The Influence of Medial and Lateral Forefoot Height Discrepancy on Lower Limb Biomechanical Characteristics during the Stance Phase of Running
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participant Recruitment and Ethics
2.2. Experimental Shoes
2.3. The Experimental Process
2.4. Data Preprocessing
2.5. Statistical Analysis
3. Results
3.1. Hip Joint
Joint | Variables | Neutral | Medial | Lateral | |||
---|---|---|---|---|---|---|---|
6 mm | 9 mm | 6 mm | 9 mm | ||||
Hip | Sagittal | ROM (°) | 3.26 ± 1.29 | 3.24 ± 1.41 | 3.17 ± 1.39 | 2.99 ± 0.88 | 3.06 ± 0.79 |
Peak angular velocity (rad/s) | 2.74 ± 0.85 | 2.50 ± 0.66 | 2.31 ± 0.32 | 2.59 ± 0.86 | 2.69 ± 0.62 | ||
Peak moment (Nm/kg) | −3.33 ± 1.27 | 3.60 ± 0.69 | −3.31 ± 0.73 | −4.39 ± 0.95 * | −3.94 ± 1.14 | ||
Maximum power (w/kg) | 8.96 ± 3.97 | 7.30 ± 1.78 | 8.43 ± 5.75 | 8.32 ± 5.41 | 9.89 ± 5.85 | ||
Minimum power (w/kg) | −7.70 ± 4.81 | −6.06 ± 2.21 | −5.08 ± 1.69 | −7.06 ± 2.71 | −6.58 ± 3.30 | ||
Positive work (J/kg) | 0.22 ± 0.08 | 0.25 ± 0.13 | 0.28 ± 0.18 | 0.26 ± 0.16 | 0.29 ± 0.17 | ||
Negative work (J/kg) | −0.38 ± 0.23 | −0.29 ± 0.14 | −0.24 ± 0.12 | −0.36 ± 0.17 | −0.33 ± 0.21 | ||
Frontal | ROM (°) | 12.57 ± 4.03 | 10.69 ± 2.76 * | 10.51 ± 3.78 * | 11.19 ± 4.03 | 11.80 ± 3.10 | |
Peak angular velocity (rad/s) | 3.95 ± 1.29 | 3.39 ± 1.00 | 3.31 ± 1.18 | 3.61 ± 1.13 | 3.68 ± 0.93 | ||
Peak moment (Nm/kg) | −1.82 ± 0.31 | −1.78 ± 0.32 | −1.72 ± 0.21 | −1.95 ± 0.21 | −1.98 ± 0.61 | ||
Maximum power (w/kg) | 0.29 ± 0.42 | 0.23 ± 0.60 | 0.21 ± 0.71 | 0.13 ± 0.63 | 0.20 ± 1.08 | ||
Minimum power (w/kg) | −6.33 ± 3.26 | −4.20 ± 1.40 * | −4.09 ± 2.95 * | −5.90 ± 2.32 | −6.12 ± 2.89 | ||
Positive work (J/kg) | 0.01 ± 0.01 | 0.01 ± 0.02 | 0.01 ± 0.02 | 0.01 ± 0.01 | 0.01 ± 0.02 | ||
Negative work (J/kg) | −0.43 ± 0.19 | −0.33 ± 0.09 | −0.34 ± 0.17 | −0.52 ± 0.15 | −0.55 ± 0.23 | ||
Knee | Sagittal | ROM (°) | 33.57 ± 3.19 | 32.70 ± 3.66 | 31.81 ± 4.77 | 31.81 ± 3.56 | 32.97 ± 2.66 |
Peak angular velocity (rad/s) | −11.03 ± 0.74 | −10.92 ± 0.64 | −10.74 ± 0.64 | −11.06 ± 1.05 | −10.85 ± 0.62 | ||
Peak moment (Nm/kg) | −0.64 ± 0.27 | −0.80 ± 0.38 | −0.52 ± 0.50 | −1.19 ± 0.47 * | −0.81 ± 0.41 | ||
Maximum power (w/kg) | 3.84 ± 1.99 | 5.10 ± 2.38 | 4.04 ± 2.40 | 6.83 ± 2.10 * | 5.53 ± 2.83 * | ||
Minimum power (w/kg) | −15.64 ± 2.65 | 14.04 ± 1.55 | −14.55 ± 3.21 | −8.36 ± 4.25 * | −13.53 ± 9.20 | ||
Positive work (J/kg) | 0.20 ± 0.14 | 0.22 ± 0.10 | 0.21 ± 0.18 | 0.38 ± 0.16 * | 0.30 ± 0.28 | ||
Negative work (J/kg) | −1.06 ± 0.24 | −0.93 ± 0.22 | −0.95 ± 0.28 | −0.57 ± 0.31 * | −1.00 ± 0.73 | ||
Ankle | Sagittal | ROM (°) | 11.62 ± 2.64 | 11.67 ± 1.49 | 13.41 ± 3.96 | 10.05 ± 1.52 | 9.90 ± 1.33 |
Peak angular velocity (rad/s) | −5.87 ± 1.03 | −6.48 ± 1.31 | −6.00 ± 1.53 | −6.15 ± 1.78 | −5.63 ± 1.38 | ||
