Graph-Driven Exploration of Issue Handling Schemes in Software Projects
Abstract
:1. Introduction
- Q1—What is the scope of issue specification, information accuracy, statistical properties (static and dynamic), and their impact on handling processes?
- Q2—How should we evaluate and improve issue handling processes on the basis of ITS reports?
- -
- Introducing an original issue handling model: a processing activity graph targeted at diverse observation perspectives and linked with issue repository databases.
- -
- Developing analysis schemes supported by original metrics and algorithms.
- -
- Verifying the efficiency and usefulness of the proposed approach in experiments with real project repositories.
2. Literature Review and Problem Statement
3. Issue Tracking Space
4. Exploring and Assessing Issue Handling Processes
4.1. Issue Handling Summary
4.2. Issue Handling Model (IHM)
4.3. IHM Analysis Algorithms
4.3.1. Issue Preprocessing Algorithm (A1)
- -
- The creation of the issue handling path Pi complemented by the handling time T(Pi), state set Si, and relevant processing times within states (T(Si));
- -
- The creation of a comment statistics set Ci (the number of involved actors, timing, comment size, etc.) attributed to the considered issue.
Algorithm 1. Deriving issue handling paths |
input: List of JIRA issues with comments and history [I] output: List of paths objects [P] 1 function translate_to_path([I]): 2 result = new empty list 3 FOR I in [I] DO 4 P = new empty Path 5 SL = new empty List 6 CNL = new empty list 7 CTL = new empty list 8 CrD = I.createdDate 9 CTL.add(CrD) 10 sort I.history by timestamp 11 FS = Null 12 FOR each item in I.history DO 13 IF (item field equals “status”) THEN 14 FS = item.getFromString() 15 BREAK 16 ENDIF 17 IF FS == Null THEN 18 FS = I.currentStatusName() 19 ENDIF 20 CNL.add(firstStatus) 21 FOR each i in I.history DO 22 SN = Null 23 IF (i field == “status”) DO 24 IF i.resolution exists THEN 25 SN = i.fromString + i.resolution 26 ELSE 27 SN = i.fromString 28 ENDIF 29 CNL.add(SN) 30 CTL.add(item.getTime) 31 ENDIF 32 ENDFOR 33 FOR i starting from 0 to len(CTL) DO 34 TS = 0 35 IF(i < len(CTL) − 1) THEN 36 TS = CTL[i + 1] − CTL[index] 37 ENDIF 38 SL.add(new S(CNL[i], TS)) 39 ENDFOR 40 P.SL = SL 41 FOR each C in I.comments DO 42 WC = C.countWords() 43 UWC = C.countUniqueWords 44 P.CL add C.author, C.text 45 P add WC and UWC to proper lists 46 ENDFOR 47 result.add(P) 48 ENDFOR 49 return result 50 endfunction |
4.3.2. Aggregation of State and Path Features (Algorithm 2)
- -
- The creation of a set of unique paths (PU) and relevant aggregated statistics (handled issues, timing features (e.g., Q1, Q2, Q3 quartiles), comment global statistics (over diverse path types), etc.);
- -
- The creation of a global set of states (SG) and relevant statistics (handled issues, unique issues, processing timing, etc.);
- -
- The creation of an IHM graph with nodes relevant to set SG and edges derived by tracing the PU set.
