Innovative Implementation of Computational Fluid Dynamics in Proteins Denaturation Process Prediction in Goose Breast Meat and Heat Treatment Processes Optimization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experiment Design
2.3. The Heat Treatment Process Using CDF Simulation
2.3.1. CFD Description and Implementation
2.3.2. Numerical Model
The Analyzed Space
Mesh
Materials
- p—gas pressure,
- R—gas constant,
- T—temperature,
- Vm—molar volume (V/n),
- a—constant that corrects for attractive potential of molecules,
- b—constant that corrects for volume.
- Humidity
Stages of CFD Analysis
Boundary Conditions and Initial Setup from Ansys
- Determination of Penetration Coefficients
- Vapour density: 0.5163 kg/m3
- Volume fraction: 0.63828
- Air density (Rho air): 0.83419 kg/m3
- Absolute humidity: 0.75998
- Mass mixing ratio: 0.47672
- Steam density (Rho steam): 0.5163 kg/m3
- Volume mixing ratio: 0.63828
- Surface heat transfer coefficient: 31.071 W/(m2 × K)
- II.
- Simulation of Denaturation and Water Extrusion
- Initial temperature of the meat: 298.15 K
- Temperature inside the oven: As specified in the first stage
- Fraction water: 57.93%
- Fraction ash: 0.93%
- Fraction fat: 22.16%
- Fraction CTP (connective tissue proteins): 1.43%
- Fraction protein: 17.55%
- Roasting time: 2000 s
- Roasting time steps: 10 s
- Transient results time step interval: 1 s
- Myosin: 56.65 °C
- Collagen: 63.03 °C
- Actin: 80.46 °C
2.4. Roasting Optimization Using RSM
2.5. Verification of the Predicted Results Using Laboratory Tests
2.5.1. Goose Breast Meat
2.5.2. The Proximate Composition Evaluation
2.5.3. Heat Treatment
2.5.4. The Protein Denaturation Level
2.5.5. Cooking Loss
2.6. Statistics
3. Results and Discussion
3.1. Assessing the Model’s Adequacy
3.2. Thermal Treatment Parameters Optimization
3.3. Verification of Heat Treatment Parameters
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Abbreviation | Full name |
CFD | computational fluid dynamics |
CTP | connective tissue protein |
DSC | differential scanning calorimetry |
GN | gastro norm |
IMCT | intermuscular connective tissue |
LLM | Large language models |
NIR | near-infrared spectrometry |
rpm | revolutions per minute |
RSM | response surface methodology |
Nomenclature | |
λ | conduction coefficient (W/(m⋅K)) |
Cp | specific heat (J/kgK) |
β | heating rate (°C/min) |
Ton | temperature at the start of the reaction (°C) |
Tmax | maximum peak temperature (°C) |
Tend | temperature at the end of the reaction (°C) |
ΔH | enthalpy (J/g) |
X− | mean |
SD | standard deviation |
References
- Damaziak, K.; Stelmasiak, A.; Michalczuk, M.; Wyrwisz, J.; Moczkowska, M.; Marcinkowska-Lesiak, M.M.; Niemiec, J.; Wierzbicka, A. Analysis of Storage Possibility of Raw and Smoked Breast Meat of Oat-Fattened White Kołuda® Goose Based on Their Quality Characteristics. Poult. Sci. 2016, 95, 2186–2197. [Google Scholar] [CrossRef]
- Wojtasik-Kalinowska, I.; Marcinkowska-Lesiak, M.; Onopiuk, A.; Stelmasiak, A.; Szpicer, A.; Holc, D.; Wierzbicka, A.; Poltorak, A. Geese Fillets Flavor Stability and Quality Characteristics at Different Stages of Sous-Vide Cooking. Anim. Sci. Pap. Rep. 2021, 39, 419–435. [Google Scholar] [CrossRef]
