Differences in the Lateral and Vertical Jump Performances of Elite Male Basketball Players—An Axial Stabilization Training Program
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Research Materials
2.3. Detection Method
2.3.1. Lateral Jump Detection
- y is the horizontal component;
- x is the vertical component;
- θ is the angle of the subject’s lateral jump;
- g is a constant called the acceleration due to gravity;
- v is the initial velocity of the projectile.
2.3.2. Vertical Jump Detection
2.4. Control Variable
2.5. Statistical Analysis
3. Results
3.1. Analysis of Participants’ Background Variables
3.2. Dynamic Analysis of Lateral Jump
3.3. Dynamic Analysis of Vertical Jump
3.4. Analysis of the Difference between Horizontal and Vertical Jumps
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barbieri, D.; Zaccagni, L.; Babić, V.; Rakovac, M.; Mišigoj-Duraković, M.; Gualdi, E. Body composition and size in sprint athletes. J. Sports Med. Phys. Fit. 2017, 57, 1142–1146. [Google Scholar] [CrossRef]
- Franchini, E.; Cormack, S.; Takito, M.Y. Effects of High-Intensity Interval Training on Olympic Combat Sports Athletes’ Performance and Physiological Adaptation: A Systematic Review. J. Strength Cond. Res. 2019, 33, 242–252. [Google Scholar] [CrossRef]
- Ramirez-Campillo, R.; Garcia de Alcaraz, A.; Chaabene, H.; Moran, J.; Negra, Y.; Granacher, U. Effects of Plyometric Jump Training on Physical Fitness in Amateur and Professional Volleyball: A Meta-Analysis. Front. Physiol. 2021, 12, 636140. [Google Scholar] [CrossRef]
- Sáez de Villarreal, E.; Molina, J.G.; de Castro-Maqueda, G.; Gutiérrez-Manzanedo, J.V. Effects of Plyometric, Strength and Change of Direction Training on High-School Basketball Player’s Physical Fitness. J. Hum. Kinet. 2021, 78, 175–186. [Google Scholar] [CrossRef]
- Reiter, C.R.; Killelea, C.; Faherty, M.S.; Zerega, R.J.; Westwood, C.; Sell, T.C. Force-plate derived predictors of lateral jump performance in NCAA Division-I men’s basketball players. PLoS ONE 2023, 18, e0284883. [Google Scholar] [CrossRef]
- Aksović, N.; Bjelica, B.; Milanović, F.; Milanović Lalović, L.; Jovanović, N. Development of Explosive Power in Basketball Players. Turk. J. Kinesiol. 2021, 7, 44–52. [Google Scholar] [CrossRef]
- Panjabi, M.M. The stabilizing system of the spine. Part I. Function, dysfunction, adaptation, and enhancement. J. Spinal Disord. 1992, 5, 383–389; discussion 397. [Google Scholar] [CrossRef]
- Panjabi, M.M. Clinical spinal instability and low back pain. J. Electromyogr. Kinesiol. 2003, 13, 371–379. [Google Scholar] [CrossRef]
- Zemková, E. Strength and Power-Related Measures in Assessing Core Muscle Performance in Sport and Rehabilitation. Front. Physiol. 2022, 13, 861582. [Google Scholar] [CrossRef]
- Lee, B.; McGill, S. The effect of core training on distal limb performance during ballistic strike manoeuvres. J. Sports Sci. 2017, 35, 1768–1780. [Google Scholar] [CrossRef]
- Arora, C.; Singh, P.; Varghese, V. Biomechanics of core musculature on upper extremity performance in basketball players. J. Bodyw. Mov. Ther. 2021, 27, 127–133. [Google Scholar] [CrossRef]
- Luo, S.; Soh, K.G.; Soh, K.L.; Sun, H.; Nasiruddin, N.J.M.; Du, C.; Zhai, X. Effect of Core Training on Skill Performance Among Athletes: A Systematic Review. Front. Physiol. 2022, 13, 915259. [Google Scholar] [CrossRef]