Algorithm 2. Generation of the IHM |
input: List of paths ([P]) with relevant statistics. output: Graph (G) of the IHM, files with statistics of paths and states 1 function make_graph([P]): 2 G = new empty graph 3 UPL = new empty List 4 FOR each P in [P] DO 5 US = new empty List 6 FOR each S in P.SL: 7 IF (S not in US) THEN 8 US.add(S.name) 9 ENDIF 10 ENDFOR 11 VL = G.getVerticies() 12 FOR each v in VL DO 13 IF (v.name in US) THEN 14 v.UVC += 1 15 ENDIF 16 ENDFOR 17 FOR each S in P.SL DO 18 IF (G contains V with name equals to S.name) THEN 19 V.count += 1 20 V.TL = S.time 21 IF (S(i+1) and G contains vertex V(i + 1) with S(i + 1).name 22 and G contains edge E<V(i),V(i + 1)>) THEN 23 E.count += 1 24 ELSEIF (S(i + 1) and G contains vertex V(i + 1) with S(i + 1).name 25 and G does not contains edge E<V(i),V(i + 1)>) THEN 26 E = new E<V(i),V(i + 1)> and count = 1 27 G.addEdge(E) 28 ELSEIF (S(i+1) and G does not contain vertex V(i + 1)) THEN 29 V = new V<S(i + 1).name> and count = 0 30 G.addVertex(V) 31 E = new E<V(i),V(i + 1)> with count = 1 32 G.addEdge(E) 33 ENDIF 34 ELSE 35 V = create new V(S.name) 36 V.timeList add(S.time) 37 V.uniqueCount = 1 38 V.count += S.count 39 G.addVertex(V) 40 ENDIF 41 ENDFOR 42 IF (UPL contains P) THEN 43 UPL[P].update(P.statistics) 44 ELSE 45 UP = create new UP(P) 46 UPL.add(UP) 47 ENDIF 48 ENDFOR 49 generatePathsFile(UPL) 50 generateVertexFile(G) 51 paintGraph(G) 52 return G 53 endfunction |
4.3.3. Supplementary Algorithms (A3)
- -
- Deriving paths with loops (PL) within the PU set and relevant statistics: the number of handled issues, timing features, path structure (A3_L);
- -
- Deriving specified path classes in the PU set and relevant statistics (A3_P);
- -
- Deriving commenting features (A3_C).
Algorithm 3. Identification of loops in issue handling paths (A3_L) |
input: Path (P) represented as a list of statuses for given issue, output: List of found loops ([AL]) 1 function find_loop(P): 2 AL = new empty List 3 S = P.getStatuses() 4 FOR LL = 1 to (length of list)/2 DO 5 IF (LL == 1) THEN 6 FOR I=1 to len(S) − 1 DO 7 IF (S[I] == S[index + 1] THEN 8 AL.add(new A(list[i], 1)) 9 ENDIF 10 ENDFOR 11 ELSE: 12 I = 0 13 WHILE (I + 2 * LL < len(S)) DO 14 L = new list as sublist of S with beginning in S[I] and end in S[I + LL] 15 LTC = new list as sublist of S with beginning in S[I + LL] and end in list[(I + 2)*(LL − 1)] 16 IF (L equals LTC) THEN 17 AL.add(new A(L, LL)) 18 ENDIF 19 I += 1 20 ENDWHILE 21 ENDIF 22 ENDFOR 23 return AL 24 endfunction |
5. Experimental Results and Analysis
5.1. Statistics Related to Processing States
5.2. Profiles of Issue Handling Paths
5.2.1. Structural Features
5.2.2. Path Classification and Aggregation
5.2.3. Path Timing Features
5.3. Comment Sequences
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jiang, Y.; Liu, H.; Luo, X.; Zhu, Z.; Chi, X.; Niu, N.; Zhang, Y.; Hu, Y.; Bian, P.; Zhang, L. BugBuilder: An automated approach to building bug repository. IEEE Trans. Softw. Eng. 2023, 49, 1443–1463. [Google Scholar] [CrossRef]
- Ramirez-Mora, S.L.; Oktaba, H.; Gomez-Adorno, H. Descriptions of issues and comments for predicting issue success in software projects. J. Syst. Softw. 2020, 168, 110663. [Google Scholar] [CrossRef]
