Analytical Model for Predicting Induction Times in Reverse Osmosis Systems with and without Antiscalants
Abstract
:1. Introduction
2. Materials and Methods
3. Model Development
3.1. Prediction of the Induction Time without AS (t0A)
3.2. Derivation of Induction Time with AS (tA)
4. Results
4.1. Experimental Validation of the Induction Time Prediction
4.2. Impact of the Model’s Parameters on t0A and tA
4.2.1. Induction Time without AS (t0A)
4.2.2. Induction Time with AS tA
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
A | Cluster surface area (m2) |
A(1) | Surface area of a single molecule (m2) |
A(n) | Surface area of n-molecules (m2) in Equation (11) |
a | Defined in Equation (16) |
b | Defined in Equation (16) |
CAS | Concentration of AS |
Ce | Target scalant concentration at saturation (mM) |
Cf | Target scalant feed concentration (mM) |
dm/dt | Rate of mass deposited over time t (Kg/s) |
f | Parameter defined in Equation (7) (dimensionless) |
Fs | Total shear force (N) |
k | Boltzmann constant |
ka | Adsorption rate constant of AS molecules on the cluster surface (1/s mM) |
kc | Cluster growth coefficient (kg/s m2 mMz) |
kd | Desorption rate constant of the AS from the cluster surface (1/s) |
ks | Shear rate constant (s/m) |
Ku | Shear rate (dimensionless) |
m(n) | Mass of the cluster composed of n molecules |
Mw | Target scalant molecular weight |
NA | Avogadro number |
n | Number of molecules in a cluster |
nc | Critical size of a cluster |
R | Cluster radius (m) |
Sa | Supersaturation ratio |
t | Time |
tA | Induction time with the addition of AS |
tc | Time needed for the cluster to reach its critical size |
tg | Time of crystal growth |
tind | Induction time |
tn | Nucleation time, accountable for the formation of the critical size |
tr | Relaxation time needed to establish a quasi-steady-state distribution of clusters |
twA | Induction time without the addition of AS |
T | Absolute temperature (K) |
Vm | Molar volume of a target scalant (m3/mol) |
V(n) | Cluster’s volume (m3) |
uc | Flow velocity of the cluster (m/s) |
uf | Flow velocity of the feed solution (m/s) |
ud | Velocity difference (m/s) |
z | Order of overall cluster growth |
Greek letters | |
γ | Cluster surface energy density (mJ/m2) |
η | Dynamic viscosity of the solution (Pa s) |
θ | Cluster’s surface coverage fraction (dimensionless) |
κ | Target scalant concentration at saturation (dimensionless) |
τ | Shear stress (N/m2) |
τ0A | Normalized induction time |
References
- Qian, R.Y.; Botsaris, G.D. A new mechanism for nuclei formation in suspension crystallizers: The role of interparticle forces. Chem. Eng. Sci. 1997, 52, 3429–3440. [Google Scholar] [CrossRef]
- Dhakal, N.; Salinas Rodriguez, S.G.; Schippers, J.C.; Kennedy, M.D. Induction time measurements in two brackish water reverse osmosis plants for calcium carbonate precipitation. Desalin. Water Treat. 2015, 53, 285–293. [Google Scholar] [CrossRef]
- Tai, C.Y.; Chien, W.C.; Hsu, J.P. Induction period of CaCO3 interpreted by the Smoluchowski’s coagulation theory. AIChE J. 2005, 51, 480–486. [Google Scholar] [CrossRef]