- Donahue, P.T.; Wilson, S.J.; Williams, C.C.; Hill, C.M.; Garner, J.C. Comparison of Countermovement and Squat Jumps Performance in Recreationally Trained Males. Int. J. Exerc. Sci. 2021, 14, 462–472. [Google Scholar]
- Sugiyama, K.; Fuchioka, S.; Kimura, Y.; Iwata, A.; Nakata, K.; Mae, T. The ability to produce a timely explosive force may affect loading rate at landing. Sport Sci. Health 2023, 19, 1163–1168. [Google Scholar] [CrossRef]
- van Lopik, K.; Philpott, L.; Forrester, S.; Hayward, S.; West, A.; Conway, P. Countermovement jump performance in elite male and female sprinters and high jumpers. Proc. Inst. Mech. Eng. Part P J. Sports Eng. Technol. 2020, 235, 131–138. [Google Scholar] [CrossRef]
- Molla, R.Y.; Fatahi, A.; Khezri, D.; Ceylan, H.I.; Nobari, H. Relationship between impulse and kinetic variables during jumping and landing in volleyball players. BMC Musculoskelet. Disord. 2023, 24, 619. [Google Scholar] [CrossRef]
- Moeskops, S.; Pedley, J.S.; Oliver, J.L.; Lloyd, R.S. The Influence of Competitive Level on Stretch-Shortening Cycle Function in Young Female Gymnasts. Sports 2022, 10, 107. [Google Scholar] [CrossRef]
- Petrigna, L.; Karsten, B.; Marcolin, G.; Paoli, A.; D’Antona, G.; Palma, A.; Bianco, A. A Review of Countermovement and Squat Jump Testing Methods in the Context of Public Health Examination in Adolescence: Reliability and Feasibility of Current Testing Procedures. Front. Physiol. 2019, 10, 1384. [Google Scholar] [CrossRef]
- Jimenez-Reyes, P.; Samozino, P.; García Ramos, A.; Cuadrado, V.; Brughelli, M.; Morin, J.-B. Relationship between vertical and horizontal force-velocity-power profiles in various sports and levels of practice. PeerJ 2018, 6, e5937. [Google Scholar] [CrossRef]
- Reichardt, C.S.; Little, T.D. Quasi-Experimentation: A Guide to Design and Analysis; The Guilford Press: New York, NY, USA, 2019. [Google Scholar]
- Gay, L.R. Educational Research Competencies for Analysis and Application; Macmillan: New York, NY, USA, 1992. [Google Scholar]
- Sasaki, S.; Tsuda, E.; Yamamoto, Y.; Maeda, S.; Kimura, Y.; Fujita, Y.; Ishibashi, Y. Core-Muscle Training and Neuromuscular Control of the Lower Limb and Trunk. J. Athl. Train. 2019, 54, 959–969. [Google Scholar] [CrossRef]
- Li, K.; Cardoso, C.; Moctezuma-Ramirez, A.; Elgalad, A.; Perin, E. Heart Rate Variability Measurement through a Smart Wearable Device: Another Breakthrough for Personal Health Monitoring? Int. J. Environ. Res. Public Health 2023, 20, 7146. [Google Scholar] [CrossRef]
- Lee, C.H.; Sun, T.L. Evaluation of postural stability based on a force plate and inertial sensor during static balance measurements. J. Physiol. Anthropol. 2018, 37, 27. [Google Scholar] [CrossRef]
- Sannicandro, I.; Cofano, G.; Piccinno, A. Can the Core Stability Training Influences Sprint and Jump Performances in Young Basketball Players? Adv. Phys. Educ. 2020, 10, 196–206. [Google Scholar] [CrossRef]
- Fatahi, F.; Ghasemi, G.; Karimi, M.; Beyranvand, R. The effect of eight weeks of core stability training on the lower extremity joints moment during single-leg drop landing article. Balt. J. Health Phys. Act. 2019, 11, 34–44. [Google Scholar] [CrossRef]
- Ardakani, M.K.; Wikstrom, E.A.; Minoonejad, H.; Rajabi, R.; Sharifnezhad, A. Hop-Stabilization Training and Landing Biomechanics in Athletes With Chronic Ankle Instability: A Randomized Controlled Trial. J. Athl. Train. 2019, 54, 1296–1303. [Google Scholar] [CrossRef]