- Raatikainen, M.; Motger, Q.; Lüders, C.M.; Franch, X.; Myllyaho, L.; Kettunen, E.; Marco, J.; Tiihonen, J.; Halonen, M.; Männistö, T. Improved management of issue dependencies in issue trackers of large collaborative projects. IEEE Trans. Softw. Eng. 2023, 49, 2128–2148. [Google Scholar] [CrossRef]
- Zheng, W.; Li, Y.; Wu, X.; Cheng, J. Duplicate bug report detection using named entity recognition. Knowl.-Based Syst. 2024, 284, 111258. [Google Scholar] [CrossRef]
- Rakha, M.S.; Bezemer, C.-P.; Hassan, A.E. Revisiting the performance of automated approaches for the retrieval of duplicate reports in issue tracking systems that perform just-in-time duplicate retrieval. Empir. Softw. Eng. 2018, 23, 2597–2621. [Google Scholar] [CrossRef]
- Herbold, S.; Trautsch, A.; Trautsch, F. On the feasibility of automated prediction of bug and non-bug issues. Empir. Softw. Eng. 2020, 25, 5333–5369. [Google Scholar] [CrossRef]
- Mohsin, H.; Shi, C.; Hao, S.; Jiang, H. SPAN: A self-paced association augmentation and node embedding-based model for software bug classification and assignment. Knowl.-Based Syst. 2022, 236, 107711. [Google Scholar] [CrossRef]
- Xi, S.-Q.; Yao, Y.; Xiao, X.-S.; Xu, F.; Lv, J. Bug Triaging Based on Tossing Sequence Modeling. J. Comput. Sci. Technol. 2019, 34, 942–956. [Google Scholar] [CrossRef]
- Gupta, S.; Gupta, S.K. An approach to generate the bug report summaries using two-level feature extraction. Expert Syst. Appl. 2021, 176, 114816. [Google Scholar] [CrossRef]
- Arya, D.; Wang, W.; Guo, L.C.; Cheng, J. Analysis and detection of information types of open source software issue discussions. In Proceedings of the IEEE/ACM 41st International Conference on Software Engineering (ICSE), Montreal, QC, Canada, 25–31 May 2019; pp. 454–464. [Google Scholar] [CrossRef]
- Hanagal, D.N.; Bhalerao, N. Software Reliability Growth Models; Springer: Berlin/Heidelberg, Germany, 2021; ISBN 978-981-16-0025-8. [Google Scholar]
- Reszka, Ł.; Sosnowski, J.; Dobrzyński, B. Enhancing software project monitoring with multidimensional data repository mining. Electronics 2023, 12, 3774. [Google Scholar] [CrossRef]
- Sosnowski, J.; Dobrzyński, B.; Janczarek, P. Analysing problem handling schemes in software projects. Inf. Softw. Technol. 2017, 91, 56–71. [Google Scholar] [CrossRef]
- Polaczek, J.; Sosnowski, J. Exploring the software repositories of embedded systems: An industrial experience. Inf. Softw. Technol. 2021, 131, 106489. [Google Scholar] [CrossRef]
- Izadi, M.; Akbari, K.; Heydarnoori, A. Predicting the objective and priority of issue reports in software repositories. Empir. Softw. Eng. 2022, 27, 50. [Google Scholar] [CrossRef]
- Ferreira Gomes, L.A.; da Silva, R.; Torres, M.; Côrtes, L. Bug report severity level prediction in open source software: A survey and research opportunities. Inf. Softw. Technol. 2019, 115, 58–78. [Google Scholar] [CrossRef]
- Zheng, W.; Cheng, J.; Wu, X.; Sun, R.; Wang, X.; Sun, X. Domain knowledge-based security bug reports prediction. Knowl.-Based Syst. 2022, 241, 108293. [Google Scholar] [CrossRef]
- Peters, F.; Tun, T.T.; Yu, Y.; Nuseibeh, B. Text filtering and ranking for security bug report prediction. IEEE Trans. Softw. Eng. 2019, 45, 615–631. [Google Scholar] [CrossRef]
