CNN-BiLSTM-DNN-Based Modulation Recognition Algorithm at Low SNR
Abstract
:1. Introduction
- We combine a CNN, BiLSTM, a DNN, and an attention mechanism in a hybrid neural network architecture to leverage their complementarity and synergy for extracting and classifying spatiotemporal features. The CNN is used to learn the spatial features of I/Q signals. The BiLSTM network can extract bidirectional time series features in the time dimension and effectively avoid the problems of gradient explosion and gradient vanishing, and fully connected (FC) deep neural networks achieve effective feature classification.
- The signal preprocessing (SP) module is used to process the original I/Q signal, which effectively filters out additive white Gaussian noise and lays a solid foundation for subsequent feature extraction.
- By including the attention mechanism module in the model, it is possible to elevate the model’s representation capabilities, minimize the interference caused by invalid targets, enhance the target of interest’s recognition effect, and ultimately elevate the model’s overall performance.
2. Signal Model and Signal Preprocessing
2.1. Signal Model
2.2. Signal Preprocessing
3. AMR Framework
3.1. CNN
3.2. BiLSTM
3.3. Time Attention Mechanism
3.4. Spatial Attention Mechanism
4. Experiment and Conclusion Analysis
4.1. Experimental Data and Parameter Settings
4.2. Analysis of Experimental Results
4.2.1. Recognition Accuracy
4.2.2. Confusion Matrix
4.2.3. Ablation Experiment
4.2.4. Computational Complexity Comparison
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guo, E.; Zhang, H.; Yang, L.; Liu, Y.; Peng, J.; Zhang, L. Radar radiation source signal recognition based on improved residual network. Radio Eng. 2022, 52, 2178–2185. [Google Scholar]
- Ma, J.; Jing, Y.; Yang, Z.; Yang, H.; Wu, Z. ShuffleFormer: An efficient shuffle meta framework for automatic modulation classification. Phys. Commun. 2023, 61, 102226. [Google Scholar] [CrossRef]
- Wu, M.; Gao, Y.; Tu, Y.; Qin, J.; Tang, Z.; Hu, F. Automatic modulation recognition of communication signals based on feature fusion and MACLNN. Radio Eng. 2022, 52, 1970–1976. [Google Scholar]
- Xiao, W.; Luo, Z.; Hu, Q. A review of research on signal modulation recognition based on deep learning. Electronics 2022, 11, 2764. [Google Scholar] [CrossRef]
- Hameed, F.; Dobre, O.A.; Popescu, D.C. On the likelihood-based approach to modulation classification. IEEE Trans. Wirel. Commun. 2009, 8, 5884–5892. [Google Scholar] [CrossRef]
- Zheng, J.; Lv, Y. Likelihood-based automatic modulation classification in OFDM with index modulation. IEEE Trans. Veh. Technol. 2018, 67, 8192–8204. [Google Scholar] [CrossRef]
- Han, L.; Gao, F.; Li, Z.; Dobre, O.A. Low complexity automatic modulation classification based on order-statistics. IEEE Trans. Wirel. Commun. 2016, 16, 400–411. [Google Scholar] [CrossRef]
- Orlic, V.D.; Dukic, M.L. Multipath channel estimation algorithm for automatic modulation classification using sixth-order cumulants. Electron. Lett. 2010, 46, 1. [Google Scholar] [CrossRef]
- Qu, Z.; Mao, X.; Deng, Z. Radar signal intra-pulse modulation recognition based on convolutional neural network. IEEE Access 2018, 6, 43874–43884. [Google Scholar] [CrossRef]
- Downey, J.; Hilburn, B.; O’Shea, T.; West, N. Machine learning remakes radio. IEEE Spectr. 2020, 57, 35–39. [Google Scholar] [CrossRef]
- Hong, S.; Zhang, Y.; Wang, Y.; Gu, H.; Gui, G.; Sari, H. Deep learning-based signal modulation identification in OFDM systems. IEEE Access 2019, 7, 114631–114638. [Google Scholar] [CrossRef]
- Fei, S.C.; Zhang, C.P. Research on Modulation Recognition Method Based on Dual-Channel Fusion Network Model. J. Shenyang Univ. Technol. 2023, 42, 34–39+47. [Google Scholar]
- Wang, X.; Liu, D.; Zhang, Y.; Li, Y.; Wu, S. A spatiotemporal multi-stream learning framework based on attention mechanism for automatic modulation recognition. Digit. Signal Process. 2022, 130, 103703. [Google Scholar] [CrossRef]
- Lin, S.; Zeng, Y.; Gong, Y. Learning of time-frequency attention mechanism for automatic modulation recognition. IEEE Wirel. Commun. Lett. 2022, 11, 707–711. [Google Scholar] [CrossRef]
- Zhang, F.X. Research on Automatic Modulation Recognition Technology Based on Deep Learning. Univ. Electron. Sci. Technol. China 2023. [Google Scholar] [CrossRef]
- Liang, J.; Li, X.; Liang, C.; Tong, H.; Mai, X.; Kong, R. JCCM: Joint conformer and CNN model for overlapping radio signals recognition. Electron. Lett. 2023, 59, e13006. [Google Scholar] [CrossRef]
- Bouvrie, J. Notes on Convolutional Neural Networks. Technical Report, 2006. Available online: https://web-archive.southampton.ac.uk/cogprints.org/5869/1/cnn_tutorial.pdf (accessed on 3 May 2024).