Peak moment (Nm/kg) | −2.30 ± 0.39 | −2.46 ± 0.43 | −2.44 ± 0.42 | −2.69 ± 0.48 | −2.73 ± 0.82 | ||
Maximum power (w/kg) | 2.03 ± 1.79 | 2.67 ± 2.47 | 1.42 ± 1.74 | 3.87 ± 2.89 | 1.48 ± 1.42 | ||
Minimum power (w/kg) | −14.99 ± 4.09 | −13.85 ± 2.27 | −14.60 ± 4.16 | −15.57 ± 4.22 | −15.65 ± 5.27 | ||
Positive work (J/kg) | 0.06 ± 0.05 | 0.10 ± 0.10 | 0.05 ± 0.06 | 0.06 ± 0.02 | 0.06 ± 0.05 | ||
Negative work (J/kg) | −0.67 ± 0.22 | −0.82 ± 0.24 | −0.82 ± 0.24 | −0.79 ± 0.29 | −0.81 ± 0.35 | ||
Frontal | ROM (°) | 6.63 ± 1.69 | 7.21 ± 3.75 | 5.84 ± 1.55 | 8.11 ± 3.85 | 8.04 ± 3.69 | |
Peak angular velocity (rad/s) | −4.08 ± 1.30 | −4.69 ± 2.16 | −4.18 ± 1.70 | −3.02 ± 0.86 * | −4.97 ± 2.57 | ||
Peak moment (Nm/kg) | 0.59 ± 0.53 | 0.63 ± 0.60 | 0.67 ± 0.60 | 0.69 ± 0.59 | 0.71 ± 0.69 | ||
Maximum power (w/kg) | 1.91 ± 1.59 | 1.07 ± 1.04 | 1.73 ± 1.50 | 0.93 ± 0.44 | 0.91 ± 0.74 | ||
Minimum power (w/kg) | −0.90 ± 0.62 | −1.48 ± 1.50 | −0.96 ± 0.60 | −0.65 ± 0.62 | −1.20 ± 1.18 | ||
Positive work (J/kg) | 0.07 ± 0.07 | 0.04 ± 0.05 | 0.07 ± 0.06 | 0.04 ± 0.05 | 0.03 ± 0.05 | ||
Negative work (J/kg) | −0.04 ± 0.03 | −0.10 ± 0.12 | −0.05 ± 0.03 | −0.04 ± 0.04 | −0.10 ± 0.12 |
Joint | Variables | Neutral | Inside | Outside | |||
---|---|---|---|---|---|---|---|
6 mm | 9 mm | 6 mm | 9 mm | ||||
Hip | Sagittal | ROM (°) | 39.46 ± 6.59 | 38.51 ± 4.59 | 38.79 ± 6.12 | 37.24 ± 6.15 | 37.95 ± 6.24 |
Peak angular velocity (rad/s) | −3.00 ± 1.34 | −2.37 ± 1.30 | −3.53 ± 1.31 | −1.93 ± 1.90 * | −3.14 ± 1.36 | ||
Peak moment (Nm/kg) | −3.10 ± 0.48 | −2.89 ± 0.46 | −2.83 ± 0.73 | −3.80 ± 0.56 * | −3.26 ± 0.86 | ||
Maximum power (w/kg) | 15.06 ± 3.78 | 15.31 ± 4.71 | 13.20 ± 6.05 | 19.89 ± 6.04 * | 17.32 ± 7.22 | ||
Minimum power (w/kg) | 7.90 ± 4.00 | 3.92 ± 1.61 * | 5.20 ± 4.71 * | 5.40 ± 5.43 * | 7.61 ± 2.70 | ||
Positive work (J/kg) | 3.48 ± 1.06 | 3.10 ± 1.04 | 2.91 ± 1.75 | 4.52 ± 1.28 * | 3.98 ± 1.61 | ||
Negative work (J/kg) | / | / | / | / | / | ||
Frontal | ROM (°) | 9.52 ± 4.00 | 7.16 ± 3.98 * | 7.19 ± 4.41 * | 8.05 ± 3.88 | 8.29 ± 3.88 | |
Peak angular velocity (rad/s) | 1.61 ± 0.47 | 1.80 ± 0.54 | 1.68 ± 0.58 | 2.13 ± 0.64 * | 1.90 ± 0.55 | ||
Peak moment (Nm/kg) | −1.61 ± 0.13 | −1.35 ± 0.24 * | −1.34 ± 0.24 * | −1.60 ± 0.18 | −1.76 ± 0.43 | ||
Maximum power (w/kg) | 2.19 ± 0.84 | 1.52 ± 0.86 | 1.17 ± 0.33 * | 1.48 ± 0.51 * | 1.67 ± 0.49 | ||
Minimum power (w/kg) | −2.43 ± 0.75 | −2.32 ± 0.67 | −2.16 ± 1.06 | −3.24 ± 0.74 * | −3.22 ± 1.51 * | ||
Positive work (J/kg) | 0.24 ± 0.09 | 0.16 ± 0.11 * | 0.13 ± 0.07 * | 0.17 ± 0.10 | 0.19 ± 0.08 | ||
Negative work (J/kg) | −0.14 ± 0.08 | −0.11 ± 0.06 | −0.13 ± 0.07 | −0.17 ± 0.06 | −0.16 ± 0.07 | ||