- Panichella, S.; Canfora, G.; Di Sorbo, A. “Won’t We Fix this Issue?” Qualitative characterization and automated identification of wontfix issues on GitHub. Inf. Softw. Technol. 2021, 139, 106665. [Google Scholar] [CrossRef]
- Nadeem, A.; Sarwar, M.U.; Malik, M.Z. Automatic issue classifier: A transfer learning framework for classifying issue reports. In Proceedings of the IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW), Wuhan, China, 25–28 October 2021; pp. 421–426. [Google Scholar] [CrossRef]
- Wu, X.; Zheng, W.; Pu, M.; Chen, J.; Mu, D. Invalid bug reports complicate the software aging situation. Softw. Qual. J. 2020, 28, 195–220. [Google Scholar] [CrossRef]
- Dobrzyński, B.; Sosnowski, J. Text mining studies of software repository contents. In Proceedings of the 18th International Conference on Evaluation of Novel Approaches to Software Engineering, Prague, Czech Republic, 24–25 April 2023; Kaindl, H., Mannion, M., Maciaszek, L., Eds.; SciTePress: Setubal, Portugal, 2023; pp. 562–569, ISBN 978-989-758-647-7. [Google Scholar] [CrossRef]
- Alonso-Abad, J.M.; López-Nozal, C.; Maudes-Raedo, J.M.; Marticorena-Sánchez, R. Label prediction on issue tracking systems using text mining. Prog. Artif. Intell. 2019, 8, 325–342. [Google Scholar] [CrossRef]
- Mohsin, H.; Shi, C. SPBC: A self-paced learning model for bug classification from historical repositories of open-source software. Expert Syst. Appl. 2021, 167, 113808. [Google Scholar] [CrossRef]
- Rath, M.; Mäder, P. Structured information in bug report descriptions—Influence on IR-based bug localization and developers. Softw. Qual. J. 2019, 27, 1315–1337. [Google Scholar] [CrossRef]
- Ramírez-Mora, S.L.; Oktaba, H.; Gómez-Adorno, H.; Sierra, G. Exploring the communication functions of comments during bug fixing in open source software projects. Inf. Softw. Technol. 2021, 136, 106584. [Google Scholar] [CrossRef]
- Hussain, M.; Khan, H.U.; Khan, A.W.; Khan, S.U. Prioritizing the issues extracted for getting right people on right project in software project management from vendors’ perspective. IEEE Access 2021, 9, 8718–8732. [Google Scholar] [CrossRef]
- Sarkar, A.; Rigby, P.C.; Bartalos, B. Improving bug triaging with high confidence predictions at Ericsson. In Proceedings of the IEEE International Conference on Software Maintenance and Evolution (ICSME), Cleveland, OH, USA, 29 September–4 October 2019; pp. 81–91. [Google Scholar] [CrossRef]
- Wu, H.; Ma, Y.; Xiang, Z.; Yang, C.; He, K. A spatial–temporal graph neural network framework for automated software bug triaging. Knowl.-Based Syst. 2022, 241, 108308. [Google Scholar] [CrossRef]
- Elmishali, A.; Sotto-Mayor, B.; Roshanski, I.; Sultan, A.; Kalech, M. BEIRUT: Repository mining for defect prediction. In Proceedings of the 2021 IEEE 32nd International Symposium on Software Reliability Engineering (ISSRE), Wuhan, China, 25–28 October 2021; pp. 47–56. [Google Scholar] [CrossRef]
- Sharma, P.P.; Sangal, A.L. Examining the Predictive Capability of Advanced Software Fault Prediction Models—An Experimental Investigation Using Combination Metrics. E-Inform. Softw. Eng. J. 2022, 16, 220104. [Google Scholar] [CrossRef]
- Afric, P.; Vukadin, D.; Silic, M.; Delac, G. Empirical study: How issue classification influences software defect prediction. IEEE Access 2023, 11, 11732–11748. [Google Scholar] [CrossRef]