- Małysiak, A.; Orda, S.; Drzazga, M. Influence of supersaturation, temperature, and rotational speed on induction time of calcium sulfate crystallization. Crystals 2021, 11, 1236. [Google Scholar] [CrossRef]
- Shemer, H.; Hasson, D.; Semiat, R. Review of the State of the Art of Antiscalant Selection. In Mineral Scales in Biological and Industrial Systems, 1st ed.; Amjad, Z., Ed.; CRC Press: Boca Raton, FL, USA, 2013; Chapter 13; pp. 227–256. [Google Scholar] [CrossRef]
- Drak, A.; Glucina, K.; Busch, M.; Hasson, D.; Laine, J.M.; Semiat, R. Laboratory technique for predicting the scaling propensity of RO feed waters. Desalination 2000, 132, 233–242. [Google Scholar] [CrossRef]
- Semiat, R.; Sutzcover, I.; Hasson, D. Technique for evaluating silica scaling and its inhibition in RO desalting. Desalination 2001, 140, 181–193. [Google Scholar] [CrossRef]
- Semiat, R.; Sutzcover, I.; Hasson, D. Scaling of RO membranes from silica supersaturated solutions. Desalination 2003, 157, 169–191. [Google Scholar] [CrossRef]
- Hasson, D.; Drak, A.; Semiat, R. Induction times induced in an RO system by anti-scalants delaying CaSO4 precipitation. Desalination 2003, 157, 193–207. [Google Scholar] [CrossRef]
- Uchymiak, M.; Lyster, E.; Glater, J.; Cohen, Y. Kinetics of gypsum crystal growth on a reverse osmosis membrane. J. Membr. Sci. 2008, 314, 163–172. [Google Scholar] [CrossRef]
- Lyster, E.; Kim, M.-m.; Au, J.; Cohen, Y. A method for evaluating antiscalant retardation of crystal nucleation and growth on RO membranes. J. Membr. Sci. 2010, 364, 122–131. [Google Scholar] [CrossRef]
- Mitrouli, S.; Karabelas, A.J.; Karanasiou, A.; Kostoglou, M. Incipient calcium carbonate scaling of desalination membranes in narrow channels with spacers-experimental insights. J. Membr. Sci. 2013, 425–426, 48–57. [Google Scholar] [CrossRef]
- Rolf, J.; Cao, T.; Huang, X.; Boo, C.; Li, Q.; Elimelech, M. Inorganic scaling in membrane desalination: Models, mechanisms, and characterization methods. Environ. Sci. Technol. 2022, 56, 7484–7511. [Google Scholar] [CrossRef] [PubMed]
- Karabelas, A.J.; Kostoglou, M. Simulation Tools for Membrane Scaling in Reverse Osmosis Desalination Plants. In Water-Formed Deposits; Amjad, Z., Demadis, K.D., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; Chapter 30; pp. 657–673. [Google Scholar] [CrossRef]
- Karabelas, A.J.; Mitrouli, S.T.; Kostoglou, M. Scaling in reverse osmosis desalination plants: A perspective focusing on the development of comprehensive simulation tools. Desalination 2020, 474, 114193. [Google Scholar] [CrossRef]
- Liu, Q.; Xu, G.R.; Das, R. Inorganic scaling in reverse osmosis (RO) desalination: Mechanisms, monitoring, and inhibition strategies. Desalination 2019, 468, 114065. [Google Scholar] [CrossRef]
- Söhnel, O.; Mullin, J.W. Interpretation of crystallization induction periods. J. Colloid Interface Sci. 1988, 123, 43–50. [Google Scholar] [CrossRef]
- Dai, C.; Dai, Z.; Zhao, Y.; Wang, X.; Paudyal, S.; Ko, S.; Kan, A.T.; Tomson, M.B. Prediction models of Barite crystallization and inhibition kinetics: Applications for oil and gas industry. Sustainability 2021, 13, 8533. [Google Scholar] [CrossRef]
- Tai, C.Y.; Chien, W.C. Interpreting the effects of operating variables on the induction period of CaCl2–Na2CO3 system by a cluster coagulation model. Chem. Eng. Sci. 2003, 58, 3233–3241. [Google Scholar] [CrossRef]