- Lee, J.; Wang, L.; Zhang, X. Exploring the relationship between core stability and vertical jump in recreationally active male college students based on a suite of novel core stability assessments. Heliyon 2024, 10, e25236. [Google Scholar] [CrossRef]
- Jha, P.; Nuhmani, S.; Kapoor, G.; Al Muslem, W.H.; Joseph, R.; Kachanathu, S.J.; Alsaadi, S.M. Efficacy of core stability training on upper extremity performance in collegiate athletes. J. Musculoskelet. Neuronal Interact. 2022, 22, 498–503. [Google Scholar]
- Quirk, D.A.; Trudel, R.D.; Hubley-Kozey, C.L. Trunk Muscle Activation Patterns Differ Between Those With Low and High Back Extensor Strength During a Controlled Dynamic Task. Front. Sports Act Living 2019, 1, 67. [Google Scholar] [CrossRef]
- Gaamouri, N.; Hammami, M.; Cherni, Y.; Oranchuk, D.J.; Bragazzi, N.; Knechtle, B.; Chelly, M.S.; van den Tillaar, R. The effects of upper and lower limb elastic band training on the change of direction, jump, power, strength and repeated sprint ability performance in adolescent female handball players. Front Sports Act. Living 2023, 5, 1021757. [Google Scholar] [CrossRef]
- Pilanthananond, M.; Tharawadeepimuk, K.; Saengsirisuwan, V.; Limroongreungrat, W. Muscle Activation and Ground Reaction Force between Single-Leg Drop Landing and Jump Landing among Young Females during Weight-Acceptance Phase. Sports 2023, 11, 185. [Google Scholar] [CrossRef]
- Fitzpatrick, D.A.; Cimadoro, G.; Cleather, D.J. The Magical Horizontal Force Muscle? A Preliminary Study Examining the “Force-Vector” Theory. Sports 2019, 7, 30. [Google Scholar] [CrossRef]
- Pérez-Castilla, A.; Rojas, F.J.; Gómez-Martínez, F.; García-Ramos, A. Vertical jump performance is affected by the velocity and depth of the countermovement. Sports Biomech. 2021, 20, 1015–1030. [Google Scholar] [CrossRef]
- Ignatjeva, A. Effect of training load on lower limb power and jumping ability of professional soccer players. World J. Adv. Res. Rev. 2023, 20, 1376–1386. [Google Scholar] [CrossRef]
- Ashby, B.M.; Sohel, A.A.; Alderink, G.J. Effect of arm motion on standing lateral jumps. J. Biomech. 2019, 96, 109339. [Google Scholar] [CrossRef]
- Lee, J.; Lee, Y. Biomechanical Analysis of the Coordinated Movements of the Therapist’s Hands and Feet during Lumbopelvic Manipulation: A Preliminary Study. Healthcare 2023, 11, 3023. [Google Scholar] [CrossRef]
- Aizawa, J.; Ohji, S.; Koga, H.; Masuda, T.; Yagishita, K. Correlations between sagittal plane kinematics and landing impact force during single-leg lateral jump-landings. J. Phys. Ther. Sci. 2016, 28, 2316–2321. [Google Scholar] [CrossRef]
- Hung, C.L.; Hung, M.H.; Chang, C.Y.; Wang, H.H.; Ho, C.S.; Lin, K.C. Influences of Lateral Jump Smash Actions in Different Situations on the Lower Extremity Load of Badminton Players. J. Sports Sci. Med. 2020, 19, 264–270. [Google Scholar]
- García-Ramos, A.; Feriche, B.; Pérez-Castilla, A.; Padial, P.; Jaric, S. Assessment of leg muscles mechanical capacities: Which jump, loading, and variable type provide the most reliable outcomes? Eur. J. Sport Sci. 2017, 17, 690–698. [Google Scholar] [CrossRef]
- McMahon, J.; Suchomel, T.; Lake, J.; Comfort, P. Understanding the Key Phases of the Countermovement Jump Force-Time Curve. Strength Cond. J. 2018, 40, 96–106. [Google Scholar] [CrossRef]