- Zhang, H.; Tang, D.; Yang, H.; Liu, X.; Cheng, J.; Wang, X.; Zou, J.; Lin, Y. Effects of High Hydrostatic Pressure Assisted Enzymatic Tenderization on Goose Meat Texture and Myofibril Protein. LWT-Food Sci. Technol. 2023, 184, 114845. [Google Scholar] [CrossRef]
- Weng, K.; Huo, W.; Song, L.; Cao, Z.; Zhang, Y.; Zhang, Y.; Chen, G.; Xu, Q. Effect of Marketable Age on Nutritive Profile of Goose Meat Based on Widely Targeted Metabolomics. LWT-Food Sci. Technol. 2022, 170, 114071. [Google Scholar] [CrossRef]
- Geldenhuys, G.; Hoffman, L.C.; Muller, N. Aspects of the Nutritional Value of Cooked Egyptian Goose (Alopochen Aegyptiacus) Meat Compared with Other Well-Known Fowl Species. Poult. Sci. 2013, 92, 3050–3059. [Google Scholar] [CrossRef]
- Häfner, L.; Kalkhof, S.; Jira, W. Authentication of Nine Poultry Species Using High-Performance Liquid Chromatography–Tandem Mass Spectrometry. Food Control 2021, 122, 107803. [Google Scholar] [CrossRef]
- Wojtasik-Kalinowska, I.; Górska-Horczyczak, E.; Stelmasiak, A.; Marcinkowska-Lesiak, M.; Onopiuk, A.; Wierzbicka, A.; Półtorak, A. Effect of Temperature and Oxygen Dose During Rendering of Goose Fat to Promote Fatty Acid Profiles. Eur. J. Lipid Sci. Technol. 2021, 123, 2100085. [Google Scholar] [CrossRef]
- Nowicka, K.; Jaworska, D.; Przybylski, W.; Górska, E.; Tambor, K.; Półtorak, A. Determinants of the Sensory Quality of Półgȩsek in Relation to Volatile Compounds and Chemical Composition. Pol. J. Food Nutr. Sci. 2017, 67, 283–292. [Google Scholar] [CrossRef]
- Orkusz, A.; Michalczuk, M. Research Note: Effect of Packaging Atmosphere on the Fatty Acid Profile of Intramuscular, Subcutaneous Fat, and Odor of Goose Meat. Poult. Sci. 2020, 99, 647–652. [Google Scholar] [CrossRef]
- Wang, Y.; Li, W.; Zhang, C.; Li, F.; Yang, H.; Wang, Z. Metabolomic Comparison of Meat Quality and Metabolites of Geese Breast Muscle at Different Ages. Food Chem. X 2023, 19, 100775. [Google Scholar] [CrossRef]
- Orkusz, A. Effects of Packaging Conditions on Some Functional and Sensory Attributes of Goose Meat. Poult. Sci. 2018, 97, 2988–2993. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Wang, Y.; Chen, X.; Hu, H.; Chen, X.; Mintah, B.K.; Dabbour, M.; Meng, X.; Zhang, Z.; He, R.; et al. Thawing of Goose Meat by Simultaneous Dual Frequency Ultrasound for Process Efficiency: Thawing Rate, Quality Attributes, Structural Characteristics. Innov. Food Sci. Emerg. Technol. 2024, 92, 103588. [Google Scholar] [CrossRef]
- Wereńska, M.; Okruszek, A. Impact of Frozen Storage on Some Functional Properties and Sensory Evaluation of Goose Meat. Poult. Sci. 2023, 102, 102894. [Google Scholar] [CrossRef] [PubMed]
- Goluch, Z.; Barbara, K.; Haraf, G.; Wołoszyn, J.; Okruszek, A.; Wereńska, M. Impact of Various Types of Heat Processing on the Energy and Nutritional Values of Goose Breast Meat. Poult. Sci. 2021, 100, 101473. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Shi, W.; Wang, Y.; Meng, X.; Dabbour, M.; Kumah Mintah, B.; Chen, X.; Chen, X.; He, R.; Ma, H. Mono-Frequency Ultrasonic-Assisted Thawing of Frozen Goose Meat: Influence on Thawing Efficiency, Product Quality and Microstructure. Ultrason. Sonochem. 2023, 98, 106489. [Google Scholar] [CrossRef] [PubMed]
- Wereńska, M. Comparative Study on the Effects of Sous-Vide, Microwave Cooking, and Stewing on Functional Properties and Sensory Quality of Goose Meat. Poult. Sci. 2023, 102, 103064. [Google Scholar] [CrossRef]