Knee | Sagittal | ROM (°) | 25.55 ± 2.95 | 24.89 ± 4.53 | 24.39 ± 2.83 | 22.18 ± 3.96 * | 22.84 ± 2.47 |
Peak angular velocity (rad/s) | 6.89 ± 0.65 | 6.29 ± 1.17 | 6.43 ± 0.60 | 6.23 ± 0.99 * | 6.35 ± 0.54 | ||
Peak moment (Nm/kg) | 1.85 ± 0.27 | 1.61 ± 0.50 | 1.83 ± 0.57 | 1.10 ± 0.54 * | 1.65 ± 1.08 | ||
Maximum power (w/kg) | 5.21 ± 1.80 | 4.50 ± 2.90 | 5.04 ± 3.17 | 2.16 ± 1.38 * | 4.34 ± 3.07 | ||
Minimum power (w/kg) | −5.99 ± 1.54 | −5.02 ± 1.30 | −4.20 ± 1.98 * | −5.25 ± 1.13 | −5.51 ± 2.19 | ||
Positive work (J/kg) | 0.45 ± 0.25 | 0.38 ± 0.32 | 0.55 ± 0.47 | 0.15 ± 0.11 * | 0.38 ± 0.36 | ||
Negative work (J/kg) | −0.48 ± 0.10 | −0.41 ± 0.11 | −0.34 ± 0.23 * | −0.55 ± 0.14 | −0.47 ± 0.32 | ||
Ankle | Sagittal | ROM (°) | 23.45 ± 5.83 | 27.82 ± 7.15 | 29.08 ± 5.96 * | 22.56 ± 4.58 | 24.13 ± 5.38 |
Peak angular velocity (rad/s) | 7.31 ± 0.90 | 6.39 ± 0.63 * | 6.32 ± 1.27 * | 6.64 ± 0.98 * | 6.34 ± 0.95 * | ||
Peak moment (Nm/kg) | −3.08 ± 0.25 | −3.19 ± 0.39 | −3.17 ± 0.41 | −3.33 ± 0.35 | −3.51 ± 0.94 | ||
Maximum power (w/kg) | 17.28 ± 4.31 | 16.40 ± 6.44 | 17.96 ± 6.73 | 14.06 ± 3.23 * | 17.61 ± 6.69 | ||
Minimum power (w/kg) | −16.71 ± 3.95 | −16.26 ± 3.46 | −15.47 ± 4.67 | −18.71 ± 3.63 | −17.84 ± 5.89 | ||
Positive work (J/kg) | 1.62 ± 0.53 | 1.80 ± 0.87 | 2.16 ± 1.06 | 1.42 ± 0.40 | 1.88 ± 0.72 | ||
Negative work (J/kg) | −1.54 ± 0.33 | −1.46 ± 0.45 | −1.23 ± 0.50 * | −1.86 ± 0.35 * | −1.59 ± 0.44 | ||
Frontal | ROM (°) | 6.84 ± 2.04 | 7.89 ± 2.09 | 8.30 ± 2.49 | 5.75 ± 1.73 | 5.58 ± 1.94 | |
Peak angular velocity (rad/s) | 3.68 ± 1.10 | 3.48 ± 0.90 | 3.41 ± 0.89 | 0.92 ± 0.31 * | 3.01 ± 0.90 | ||
Peak moment (Nm/kg) | 0.58 ± 0.66 | 0.66 ± 0.73 | 0.66 ± 0.72 | 0.72 ± 0.67 | 0.78 ± 0.73 | ||
Maximum power (w/kg) | 2.02 ± 1.49 | 2.07 ± 1.50 | 1.89 ± 1.37 | 0.43 ± 0.33 | 1.36 ± 1.83 | ||
Minimum power (w/kg) | −1.42 ± 1.04 | −1.29 ± 1.01 | −0.81 ± 0.59 * | −0.43 ± 0.39 * | −1.26 ± 0.97 | ||
Positive work (J/kg) | 0.16 ± 0.13 | 0.20 ± 0.16 | 0.19 ± 0.15 | 0.04 ± 0.03 * | 0.13 ± 0.12 | ||
Negative work (J/kg) | −0.10 ± 0.07 | −0.09 ± 0.07 | −0.06 ± 0.04 * | −0.03 ± 0.03 * | −0.07 ± 0.06 |
3.2. Knee Joint
3.3. Ankle Joint
Joint | Phase | Condition | Variables | |
---|---|---|---|---|
Hip | Landing | M6 | Frontal | ROM (°) |
Frontal | Minimum power (w/kg) | |||
M9 | Frontal | ROM (°) | ||
Frontal | Minimum power (w/kg) | |||
L6 | Sagittal | Peak moment (Nm/kg) | ||
Push-Off | M6 | Sagittal | Minimum power (w/kg) | |
Frontal | ROM (°) | |||
Peak moment (Nm/kg) | ||||
Positive work (J/kg) | ||||
M9 | Sagittal | Minimum power (w/kg) | ||
Frontal | ROM (°) | |||
Peak moment (Nm/kg) | ||||
Maximum power (w/kg) | ||||
Positive work (J/kg) | ||||
L6 | Sagittal | Peak angular velocity (rad/s) | ||
Peak moment (Nm/kg) | ||||
Maximum power (w/kg) | ||||