- Maffiuletti, N.A.; Aagaard, P.; Blazevich, A.J.; Folland, J.; Tillin, N.; Duchateau, J. Rate of force development: Physiological and methodological considerations. Eur. J. Appl. Physiol. 2016, 116, 1091–1116. [Google Scholar] [CrossRef]
- Vural, F.; Erman, B.; Ozkol, M.; Akşit, T. The Relationship Between the Force Production in the Isometric Squat and Bench Press Exercises and the Lower and Upper Body Anaerobic Power Parameters. Spor Bilim. Araştırmaları Derg. 2023, 8, 293–305. [Google Scholar] [CrossRef]
- Matijevich, E.S.; Branscombe, L.M.; Scott, L.R.; Zelik, K.E. Ground reaction force metrics are not strongly correlated with tibial bone load when running across speeds and slopes: Implications for science, sport and wearable tech. PLoS ONE 2019, 14, e0210000. [Google Scholar] [CrossRef]
- Weidmann, A.; Taetz, B.; Andres, M.; Laufer, F.; Bleser, G. Force Shadows: An Online Method to Estimate and Distribute Vertical Ground Reaction Forces from Kinematic Data. Sensors 2020, 20, 5709. [Google Scholar] [CrossRef]
- Leblanc, M.; Burdullis, A.; McKinnon, M.; Hawkins, S. Relationship Between Ground Reaction Force Characteristics and Bone Mineral Density of the Hip and Spine in Male Runners. Int. J. Exerc. Sci. 2022, 15, 655–666. [Google Scholar]
- Makino, A.; Yamaguchi, K.; Sumi, D.; Ichikawa, M.; Ohno, M.; Nagano, A.; Goto, K. Ground reaction force and electromyograms of lower limb muscles during fast walking. Front. Sports Act. Living 2022, 4, 1055302. [Google Scholar] [CrossRef]
- Seki, K.; Nagano, T.; Aoyama, K.; Morioka, Y. Squat and Countermovement Vertical Jump Dynamics Using Knee Dominant or Hip Dominant Strategies. J. Hum. Kinet. 2023, 86, 63–71. [Google Scholar] [CrossRef]
- Ide, B.; Silvatti, A.; Staunton, C.; Marocolo, M.; Oranchuk, D.; Mota, G.; Ide; Silvatti, A.; Staunton, C. Explosive is not a Term Defined in the International System of Units and Should not be Used to Describe Neuromuscular Performance. Int. J. Strength Cond. 2023, 3, 1. [Google Scholar] [CrossRef]
- Buckthorpe, M.; Roi, G.S. The time has come to incorporate a greater focus on rate of force development training in the sports injury rehabilitation process. Muscles Ligaments Tendons J. 2017, 7, 435–441. [Google Scholar] [CrossRef]
- Farris, D.; Lichtwark, G.; Brown, N.; Cresswell, A. The role of human ankle plantar flexor muscle-tendon interaction & architecture in maximal vertical jumping examined in vivo. J. Exp. Biol. 2015, 219, 528–534. [Google Scholar] [CrossRef]
- Blache, Y.; Monteil, K. Influence of lumbar spine extension on vertical jump height during maximal squat jumping. J. Sports Sci. 2014, 32, 642–651. [Google Scholar] [CrossRef]
- Blache, Y.; Monteil, K. Effects of spine flexion and erector spinae maximal force on vertical squat jump height: A computational simulation study. Sports Biomech. 2015, 14, 81–94. [Google Scholar] [CrossRef] [PubMed]
- Gallego-Izquierdo, T.; Vidal-Aragón, G.; Calderón-Corrales, P.; Acuña, Á.; Achalandabaso, A.; Aibar, A.; Martínez-Amat, A.; Pecos-Martin, D. Effects of a Gluteal Muscles Specific Exercise Program on the Vertical Jump. Int. J. Environ. Res. Public Health 2020, 17, 5383. [Google Scholar] [CrossRef] [PubMed]
- Van Hooren, B.; Zolotarjova, J. The Difference Between Countermovement and Squat Jump Performances: A Review of Underlying Mechanisms With Practical Applications. J. Strength Cond. Res. 2017, 31, 2011–2020. [Google Scholar] [CrossRef] [PubMed]