- Wereńska, M.; Haraf, G.; Wołoszyn, J.; Goluch, Z.; Okruszek, A.; Teleszko, M. Fatty Acid Profile and Health Lipid Indicies of Goose Meat in Relation to Various Types of Heat Treatment. Poult. Sci. 2021, 100, 102337. [Google Scholar] [CrossRef] [PubMed]
- Kozák, J. Goose Production and Goose Products. Worlds. Poult. Sci. J. 2021, 77, 403–414. [Google Scholar] [CrossRef]
- Lv, J.M.; Gouda, M.; Zhu, Y.Y.; Ye, X.Q.; Chen, J.C. Ultrasound-Assisted Extraction Optimization of Proanthocyanidins from Kiwi (Actinidia Chinensis) Leaves and Evaluation of Its Antioxidant Activity. Antioxidants 2021, 10, 1317. [Google Scholar] [CrossRef]
- Szpicer, A.; Bińkowska, W.; Wojtasik-Kalinowska, I.; Salih, S.M.; Półtorak, A. Application of Computational Fluid Dynamics Simulations in Food Industry. Eur. Food Res. Technol. 2023, 249, 1411–1430. [Google Scholar] [CrossRef]
- Szpicer, A.; Binkowska, W.; Stelmasiak, A.; Wojtasik-Kalinowska, I.; Wierzbicka, A.; Poltorak, A. Application of Computational Fluid Dynamics Simulation in Predicting Food Protein Denaturation: Numerical Studies on Selected Food Products—A Review. Anim. Sci. Pap. Rep. 2023, 41, 307–332. [Google Scholar] [CrossRef]
- Szpicer, A.; Binkowska, W.; Wojtasik-Kalinowska, I.; Poltorak, A. Prediction of Protein Denaturation and Weight Loss in Pork Loin (Muscle Longissimus Dorsi) Using Computational Fluid Dynamics. Eur. Food Res. Technol. 2023, 249, 3055–3068. [Google Scholar] [CrossRef]
- Szpicer, A.; Binkowska, W.; Wojtasik-Kalinowska, I.; Stelmasiak, A.; Poltorak, A. Hybrid Method for Predicting Protein Denaturation and Docosahexaenoic Acid Decomposition in Atlantic Salmon (Salmo salar L.) Using Computational Fluid Dynamics and Response Surface Methodology. Eur. Food Res. Technol. 2024, 250, 1163–1176. [Google Scholar] [CrossRef]
- Szpicer, A.; Wierzbicka, A.; Półtorak, A. Optimization of Beef Heat Treatment Using CFD Simulation: Modeling of Protein Denaturation Degree. J. Food Process Eng. 2022, 45, e14014. [Google Scholar] [CrossRef]
- Taler, D.; Taler, J.; Trojan, M. The CFD Based Method for Determining Heat Transfer Correlations on Individual Rows of Plate-Fin and Tube Heat Exchangers. In Heat Transfer—Design, Experimentation and Applications; Araiz, M., Ed.; Intechopen: London, UK, 2021; pp. 29–52. [Google Scholar]
- Wołoszyn, J.; Wereńska, M.; Goluch, Z.; Haraf, G.; Okruszek, A.; Teleszko, M.; Król, B. The Selected Goose Meat Quality Traits in Relation to Various Types of Heat Treatment. Poult. Sci. 2020, 99, 7214–7224. [Google Scholar] [CrossRef] [PubMed]
- Okruszek, A.; Wołoszyn, J.; Haraf, G.; Orkusz, A.; Wereńska, M. Chemical Composition and Amino Acid Profiles of Goose Muscles from Native Polish Breeds. Poult. Sci. 2013, 92, 1127–1133. [Google Scholar] [CrossRef]
- Haraf, G.; Wołoszyn, J.; Okruszek, A.; Wereńska, M. Technological Properties, Chemical Composition, Texture Profile, and Sensory Evaluation of Goose Muscles from Polish Native Breeds. Poult. Sci. 2023, 102, 102424. [Google Scholar] [CrossRef]
- Chhanwal, N.; Tank, A.; Raghavarao, K.S.M.S.; Anandharamakrishnan, C. Computational Fluid Dynamics (CFD) Modeling for Bread Baking Process-A Review. Food Bioprocess Technol. 2012, 5, 1157–1172. [Google Scholar] [CrossRef]