Minimum power (w/kg) | ||||
Positive work (J/kg) | ||||
L9 | Frontal | Minimum power (w/kg) | ||
Knee | Landing | L6 | Sagittal | Peak moment (Nm/kg) |
Maximum power (w/kg) | ||||
Minimum power (w/kg) | ||||
Positive work (J/kg) | ||||
Negative work (J/kg) | ||||
L9 | Sagittal | Maximum power (w/kg) | ||
Push-Off | L6 | Sagittal | ROM (°) | |
Peak angular velocity (rad/s) | ||||
Peak moment (Nm/kg) | ||||
Maximum power (w/kg) | ||||
Positive work (J/kg) | ||||
Minimum power (w/kg) | ||||
Negative work (J/kg) | ||||
Ankle | Landing | L6 | Frontal | Peak angular velocity (rad/s) |
Push-off | L6 | Sagittal | Peak angular velocity (rad/s) | |
Maximum power (w/kg) | ||||
Negative work (J/kg) | ||||
Frontal | Peak angular velocity (rad/s) | |||
Minimum power (w/kg) | ||||
Positive work (J/kg) | ||||
Negative work (J/kg) | ||||
M9 | Sagittal | ROM (°) | ||
Peak angular velocity (rad/s) | ||||
Negative work (J/kg) | ||||
Frontal | Minimum power (w/kg) | |||
Negative work (J/kg) |
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Junior, L.C.H.; Costa, L.O.P.; Lopes, A.D. Previous injuries and some training characteristics predict running-related injuries in recreational runners: A prospective cohort study. J. Physiother. 2013, 59, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Bramble, D.M.; Lieberman, D.E. Endurance running and the evolution of Homo. Nature 2004, 432, 345–352. [Google Scholar] [CrossRef]
- Van Gent, R.; Siem, D.; van Middelkoop, M.; Van Os, A.; Bierma-Zeinstra, S.; Koes, B. Incidence and determinants of lower extremity running injuries in long distance runners: A systematic review. Br. J. Sports Med. 2007, 41, 469–480. [Google Scholar] [CrossRef] [PubMed]
- Hamill, J.; Gruber, A.H.; Derrick, T.R. Lower extremity joint stiffness characteristics during running with different footfall patterns. Eur. J. Sport Sci. 2014, 14, 130–136. [Google Scholar] [CrossRef]
- Mei, Q.; Kim, H.K.; Xiang, L.; Shim, V.; Wang, A.; Baker, J.S.; Gu, Y.; Fernandez, J. Toward improved understanding of foot shape, foot posture, and foot biomechanics during running: A narrative review. Front. Physiol. 2022, 13, 1062598. [Google Scholar] [CrossRef]
- Bonacci, J.; Saunders, P.U.; Hicks, A.; Rantalainen, T.; Vicenzino, B.G.T.; Spratford, W. Running in a minimalist and lightweight shoe is not the same as running barefoot: A biomechanical study. Br. J. Sports Med. 2013, 47, 387–392. [Google Scholar] [CrossRef]
- Escamilla-Martínez, E.; Gómez-Martín, B.; Fernández-Seguín, L.M.; Martínez-Nova, A.; Pedrera-Zamorano, J.D.; Sánchez-Rodríguez, R. Longitudinal analysis of plantar pressures with wear of a running shoe. Int. J. Environ. Res. Public Health 2020, 17, 1707. [Google Scholar] [CrossRef]