- Kroupa, M.; Vonka, M.; Soos, M.; Kosek, J. Size and structure of clusters formed by shear-induced coagulation: Modeling by discrete element method. Langmuir 2015, 31, 7727–7737. [Google Scholar] [CrossRef]
- Dai, Z.; Zhao, Y.; Wang, X.; Kan, A.T.; Tomson, M. Novel barite crystallization and inhibition model based on surface adsorption. SPE J. 2023, 28, 1818–1828. [Google Scholar] [CrossRef]
- Boerlage, S.F.E.; Kennedy, M.D.; Bremere, I.; Witkamp, G.J.; Van der Hoek, J.P.; Schippers, J.C. The scaling potential of barium sulphate in reverse osmosis systems. J. Membr. Sci. 2002, 197, 251–268. [Google Scholar] [CrossRef]
- Oh, H.J.; Choung, Y.K.; Lee, S.; Choi, J.S.; Hwang, T.M.; Kim, J.H. Scale formation in reverse osmosis desalination: Model development. Desalination 2009, 238, 333–346. [Google Scholar] [CrossRef]
- Hasson, D.; Drak, A.; Semiat, R. Inception of CaSO4 scaling on RO membranes at various water recovery levels. Desalination 2001, 139, 73–81. [Google Scholar] [CrossRef]
- Li, X.; Hasson, D.; Shemer, H. Flow conditions affecting the induction period of CaSO4 scaling on RO membranes. Desalination 2018, 431, 119–125. [Google Scholar] [CrossRef]
- Liendo, F.; Arduino, M.; Deorsola, F.A.; Bensaid, S. Nucleation and growth kinetics of CaCO3 crystals in the presence of foreign monovalent ions. J. Crys. Growth 2022, 578, 126406. [Google Scholar] [CrossRef]
- Klepetsanis, P.G.; Dalas, E.; Koutsoukos, P.G. Role of temperature in the spontaneous precipitation of calcium sulfate dihydrate. Langmuir 1999, 15, 1534–1540. [Google Scholar] [CrossRef]
- Yan, Y.; Yu, T.; Zhang, H.; Song, J.; Qu, C.; Li, J.; Yang, B. Co-deposition mechanisms of calcium sulfate and calcium carbonate scale in produced water. Crystals 2021, 11, 1494. [Google Scholar] [CrossRef]
- Hoang, T.A. Mechanisms of Scale Formation and Inhibition. In Mineral Scales and Deposits; Amjad, Z., Demadis, K.D., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; Chapter 3; pp. 47–83. [Google Scholar] [CrossRef]
- Hussein, A. (Ed.) Principles of Flow Assurance Solids Formation Mechanisms. In Essentials of Flow Assurance Solids in Oil and Gas Operations; Gulf Professional Publishing: Houston, TX, USA, 2023; Chapter 4; pp. 143–197. [Google Scholar] [CrossRef]
- Haidari, A.H.; Heijman, S.G.J.; Uijttewaal, W.S.J.; van der Meer, W.G.J. Determining effects of spacer orientations on channel hydraulic conditions using PIV. J. Water Proc. Eng. 2019, 31, 100820. [Google Scholar] [CrossRef]
- Koo, C.H.; Mohammad, A.W.; Suja’, F. Effect of cross-flow velocity on membrane filtration performance in relation to membrane properties. Desalin. Water Treat. 2014, 55, 678–692. [Google Scholar] [CrossRef]
- Li, H.J.; Wang, C.C.; Wang, M.; Zhang, Q.W.; Li, Y.Y.; Yi, H.B.; Chen, Y. Structures and dynamic hydration of CaSO4 clusters in supersaturated solutions: A molecular dynamics simulation study. J. Mol. Liq. 2021, 324, 115104. [Google Scholar] [CrossRef]
- Lagrée, P.Y. Small Re Flows, ε = Re << 1. Lecture Notes, Sorbonne Université. 2019. Available online: http://www.lmm.jussieu.fr/lagree/COURS/M2MHP/petitRe.pdf (accessed on 1 May 2024).