- Min, K.E.; Lee, Y.; Park, J. Changes in Spinal-Reflex Excitability during Static Stretch and/or Explosive Contraction. Appl. Sci. 2021, 11, 2830. [Google Scholar] [CrossRef]
- Smrcina, Z.; Woelfel, S.; Burcal, C. A Systematic Review of the Effectiveness of Core Stability Exercises in Patients with Non-Specific Low Back Pain. Int. J. Sports Phys. Ther. 2022, 17, 766–774. [Google Scholar] [CrossRef]
Course | Reps/Round | Training Focus | ||
---|---|---|---|---|
Warm-up | - | Warm up with 10 min of aerobic exercise. | ||
V crunch | 10/1 | 6/2 | 1–3/3 | Slowly lift your legs to an extended position at a 45-degree angle with your torso. Hold this V-shaped position for 1 min to begin. |
Hyperextension | 10/1 | 6/2 | 1–3/3 | Setup in a hyperextension machine with your feet anchored and torso roughly perpendicular to your legs at a 45-degree angle. Begin in a hinged position with your arms crossed and initiate the movement by flexing your glutes. Extend the hips and finish with your body in a straight line. Repeat for the desired number of repetitions. |
Bent over dumbbell reverse fly | 10/1 | 6/2 | 1–3/3 | Stand with feet shoulder-width apart, holding dumbbells at your sides. Press the hips back in a hinge motion, bringing your chest forward and almost parallel to the floor. Let the weights hang straight down (palms facing each other) while maintaining a tight core, straight back, and slight knee bend. |
Contralateral superman | 10/1 | 6/2 | 1–3/3 | Raise your left arm and shoulder and right leg off the floor. Lower your arm, shoulder, and leg to the floor. Repeat by raising and lowering the right arm, shoulder, and left leg. Repeat by alternating between opposite sides. |
Bird dog | 10/1 | 6/2 | 1–3/3 | With your hands under your shoulders and knees under your hips, extend your right leg behind you. At the same time, reach your left arm out in front, parallel to the ground. Hold for one minute, then repeat on the other side. |
Deadlift | 10/1 | 6/2 | 1–3/3 | Lift the weight from the ground to thigh level using primarily your leg and hip muscles. |
Seated cable row | 10/1 | 6/2 | 1–3/3 | The seated cable row develops the muscles of the back and the forearms. The pulldown exercise works the back muscles. |
Triceps pushdown | 10/1 | 6/2 | 1–3/3 | The triceps pushdown is one of the best exercises for the triceps’ development. |
Lat pulldown | 10/1 | 6/2 | 1–3/3 | The pulldown exercise works the back muscles. |
Overhead press | 10/1 | 6/2 | 1–3/3 | It can be done in either a sitting or a standing position, and with dumbbells held horizontally at the shoulders or rotated in a hammer grip (8 kg, 10 kg, 12 kg). |
Kettlebell walk | 3/1 | 2/2 | 1/3 | Hold a kettlebell in each hand and walk 10 m back and forth (8 kg, 10 kg, 12 kg). |
Cool-down | - | Muscle relaxation can use roller stretching or static stretching. |
Variable | EG (n = 15) M ± SD | CG (n = 15) M ± SD | t-Value | p-Value |
---|---|---|---|---|
Age (years) | 22.68 ± 1.19 | 22.63 ± 1.51 | 0.182 | 0.858 |
Height (cm) | 188.09 ± 6.64 | 188.14 ± 6.54 | −0.056 | 0.956 |
Weight (kg) | 85.68 ± 9.13 | 85.74 ± 7.70 | −0.064 | 0.950 |
Basketball experience (years) | 10.31 ± 1.45 | 10.35 ± 1.47 | −0.095 | 0.926 |
Parameters | EG (n = 15) M ± SD | CG (n = 15) M ± SD | F-Value | p-Value |
---|---|---|---|---|
JD (m) | ||||
Pre | 1.455 ± 0.133 | 1.455 ± 0.107 | 2403.13 * | 0.000 |