- Neal, B.S.; Griffiths, I.B.; Dowling, G.J.; Murley, G.S.; Munteanu, S.E.; Franettovich Smith, M.M.; Collins, N.J.; Barton, C.J. Foot posture as a risk factor for lower limb overuse injury: A systematic review and meta-analysis. J. Foot Ankle Res. 2014, 7, 55. [Google Scholar] [CrossRef]
- Malisoux, L.; Chambon, N.; Delattre, N.; Gueguen, N.; Urhausen, A.; Theisen, D. Injury risk in runners using standard or motion control shoes: A randomised controlled trial with participant and assessor blinding. Br. J. Sports Med. 2016, 50, 481–487. [Google Scholar] [CrossRef]
- Nielsen, R.Ø.; Parner, E.T.; Nohr, E.A.; Sørensen, H.; Lind, M.; Rasmussen, S. Excessive progression in weekly running distance and risk of running-related injuries: An association which varies according to type of injury. J. Orthop. Sports Phys. Ther. 2014, 44, 739–747. [Google Scholar] [CrossRef]
- Pohl, M.B.; Buckley, J.G. Changes in foot and shank coupling due to alterations in foot strike pattern during running. Clin. Biomech. 2008, 23, 334–341. [Google Scholar] [CrossRef]
- Bravo-Aguilar, M.; Gijon-Nogueron, G.; Luque-Suarez, A.; Abian-Vicen, J. The influence of running on foot posture and in-shoe plantar pressures. J. Am. Podiatr. Med. Assoc. 2016, 106, 109–115. [Google Scholar] [CrossRef]
- Hollander, K.; Zech, A.; Rahlf, A.L.; Orendurff, M.S.; Stebbins, J.; Heidt, C. The relationship between static and dynamic foot posture and running biomechanics: A systematic review and meta-analysis. Gait Posture 2019, 72, 109–122. [Google Scholar] [CrossRef] [PubMed]
- Kapreli, E.; Athanasopoulos, S. The anterior cruciate ligament deficiency as a model of brain plasticity. Med. Hypotheses 2006, 67, 645–650. [Google Scholar] [CrossRef]
- Deschamps, K.; Dingenen, B.; Pans, F.; Van Bavel, I.; Matricali, G.A.; Staes, F. Effect of taping on foot kinematics in persons with chronic ankle instability. J. Sci. Med. Sport 2016, 19, 541–546. [Google Scholar] [CrossRef] [PubMed]
- De Ridder, R.; Willems, T.; Vanrenterghem, J.; Robinson, M.A.; Roosen, P. Lower limb landing biomechanics in subjects with chronic ankle instability. Med. Sci. Sports Exerc. 2015, 47, 1225–1231. [Google Scholar] [CrossRef]
- Sahabuddin, F.N.A.; Jamaludin, N.I.; Amir, N.H.; Shaharudin, S. The effects of hip-and ankle-focused exercise intervention on dynamic knee valgus: A systematic review. PeerJ 2021, 9, e11731. [Google Scholar] [CrossRef]
- Powers, C.M. The influence of abnormal hip mechanics on knee injury: A biomechanical perspective. J. Orthop. Sports Phys. Ther. 2010, 40, 42–51. [Google Scholar] [CrossRef]
- Sun, X.; Lam, W.-K.; Zhang, X.; Wang, J.; Fu, W. Systematic review of the role of footwear constructions in running biomechanics: Implications for running-related injury and performance. J. Sports Sci. Med. 2020, 19, 20. [Google Scholar]