- Wu, Y.; Fan, Z.; Lu, Y. Bulk and interior packing densities of random close packing of hard spheres. J. Mater. Sci. 2003, 38, 2019–2025. [Google Scholar] [CrossRef]
- Lisitsin, D.; Hasson, D.; Semiat, R. Modeling the effect of anti-scalant on CaCO3 precipitation in continuous flow. Desalin. Water Treat. 2009, 1, 17–24. [Google Scholar] [CrossRef]
- Yu, W.; Song, D.; Chen, W.; Yang, H. Antiscalants in RO membrane scaling control. Water Res. 2020, 183, 115985. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, R.; Michaelsson, A.; Mattsson, L. Kinetic analysis of monoclonal antibody-antigen interactions with a new biosensor-based analytical system. J. Immunol. Methods 1991, 145, 229–240. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.A.; Qasem, N.A.A.; Zubair, S.M. Analytical and numerical schemes for thermodynamically balanced humidification-dehumidification desalination systems. Energy Convers. Manag. 2019, 200, 112052. [Google Scholar] [CrossRef]
- Gracka, M.; Lima, R.; Miranda, J.M.; Student, S.; Melka, B.; Ostrowski, Z. Red blood cells tracking and cell-free layer formation in a microchannel with hyperbolic contraction: A CFD model validation. Comput. Methods Programs Biomed. 2022, 226, 107117. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.T.; Nancollas, G.H. The kinetics of crystal growth of calcium sulfate dehydrate. J. Crys. Growth 1970, 6, 281–289. [Google Scholar] [CrossRef]
- Fountoukidis, E.; Maroulis, Z.B.; Kouris, D.M. Crystallization of calcium sulfate on reverse osmosis membranes. Desalination 1990, 79, 47–63. [Google Scholar] [CrossRef]
- Beckert, F.S.; Paim, W.S. Critical analysis of the acceptance criteria used in measurement systems evaluation. Int. J. Metrol. Qual. Eng. 2017, 8, 23. [Google Scholar] [CrossRef]
- Dupont. FilmTec™ Reverse Osmosis Membranes Technical Manual. Version 16, 2-2023. Available online: https://www.dupont.com/content/dam/dupont/amer/us/en/water-solutions/public/documents/en/RO-NF-FilmTec-Manual-45-D01504-en.pdf (accessed on 4 August 2023).
- Xie, X.; Samaei, A.; Guo, J.; Liu, W.K.; Gan, Z. Data-driven discovery of dimensionless numbers and governing laws from scarce measurements. Nat. Commun. 2022, 13, 7562. [Google Scholar] [CrossRef]
Membrane System | ks (s/m) | ka (L/mg s) | kd (1/s) | * Δavrg − t0A (%) | * Δavrg − tA (%) | Ref. |
---|---|---|---|---|---|---|
Spiral-wound | 1.73 × 104 | 3.17 × 10−4 | 4.0 × 10−4 | 10.8 (3.5–16.7) | 10.8 (4.9–18.9) | [24] |
Spiral-wound | 2.43 × 105 | 1.00 × 10−3 | 6.5 × 10−5 | 10.7 (5.3–20.0) | 5.2 (0.4–9.6) | [25] |
Tubular | 7.37 × 104 | 1.00 × 10−3 | 6.5 × 10−5 | 2.4 (1.5–3.2) | 10.0 (6.2–15.3) | [25] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sagiv, A.; Semiat, R.; Shemer, H. Analytical Model for Predicting Induction Times in Reverse Osmosis Systems with and without Antiscalants. Appl. Sci. 2024, 14, 4700. https://doi.org/10.3390/app14114700
Sagiv A, Semiat R, Shemer H. Analytical Model for Predicting Induction Times in Reverse Osmosis Systems with and without Antiscalants. Applied Sciences. 2024; 14(11):4700. https://doi.org/10.3390/app14114700
Chicago/Turabian StyleSagiv, Abraham, Raphael Semiat, and Hilla Shemer. 2024. "Analytical Model for Predicting Induction Times in Reverse Osmosis Systems with and without Antiscalants" Applied Sciences 14, no. 11: 4700. https://doi.org/10.3390/app14114700
APA StyleSagiv, A., Semiat, R., & Shemer, H. (2024). Analytical Model for Predicting Induction Times in Reverse Osmosis Systems with and without Antiscalants. Applied Sciences, 14(11), 4700. https://doi.org/10.3390/app14114700