- Rathi, S.C.; Misra, S.; Colomo-Palacios, R.; Adarsh, R.; Neti, L.B.M.; Kumar, L. Empirical evaluation of the performance of data sampling and feature selection techniques for software fault prediction. Expert Syst. Appl. 2023, 223, 119806. [Google Scholar] [CrossRef]
- Nafreen, M.; Luperon, M.; Fiondella, L.; Nagaraju, V.; Shi, Y.; Wandji, T. Connecting Software Reliability Growth Models to Software Defect Tracking. In Proceedings of the IEEE 31st International Symposium on Software Reliability Engineering (ISSRE), Coimbra, Portugal, 12–15 October 2020; pp. 138–147. [Google Scholar] [CrossRef]
- Choetkiertikul, M.; Dam, H.K.; Tran, T.; Pham, T.; Ragkhitwetsagul, C.; Ghose, A. Automatically recommending components for issue reports using deep learning. Empir. Softw. Eng. 2021, 26, 14. [Google Scholar] [CrossRef]
- Huang, Y.; da Costa, D.A.; Zhang, F.; Zou, Y. An empirical study on the issue reports with questions raised during the issue resolving process. Empir. Softw. Eng. 2019, 24, 718–750. [Google Scholar] [CrossRef]
- Akbarinasaji, S.; Caglayan, B.; Bener, A. Predicting bug-fixing time: A replication study using an open source software project. J. Syst. Softw. 2018, 136, 173–186. [Google Scholar] [CrossRef]
- Albuquerque, D.; Guimarães, E.; Tonin, G.; Rodríguezs, P.; Perkusich, M.; Almeida, H.; Perkusich, A.; Chagas, F. Managing technical debt using intelligent techniques—A systematic mapping study. IEEE Trans. Softw. Eng. 2023, 49, 2202–2220. [Google Scholar] [CrossRef]
Project | N | AVG | MAX | Q2 | Q3 |
---|---|---|---|---|---|
MongoDBA | 11,675 | 45.2 | 358.2 | 28.4 | 52.3 |
MongoDBB | 1760 | 242.5 | 499.6 | 232.2 | 326.1 |
P1A | 2059 | 45.4 | 226.2 | 30.0 | 48.9 |
P1B | 319 | 52.0 | 80.2 | 48.8 | 59.9 |
Log4J2A | 2343 | 153.5 | 1721.3 | 40.7 | 125.7 |
Log4J2B | 764 | 7.5 | 26.2 | 2.8 | 7.0 |
Project | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
MongoDB | 48.5% | 22.1% | 17.7% | 7.3% | 2.6% | 0.3% | 0.3% | 2.3% | 0.3% |
P1 | 84.0% | 11.3% | 4.1% | 0% | 0.3% | 0% | 0% | 0% | 0% |
Log4J2 | 87.1% | 10.9% | 2.0% | 0% | 0% | 0% | 0% | 0% | 0% |
State | Us | Ns | Q2 | Q3 |
---|---|---|---|---|
O (Open) | 1841 | 1850 | 3.8 | 42.7 |
R_F (Res.fixed) | 889 | 956 | 0.9 | 6.6 |
C (Closed) | 823 | 881 | 0.25 | 33.25 |
InP (In Progress) | 148 | 153 | 0.9 | 0.75 |
R (Reopen) | 142 | 159 | 0.24 | 11.55 |
R_D (Res. Duplicate) | 50 | 51 | 0.75 | 3.34 |
R_NP (Res. not a Problem) | 44 | 44 | 0.26 | 2.75 |
R_WF (Res. won’t fix) | 24 | 24 | 0.1 | 0.09 |
R_CR (Res. Cannot reproduce) | 18 | 18 | 0.5 | 11.15 |
R_NB (Res. not a bug) | 17 | 17 | 0.7 | 2.6 |
R_Inv (Res. Invalid) | 17 | 17 | 3.37 | 1324 |
R_Inf (Res. Information prov) | 16 | 17 | 0.2 | 0.32 |
State | Us | Ns | Q2 | Q3 |
---|---|---|---|---|
NES (Needs scheduling) | 12,644 | 14,725 | 0.2 | 4.9 |
NEM (Needs Merging) | 1728 | 1765 | 0.1 | 0.7 |
INV (Invalid) | 1678 | 2430 | 1.1 | 9 |
IPR (In progres) | 8489 | 9702 | 0.2 | 2.8 |
OPE (Opened) | 11,325 | 13,573 | 1.1 | 23.4 |
ICR (in Code Review) | 8767 | 9316 | 1.9 | 5.8 |
NED (Needs verification) | 12,400 | 12,466 | <1 h | <1 h |
C (Closed) | 11,811 | 12,575 | 1 | 7.3 |
NET (Needs Triage) | 88 | 90 | 0.2 | 2.8 |
WFU (Wait for user input) | 437 | 723 | 1.9 | 17.9 |
BAC (Backlog) | 2034 | 2124 | 17.1 | 70.2 |
BLO (Blocked) | 298 | 332 | 7.1 | 28.7 |
N | Path | AVG | MAX | Q2 | Q3 |
---|---|---|---|---|---|
