic | Diabetes mellitus and its complications | [60] | ||
Dietary Fibers | |||||
Whole grains | Wheat, barley, oatmeal, rice | Non-digestible polysaccharides (NDPs), soluble/insoluble fibers, β-glucans, inulin, resistant starch | Antioxidant, anti-inflammatory activities, secretion of glucagon-like peptide 1 (GLP-1) and leptin, reduces ghrelin synthesis, prevents postprandial hyperglycemia, improves insulin resistance | Cardiovascular diseases, obesity, and diabetes mellitus | [61,62,63,64,65,66,67,68] |
Fatty Acids | |||||
Sesame oil | Unsaturated fatty acids, vitamins, minerals, phytosterols, lignans | Anti-diabetic, anti-hyperglycemic, anti-hyperlipidemia, anti-cancer, antioxidative properties, and enhances immune function | Diabetes mellitus, cancer, hypertension, tachycardia, arteriosclerosis, | [69] | |
Flaxseed, fish oil, sunflower seed, nuts | Omega 3 and omega 6 | Modulation of inflammation and immune response | Diabetes mellitus | [70] | |
Phytochemicals | |||||
Flavanols | Fruits, vegetables, chocolates | Cocoa | Antioxidants, anti-inflammation | Cancer, diabetes mellitus, heart disease, renal problems | [71] |
Probiotics | |||||
Yogurt, fermented milk | Streptococcus thermophilus, Lactobacillus bulgaricus | Hypoglycemic activities | Diabetes mellitus | [72] | |
Prebiotics | |||||
Dietary fibers, fermented foods | Larch arabinogalactan-resistant starch, beta-glucans, xylooigosaccharides, fructooligosaccharides, galactooligosacharides, lactulose, polydextrose, inulin | Regulate composition and activity of gut microbiota | Type 2 diabetes mellitus | [73,74,75] | |
Postbiotics | Prebiotic microorganisms | GABA | Anti-hypertensive, antidepressant, anti-diabetic | Neurological disorders, diabetes complications | [76] |
Synbiotics | Products of pre-probiotics | Reduction in oxidative stress, inflammatory process, gastrointestinal barrier maintenance | [77] | ||
Non-Traditional Nutraceuticals | |||||
Fortified | |||||
Orange juice enriched with calcium, milk with cholecalciferol | Calcium, ascorbic acid | Anti-hyperglycaemia, enhance insulin sensitivity | Diabetes mellitus | [78] | |
Recombinant | Iron rice, golden rice, maize, golden mustard, multivitamin corn, gold kiwifruit | Ascorbic acid, carotenoids | Enhance immune response | [78] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mabena, P.; Fasemore, T.M.D.; Nkomozepi, P. Impact of Nutraceuticals on Type 1 and Type 2 Diabetes Mellitus-Induced Micro- and Macrovasculopathies. Appl. Sci. 2024, 14, 64. https://doi.org/10.3390/app14010064
Mabena P, Fasemore TMD, Nkomozepi P. Impact of Nutraceuticals on Type 1 and Type 2 Diabetes Mellitus-Induced Micro- and Macrovasculopathies. Applied Sciences. 2024; 14(1):64. https://doi.org/10.3390/app14010064
Chicago/Turabian StyleMabena, Philanathi, Thandi M. D. Fasemore, and Pilani Nkomozepi. 2024. "Impact of Nutraceuticals on Type 1 and Type 2 Diabetes Mellitus-Induced Micro- and Macrovasculopathies" Applied Sciences 14, no. 1: 64. https://doi.org/10.3390/app14010064
APA StyleMabena, P., Fasemore, T. M. D., & Nkomozepi, P. (2024). Impact of Nutraceuticals on Type 1 and Type 2 Diabetes Mellitus-Induced Micro- and Macrovasculopathies. Applied Sciences, 14(1), 64. https://doi.org/10.3390/app14010064