- Fuller, J.T.; Bellenger, C.R.; Thewlis, D.; Tsiros, M.D.; Buckley, J.D. The effect of footwear on running performance and running economy in distance runners. Sports Med. 2015, 45, 411–422. [Google Scholar] [CrossRef]
- Nigg, B.M.; Emery, C.; Hiemstra, L.A. Unstable shoe construction and reduction of pain in osteoarthritis patients. Med. Sci. Sports Exerc. 2006, 38, 1701–1708. [Google Scholar] [CrossRef]
- Sousa, A.S.; Tavares, J.M.R. Effect of gait speed on muscle activity patterns and magnitude during stance. Mot. Control 2012, 16, 480–492. [Google Scholar] [CrossRef]
- Venkadesan, M.; Yawar, A.; Eng, C.M.; Dias, M.A.; Singh, D.K.; Tommasini, S.M.; Haims, A.H.; Bandi, M.M.; Mandre, S. Stiffness of the human foot and evolution of the transverse arch. Nature 2020, 579, 97–100. [Google Scholar] [CrossRef]
- Hreljac, A. Impact and overuse injuries in runners. Med. Sci. Sports Exerc. 2004, 36, 845–849. [Google Scholar] [CrossRef]
- Liu, Q.; Chen, H.; Song, Y.; Alla, N.; Fekete, G.; Li, J.; Gu, Y. Running velocity and longitudinal bending stiffness influence the asymmetry of kinematic variables of the lower limb joints. Bioengineering 2022, 9, 607. [Google Scholar] [CrossRef]
- Sinclair, J.; Selfe, J. Sex differences in knee loading in recreational runners. J. Biomech. 2015, 48, 2171–2175. [Google Scholar] [CrossRef]
- Hoitz, F.; Mohr, M.; Asmussen, M.; Lam, W.-K.; Nigg, S.; Nigg, B. The effects of systematically altered footwear features on biomechanics, injury, performance, and preference in runners of different skill level: A systematic review. Footwear Sci. 2020, 12, 193–215. [Google Scholar] [CrossRef]
- Langley, B.; Cramp, M.; Morrison, S.C. The Influence of Motion Control, Neutral, and Cushioned Running Shoes on Lower Limb Kinematics. J. Appl. Biomech. 2019, 35, 216–222. [Google Scholar] [CrossRef]
- Lu, J.; Xu, D.; Quan, W.; Baker, J.S.; Gu, Y. Effects of Forefoot Shoe on Knee and Ankle Loading during Running in Male Recreational Runners. Mol. Cell. Biomech. 2022, 19, 61. [Google Scholar] [CrossRef]
- Palomo-Fernández, I.; Martín-Casado, L.; Marcos-Tejedor, F.; Aldana-Caballero, A.; Rubio-Arias, J.Á.; Jiménez-Díaz, J.F. Lateral wedge insoles and their use in ankle instability. Scand. J. Med. Sci. Sports 2023, 33, 1716–1725. [Google Scholar] [CrossRef]
- Jiang, X.; Yang, X.; Zhou, H.; Baker, J.S.; Gu, Y. Prolonged running using bionic footwear influences lower limb biomechanics. Healthcare 2021, 9, 236. [Google Scholar] [CrossRef]
- Koca, B.; Öz, B.; Ölmez, N.; Memış, A. Effect of lateral-wedge shoe insoles on pain and function in patients with knee osteoarthritis. Turk. J. Phys. Med. Rehabil./Turk. Fiz. Tip Rehabil. Derg. 2009, 55, 4. [Google Scholar]