576 | N,IN,REV,TbT,V/C | 25.2 | 340.2 | 6.9 | 21.2 |
106 | N,TbT,V/C | 29.8 | 332.3 | 3.8 | 17.3 |
100 | N,V/C | 26.4 | 218.2 | 5 | 17 |
48 | N,IN,REV,TbT,Reo,IN,REV,TbT,V/C | 60.3 | 283.7 | 30.3 | 65.4 |
45 | N,NIF,IN,REV,TbT,V/C | 46.1 | 212.9 | 15 | 49.9 |
23 | N,IN,REV,TbT,Reo,TbT,V/C | 30.6 | 112.1 | 22.1 | 36.2 |
22 | N,IN,N,IN,REV,TbT,V/C | 45.5 | 294.2 | 25.6 | 74.7 |
21 | N,IN,V/C | 30.3 | 131.3 | 10.2 | 41.3 |
19 | N,NIF,IPrS,V/C | 58.4 | 235.4 | 28.3 | 80.0 |
18 | N,IN,NIF,IPrS,REV,TbT,V/C | 48.2 | 248.7 | 27.4 | 49.3 |
N | AVE | Max | Q2 | Q3 | |
---|---|---|---|---|---|
2730 | NV,NS,OP,IPR,ICR,CLO | 19.4 | 511.0 | 5.8 | 19.0 |
649 | NV,NS,OP,IPR,ICR,NM,CLO | 19.0 | 348.0 | 5.9 | 18.7 |
513 | NV,NS,OP,ICR,CL | 10.7 | 372.8 | 3.3 | 8.4 |
370 | NV,NS,OP,CLO | 47.0 | 693.6 | 11.1 | 39.9 |
316 | NV,NS,CLO | 8.7 | 168.0 | 2.0 | 6.8 |
236 | NS,OP,NS,IPR,ICR,CLO | 11.9 | 172.9 | 4.1 | 11.3 |
229 | NV,CLO | 3.0 | 56.9 | 0.8 | 3.4 |
209 | NV,NS,OP,IPR,CLO | 27.7 | 229.9 | 9.8 | 31.2 |
174 | NV,NS,INV,IPR,ICR,CLO | 12.6 | 224.7 | 4.0 | 10.2 |
124 | NV,NS,OP,BAC | 375.8 | 825.9 | 366.2 | 584.2 |
N | AVE | Max | Q2 | Q3 | |
---|---|---|---|---|---|
372 | O, R_F | 148.9 | 2489.0 | 14.6 | 126.9 |
320 | O, R_F, C | 53.6 | 755.2 | 10.1 | 47.1 |
279 | O, C | 207. 2 | 2982.1 | 1.2 | 66.2 |
52 | O, IPr, R_F, C | 40.9 | 568.8 | 9.1 | 29.9 |
51 | O, IPr, R_F | 74.2 | 660.2 | 21.1 | 95.1 |
30 | O, R_D | 104.6 | 2123.7 | 1.5 | 14.1 |
21 | O, R_NP | 105.5 | 1105.8 | 5.8 | 99.3 |
17 | O, R_NP, C | 70.6 | 561.3 | 13.2 | 53.9 |
16 | O, R_F, Reo, R_F | 192.6 | 192.6 | 65.3 | 219.9 |
15 | O, C, Reo, C | 17.8 | 17.8 | 0.9 | 10.4 |
N | Path | AVG | MAX | Q2 | Q3 |
---|---|---|---|---|---|
9 | N,IN,REV,TbT,REO,IN,REV,TbT, REO,IN,REV,TbT,V/C | 86.5 | 213.1 | 32.8 | 133.2 |
4 | N,IN,NIF,IN,NIF,IN,REV,TbT,V/C | 41.9 | 67.8 | 42.6 | 58.4 |
2 | N,IN,REV,TbT,REO,IN,REV,TbT,REO,IN,REV, TbT,REO,IN,REV,TbT,REO,IN,REV,TbT,V/C | 154.1 | 252.2 | 154.1 | 252.2 |
2 | N,IN,N,IN,N,IN,REV,TbT,V/C | 42.4 | 74.0 | 42.4 | 74.0 |
2 | N,IN,REV,IN,REV,IN,N,IN,REV,TbT,V/C | 156.5 | 175.0 | 156.5 | 175.0 |
N | Path | AVG | MAX | Q2 | Q3 |
---|---|---|---|---|---|
44 | NED,NES,OPE,IPR,ICR,CLO,CLO | 43.1 | 366.2 | 11.0 | 37.3 |
37 | NED,INV,WFU,INV,WFU,INV,CLO,CLO | 43.0 | 240.9 | 32.3 | 49.1 |
12 | NED,INV,WFU,INV,WFU,INV,WFU,INV,CLO | 113.5 | 545.1 | 59.4 | 133.3 |
11 | NES,OPE,NES,NES,OPE,IPR,ICR,CLO | 13.7 | 35.2 | 11.0 | 15.5 |
9 | NED,INV,WFU,INV,WFU,INV,WFU,INV,WFU,CLO | 112.0 | 281.4 | 91.2 | 117.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dobrzyński, B.; Sosnowski, J. Graph-Driven Exploration of Issue Handling Schemes in Software Projects. Appl. Sci. 2024, 14, 4723. https://doi.org/10.3390/app14114723
Dobrzyński B, Sosnowski J. Graph-Driven Exploration of Issue Handling Schemes in Software Projects. Applied Sciences. 2024; 14(11):4723. https://doi.org/10.3390/app14114723
Chicago/Turabian StyleDobrzyński, Bartosz, and Janusz Sosnowski. 2024. "Graph-Driven Exploration of Issue Handling Schemes in Software Projects" Applied Sciences 14, no. 11: 4723. https://doi.org/10.3390/app14114723
APA StyleDobrzyński, B., & Sosnowski, J. (2024). Graph-Driven Exploration of Issue Handling Schemes in Software Projects. Applied Sciences, 14(11), 4723. https://doi.org/10.3390/app14114723