- Ishiwatari, N.; Fukuoka, M.; Sakai, N. Effect of Protein Denaturation Degree on Texture and Water State of Cooked Meat. J. Food Eng. 2013, 117, 361–369. [Google Scholar] [CrossRef]
- Alabi, K.P.; Zhu, Z.; Sun, D.W. Transport Phenomena and Their Effect on Microstructure of Frozen Fruits and Vegetables. Trends Food Sci. Technol. 2020, 101, 63–72. [Google Scholar] [CrossRef]
- Zorrilla, S.E.; Rubiolo, A.C. Mathematical Modeling for Immersion Chilling and Freezing of Foods. Part I: Model Development. J. Food Eng. 2005, 66, 329–338. [Google Scholar] [CrossRef]
- Li, R.; Kou, X.; Zhang, L.; Wang, S. Inactivation Kinetics of Food-Borne Pathogens Subjected to Thermal Treatments: A Review. Int. J. Hyperth. 2018, 34, 177–188. [Google Scholar] [CrossRef] [PubMed]
- Sakin, M.; Kaymak-Ertekin, F.; Ilicali, C. Simultaneous Heat and Mass Transfer Simulation Applied to Convective Oven Cup Cake Baking. J. Food Eng. 2007, 83, 463–474. [Google Scholar] [CrossRef]
- Sahin, S.; Servet, G.Ş. Physical Properties of Foods, 1st ed.; Heldman, D.R., Ed.; Springer: Berlin/Heidelberg, Germany, 2006; ISBN 9783642253874. [Google Scholar]
- Singh, R.P.; Heldman, D.R. Introduction to Food Engineering: Fifth Edition; Academic Press: Cambridge, MA, USA, 2014; ISBN 9780123985309. [Google Scholar]
- Bergman, T.L.; Lavine, A.S.; Incropera, F.P.; DeWitt, D.P. Introduction to Heat Transfer, 6th ed.; Wiley: New York, NY, USA, 2011; ISBN 9780470501962. [Google Scholar]
- Markočič, E.; Knez, Ž. Redlich-Kwong Equation of State for Modelling the Solubility of Methane in Water over a Wide Range of Pressures and Temperatures. Fluid Phase Equilib. 2016, 408, 108–114. [Google Scholar] [CrossRef]
- Wagner, W.; Kretzschmar, H.-J. International Steam Tables—Properties of Water and Steam Based on the Industrial Formulation IAPWS-IF97, 2nd ed.; Wagner, W., Kretzschmar, H.-J., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; ISBN 9783642253874. [Google Scholar]
- Mazanowski, A. Breeding and Farming Geese, 1st ed.; Adamski, M., Ed.; APRA: Osielsko, Poland, 2012. [Google Scholar]
- Stelmasiak, A.; Wyrwisz, J.; Wierzbicka, A. Effect of Packaging Methods on Salt-Reduced Smoked-Steamed Ham Using Herbal Extracts. CYTA-J. Food 2019, 17, 834–840. [Google Scholar] [CrossRef]
- Agafonkina, I.V.; Korolev, I.A.; Sarantsev, T.A. The Study of Thermal Denaturation of Beef, Pork, Chicken and Turkey Muscle Proteins Using Differential Scanning Calorimetry. Theory Pract. Meat Process. 2019, 4, 19–23. [Google Scholar] [CrossRef]
- Vaskoska, R.; Ha, M.; Ong, L.; Chen, G.; White, J.; Gras, S.; Warner, R. Myosin Sensitivity to Thermal Denaturation Explains Differences in Water Loss and Shrinkage during Cooking in Muscles of Distinct Fibre Types. Meat Sci. 2021, 179, 108521. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zhu, S.; Li, Q.; Xue, D.; Jiang, S.; Han, Y.; Li, C. Effect of Thermal Processing on the Conformational and Digestive Properties of Myosin. Foods 2023, 12, 1249. [Google Scholar] [CrossRef] [PubMed]
- Latorre, M.E.; Velazquez, D.E. Effects of Thermal Treatment on Collagen Present in Bovine M. Semitendinosus Intramuscular Connective Tissue. Analysis of the Chemical, Thermal and Mechanical Properties. Food Struct. 2021, 27, 100165. [Google Scholar] [CrossRef]