- Hsu, W.-C.; Chou, L.-W.; Chiu, H.-Y.; Hsieh, C.-W.; Hu, W.-P. A Study on the Effects of Lateral-Wedge Insoles on Plantar-Pressure Pattern for Medial Knee Osteoarthritis Using the Wearable Sensing Insole. Sensors 2022, 23, 84. [Google Scholar] [CrossRef]
- Miyazaki, T.; Aimi, T.; Nakamura, Y. Redistribution of knee and ankle joint work with different midsole thicknesses in non-rearfoot strikers during running: A cross-sectional study. Acta Bioeng. Biomech. 2023, 25, 1. [Google Scholar] [CrossRef]
- Ezumi, S.; Iwamoto, Y.; Kawakami, W.; Hashizume, T.; Ota, M.; Ishii, Y.; Ozawa, J.; Takahashi, M. Hip adduction angle during wider step-width gait affects hip adduction moment impulse. Gait Posture 2023, 103, 229–234. [Google Scholar] [CrossRef]
- Ferber, R.; Davis, I.M.; Williams Iii, D.S. Gender differences in lower extremity mechanics during running. Clin. Biomech. 2003, 18, 350–357. [Google Scholar] [CrossRef]
- Murr, S.; Pierce, B. How aging impacts runners’ goals of lifelong running. Phys. Act. Health 2019, 3, 71. [Google Scholar] [CrossRef]
- Ammarullah, M.I.; Santoso, G.; Sugiharto, S.; Supriyono, T.; Wibowo, D.B.; Kurdi, O.; Tauviqirrahman, M.; Jamari, J. Minimizing risk of failure from ceramic-on-ceramic total hip prosthesis by selecting ceramic materials based on tresca stress. Sustainability 2022, 14, 13413. [Google Scholar] [CrossRef]
- Sarikhani, A.; Motalebizadeh, A.; Asiaei, S.; Kamali Doost Azad, B. Studying maximum plantar stress per insole design using foot CT-scan images of hyperelastic soft tissues. Appl. Bionics Biomech. 2016, 2016, 8985690. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, J.; Sun, D.; Xu, Y.; Chen, H.; Zhang, Q.; Baker, J.S.; Gu, Y. The Influence of Medial and Lateral Forefoot Height Discrepancy on Lower Limb Biomechanical Characteristics during the Stance Phase of Running. Appl. Sci. 2024, 14, 5807. https://doi.org/10.3390/app14135807
Cai J, Sun D, Xu Y, Chen H, Zhang Q, Baker JS, Gu Y. The Influence of Medial and Lateral Forefoot Height Discrepancy on Lower Limb Biomechanical Characteristics during the Stance Phase of Running. Applied Sciences. 2024; 14(13):5807. https://doi.org/10.3390/app14135807
Chicago/Turabian StyleCai, Jiachao, Dong Sun, Yining Xu, Hairong Chen, Qiaolin Zhang, Julien S. Baker, and Yaodong Gu. 2024. "The Influence of Medial and Lateral Forefoot Height Discrepancy on Lower Limb Biomechanical Characteristics during the Stance Phase of Running" Applied Sciences 14, no. 13: 5807. https://doi.org/10.3390/app14135807
APA StyleCai, J., Sun, D., Xu, Y., Chen, H., Zhang, Q., Baker, J. S., & Gu, Y. (2024). The Influence of Medial and Lateral Forefoot Height Discrepancy on Lower Limb Biomechanical Characteristics during the Stance Phase of Running. Applied Sciences, 14(13), 5807. https://doi.org/10.3390/app14135807