Post | 1.524 ± 0.139 | 1.457 ± 0.099 | ||
AVG. GRF (N) | ||||
L-Pre | 3572 ± 371 | 743 ± 98 | 919.26 * | 0.000 |
L-Post | 740 ± 93 | 740 ± 90 | ||
R-Pre | 788 ± 105 | 745 ± 96 | 958.07 * | 0.000 |
R-Post | 789 ± 103 | 742 ± 85 | ||
AVG. V-GRF (N) | ||||
Pre | 3296 ± 382 | 3286 ± 364 | 1178.21 * | 0.000 |
Post | 3410 ± 433 | 3295 ± 341 | ||
AVG. R-GRF (N) | ||||
Pre | 3571 ± 401 | 3567 ± 375 | 1269.43 * | 0.000 |
Post | 3690 ± 436 | 3571 ± 363 | ||
AVG. T-PRF (θ) | ||||
L-Pre | 66.78 ± 2.09 | 66.74 ± 2.12 | 48,732.10 * | 0.000 |
L-Post | 66.77 ± 2.08 | 66.79 ± 2.34 | ||
R-Pre | 65.51 ± 2.22 | 66.29 ± 1.75 | 44,547.81 * | 0.000 |
R-Post | 64.90 ± 2.19 | 66.76 ± 2.12 |
Parameters | EG (n = 15) M ± SD | CG (n = 15) M ± SD | F-Value | p-Value |
---|---|---|---|---|
RFD(r) | ||||
Pre | −0.884 ± 0.060 | −0.884 ± 0.0515 | 4002.18 * | 0.000 |
Post | −0.907 ± 0.049 | −0.883 ± 0.0582 | ||
RFD(s) | ||||
Pre | 0.177 ± 0.042 | 0.176 ± 0.041 | 295.14 * | 0.000 |
Post | 0.163 ± 0.040 | 0.175 ± 0.037 | ||
GRF of moment jump (N) | ||||
Pre | 1676 ± 195 | 1676 ± 174 | 1087.93 * | 0.000 |
Post | 1771 ± 268 | 1672 ± 168 | ||
Duration of passage (s) | ||||
Pre | 0.529 ± 0.055 | 0.406 ± 0.087 | 1583.19 * | 0.000 |
Post | 0.571 ± 0.053 | 0.528 ± 0.054 | ||
Jump height (m) | ||||
Pre | 0.405 ± 0.087 | 0.404 ± 0.090 | 327.21 * | 0.000 |
Post | 0.453 ± 0.091 | 0.451 ± 0.086 |
n | Lateral Jump | Vertical Jump | Lateral Jump | Vertical Jump | Lateral Jump | Vertical Jump |
---|---|---|---|---|---|---|
GRF (N) | GRF (N) | Jump Distance | Jump Height | AVG. (θ) | (θ) | |
1 | 1431 | 1614 | 1.45 | 0.489 | 65.1 | 90 |
2 | 1644 | 1706 | 1.48 | 0.479 | 66.6 | 90 |
3 | 1581 | 1663 | 1.46 | 0.506 | 66.8 | 90 |
4 | 1410 | 1591 | 1.45 | 0.557 | 65.8 | 90 |
5 | 1587 | 1675 | 1.55 | 0.457 | 65.7 | 90 |
6 | 1757 | 1853 | 1.72 | 0.482 | 61.2 | 90 |
7 | 1701 | 1812 | 1.78 | 0.629 | 60.8 | 90 |
8 | 1528 | 1624 | 1.58 | 0.511 | 66.6 | 90 |
9 | 1336 | 1565 | 1.57 | 0.464 | 66.7 | 90 |
10 | 1332 | 1554 | 1.76 | 0.501 | 67.3 | 90 |
11 | 1871 | 2269 | 1.44 | 0.364 | 64.1 | 90 |
12 | 1847 | 2117 | 1.41 | 0.313 | 63.8 | 90 |
13 | 1924 | 2373 | 1.38 | 0.295 | 68.6 | 90 |
14 | 1344 | 1579 | 1.31 | 0.301 | 65.2 | 90 |
15 | 1371 | 1578 | 1.52 | 0.453 | 64.2 | 90 |
t = −6.554 * (0.000) | t = 41.692 * (0.000) | t = −44.574 * (0.000) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, W.-Y.; Huang, H.; Wu, C.-E. Differences in the Lateral and Vertical Jump Performances of Elite Male Basketball Players—An Axial Stabilization Training Program. Appl. Sci. 2024, 14, 4832. https://doi.org/10.3390/app14114832
Huang W-Y, Huang H, Wu C-E. Differences in the Lateral and Vertical Jump Performances of Elite Male Basketball Players—An Axial Stabilization Training Program. Applied Sciences. 2024; 14(11):4832. https://doi.org/10.3390/app14114832
Chicago/Turabian StyleHuang, Wei-Yang, Hsuan Huang, and Cheng-En Wu. 2024. "Differences in the Lateral and Vertical Jump Performances of Elite Male Basketball Players—An Axial Stabilization Training Program" Applied Sciences 14, no. 11: 4832. https://doi.org/10.3390/app14114832
APA StyleHuang, W.-Y., Huang, H., & Wu, C.-E. (2024). Differences in the Lateral and Vertical Jump Performances of Elite Male Basketball Players—An Axial Stabilization Training Program. Applied Sciences, 14(11), 4832. https://doi.org/10.3390/app14114832