- Purslow, P.P. Contribution of Collagen and Connective Tissue to Cooked Meat Toughness; Some Paradigms Reviewed. Meat Sci. 2018, 144, 127–134. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Z.; Zhang, D.; Pan, T.; Liu, H.; Shen, Q.; Hui, T. Effect of Protein Thermal Denaturation on the Texture Profile Evolution of Beijing Roast Duck. Foods 2022, 11, 664. [Google Scholar] [CrossRef]
- Sun, D.W.; Hu, Z. CFD Predicting the Effects of Various Parameters on Core Temperature and Weight Loss Profiles of Cooked Meat during Vacuum Cooling. Comput. Electron. Agric. 2002, 34, 111–127. [Google Scholar] [CrossRef]
- Ramachandran, R.P.; Akbarzadeh, M.; Paliwal, J.; Cenkowski, S. Computational Fluid Dynamics in Drying Process Modelling—A Technical Review. Food Bioprocess Technol. 2018, 11, 271–292. [Google Scholar] [CrossRef]
- Anandharamakrishnan, C. Computational Fluid Dynamics in Food Processing, 1st ed.; Hartel, R.W., Ed.; Springer: London, UK, 2007; ISBN 9781420009217. [Google Scholar]
- Varga, S.; Oliveira, J.C.; Oliveira, F.A.R. Influence of the Variability of Processing Factors on the F-Value Distribution in Batch Retorts. J. Food Eng. 2000, 44, 155–161. [Google Scholar] [CrossRef]
- Hartmann, C.; Delgado, A. The Influence of Transport Phenomena during High-Pressure Processing of Packed Food on the Uniformity of Enzyme Inactivation. Biotechnol. Bioeng. 2003, 82, 725–735. [Google Scholar] [CrossRef]
- Grijspeerdt, K.; Hazarika, B.; Vucinic, D. Application of Computational Fluid Dynamics to Model the Hydrodynamics of Plate Heat Exchangers for Milk Processing. J. Food Eng. 2003, 57, 237–242. [Google Scholar] [CrossRef]
- Chauhan, A.; Trembley, J.; Wrobel, L.C.; Jouhara, H. Experimental and CFD Validation of the Thermal Performance of a Cryogenic Batch Freezer with the Effect of Loading. Energy 2019, 171, 77–94. [Google Scholar] [CrossRef]
- Verboven, P.; Scheerlinck, N.; De Baerdemaeker, J.; Nicolaï, B.M. Computational Fluid Dynamics Modelling and Validation of the Temperature Distribution in a Forced Convection Oven. J. Food Eng. 2000, 43, 61–73. [Google Scholar] [CrossRef]
- Ramachandran, R.P.; Akbarzadeh, M.; Paliwal, J.; Cenkowski, S. Three-Dimensional CFD Modelling of Superheated Steam Drying of a Single Distillers’ Spent Grain Pellet. J. Food Eng. 2017, 212, 121–135. [Google Scholar] [CrossRef]
- Jamshidi, M.B.; Lalbakhsh, A.; Talla, J.; Peroutka, Z.; Roshani, S.; Matousek, V.; Roshani, S.; Mirmozafari, M.; Malek, Z.; La Spada, L.; et al. Deep Learning Techniques and COVID-19 Drug Discovery: Fundamentals, State-of-the-Art and Future Directions. Stud. Syst. Decis. Control 2021, 348, 9–31. [Google Scholar] [CrossRef]
- Jamshidi, M.; Lalbakhsh, A.; Talla, J.; Peroutka, Z.; Hadjilooei, F.; Lalbakhsh, P.; Jamshidi, M.; Spada, L.L.; Mirmozafari, M.; Dehghani, M.; et al. Artificial Intelligence and COVID-19: Deep Learning Approaches for Diagnosis and Treatment. IEEE Access 2020, 8, 109581–109595. [Google Scholar] [CrossRef]
- Gozalo-Brizuela, R.; Garrido-Merchán, E.C. A Survey of Generative AI Applications. J. Comput. Sci. 2024, 20, 801–818. [Google Scholar] [CrossRef]
- Thirunavukarasu, A.J.; Ting, D.S.J.; Elangovan, K.; Gutierrez, L.; Tan, T.F.; Ting, D.S.W. Large Language Models in Medicine. Nat. Med. 2023, 29, 1930–1940. [Google Scholar] [CrossRef]
- Naveed, H.; Khan, A.U.; Qiu, S.; Saqib, M.; Anwar, S.; Usman, M.; Akhtar, N.; Barnes, N.; Mian, A. A Comprehensive Overview of Large Language Models. arXiv 2023, arXiv:2307.06435. [Google Scholar] [CrossRef]
Run | Process Parameters | ||
---|---|---|---|
Temperature [°C] | Humidity [%] | Fan Rotation Speed [rpm] | |
1 | 190 | 60 | 0 |
2 | 190 | 0 | 0 |
3 C * | 165 | 30 | 700 |
4 | 165 | 60 | 700 |
5 | 165 | 30 | 0 |
6 | 190 | 60 | 1400 |
7 | 140 | 0 | 0 |
8 C | 165 | 30 | 700 |
9 | 190 | 0 | 1400 |
10 | 165 | 30 | 1400 |
11 | 165 | 0 | 700 |
12 | 190 | 30 | 700 |
13 | 140 | 60 | 0 |
14 C | 165 | 30 | 700 |
15 | 140 | 30 | 700 |
16 C | 165 | 30 | 700 |
17 C | 165 | 30 | 700 |
18 C | 165 | 30 | 700 |
19 | 140 | 0 | 1400 |
20 | 140 | 60 | 1400 |
Factor | Myosin Denaturation Level [%] | Collagen Denaturation Level [%] | Actin Denaturation Level [%] | Cooking Loss [%] |
---|---|---|---|---|
Intercept | 97.30 | 87.52 | 19.20 | 21.35 |
Temp | 2.74 *** | 16.96 *** | 23.68 *** | 3.31 *** |
Hum | 2.41 *** | 3.75 *** | 5.69 *** | 0.31 |
Fan | 0.75 | 1.76 * | 3.81 *** | 1.59 |
Temp × Hum | −2.40 ** | −1.35 | 2.27 ** | −0.38 |
Temp × Fan | −0.70 | −0.95 | 2.92 *** | −0.23 |
Hum × Fan | −0.35 | −0.28 | −3.15 *** | 0.16 |
Temp2 | −0.49 | −8.11 *** | 25.91 *** | 0.14 |
Hum2 | −0.24 | 1.04 | −0.94 | 0.34 |
Fan2 | 0.66 | 0.59 | 0.2636 | −0.45 |
R2 | 0.922 | 0.982 | 0.997 | 0.758 |
Lack of fit | 0.237 | 0.228 | 0.158 | 0.139 |
Factors | Optimized Process Parameters | |
---|---|---|
Temperature [°C] | 164.65 | |
Humidity [%] | 63.58 | |
Fan rotation [rpm] | 16.59 | |
Responses | Expected values | Laboratory analyses values |
Myosin denaturation level [%] | 99.42 ± 0.80 | 99.26 ± 0.78 |
Collagen denaturation level [%] | 88.69 ± 0.74 | 87.98 ± 0.82 |
Actin denaturation level [%] | 20.64 ± 0.31 | 21.01 ± 0.47 |
Weight loss [%] | 19.12 ± 0.10 | 18.98 ± 0.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szpicer, A.; Bińkowska, W.; Stelmasiak, A.; Zalewska, M.; Wojtasik-Kalinowska, I.; Piwowarski, K.; Półtorak, A. Innovative Implementation of Computational Fluid Dynamics in Proteins Denaturation Process Prediction in Goose Breast Meat and Heat Treatment Processes Optimization. Appl. Sci. 2024, 14, 5567. https://doi.org/10.3390/app14135567
Szpicer A, Bińkowska W, Stelmasiak A, Zalewska M, Wojtasik-Kalinowska I, Piwowarski K, Półtorak A. Innovative Implementation of Computational Fluid Dynamics in Proteins Denaturation Process Prediction in Goose Breast Meat and Heat Treatment Processes Optimization. Applied Sciences. 2024; 14(13):5567. https://doi.org/10.3390/app14135567
Chicago/Turabian StyleSzpicer, Arkadiusz, Weronika Bińkowska, Adrian Stelmasiak, Magdalena Zalewska, Iwona Wojtasik-Kalinowska, Karol Piwowarski, and Andrzej Półtorak. 2024. "Innovative Implementation of Computational Fluid Dynamics in Proteins Denaturation Process Prediction in Goose Breast Meat and Heat Treatment Processes Optimization" Applied Sciences 14, no. 13: 5567. https://doi.org/10.3390/app14135567
APA StyleSzpicer, A., Bińkowska, W., Stelmasiak, A., Zalewska, M., Wojtasik-Kalinowska, I., Piwowarski, K., & Półtorak, A. (2024). Innovative Implementation of Computational Fluid Dynamics in Proteins Denaturation Process Prediction in Goose Breast Meat and Heat Treatment Processes Optimization. Applied Sciences, 14(13), 5567. https://doi.org/10.3390/app14135567