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Fang, C.; Sheng, Z.; Xia, M.; Zhou, H. Radar signal modulation recognition based on CNN-BiLSTM hybrid neural network. Radio Eng. 2024, 54, 1440–1445. [Google Scholar]
- O’Shea, T.J.; West, N. Radio machine learning dataset generation with GNU radio. Proc. GNU Radio Conf. 2016, 1, 1. [Google Scholar]
- Hu, G.; Li, P.; Lin, S.; Zong, B. Automatic modulation recognition algorithm based on phase transformation and CNN-BiLSTM. Telecom Tech. 2024, 1–10. [Google Scholar] [CrossRef]
- Zhang, F.; Luo, C.; Xu, J.; Luo, Y.; Zheng, F.-C. Deep learning based automatic modulation recognition: Models, datasets, and challenges. Digit. Signal Process. 2022, 129, 103650. [Google Scholar] [CrossRef]
- Njoku, J.N.; Morocho-Cayamcela, M.E.; Lim, W. CGDNet: Efficient hybrid deep learning model for robust automatic modulation recognition. IEEE Netw. Lett. 2021, 3, 47–51. [Google Scholar] [CrossRef]
- Liu, X.; Yang, D.; El Gamal, A. Deep neural network architectures for modulation classification. In Proceedings of the 2017 51st Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 29 October–1 November 2017; pp. 915–919. [Google Scholar]
- Xu, J.; Luo, C.; Parr, G.; Luo, Y. A spatiotemporal multi-channel learning framework for automatic modulation recognition. IEEE Wirel. Commun. Lett. 2020, 9, 1629–1632. [Google Scholar] [CrossRef]
- Hermawan, A.P.; Ginanjar, R.R.; Kim, D.S. CNN-based automatic modulation classification for beyond 5G communications. IEEE Commun. Lett. 2020, 24, 1038–1041. [Google Scholar] [CrossRef]
- Oikonomou, T.K.; Evgenidis, N.G.; Nixarlidis, D.G.; Tyrovolas, D.; Tegos, S.A.; Diamantoulakis, P.D.; Sarigiannidis, P.G.; Karagiannidis, G.K. CNN-Based Automatic Modulation Classification Under Phase Imperfections. IEEE Wirel. Commun. Lett. 2024, 13, 1508–1512. [Google Scholar] [CrossRef]
Model | Maximum Accuracy (%) | Average Accuracy (%) |
---|---|---|
CNN-BiLSTM-DNN | 93.79 | 64.76 |
MCLDNN | 93.67 | 64.09 |
MCNet | 89.51 | 60.95 |
CGDNet | 91.21 | 62.13 |
ResNet | 90.99 | 60.78 |
IC-AMCNet | 92.59 | 62.21 |
Model | Maximum Accuracy (%) | Average Accuracy (%) |
---|---|---|
CNN-BiLSTM-DNN | 93.18 | 62.73 |
MCLDNN | 92.77 | 61.75 |
MCNet | 83.50 | 56.20 |
CGDNet | 84.00 | 56.21 |
ResNet | 83.45 | 54.74 |
IC-AMCNet | 84.91 | 56.30 |
Model | Average Accuracy (%) | |||||||
---|---|---|---|---|---|---|---|---|
−10 dB | −8 dB | −6 dB | −4 dB | −2 dB | 0 dB | 2 dB | 4 dB | |
CNN-BiLSTM-DNN | 32.37 | 45.58 | 57.85 | 72.65 | 86.13 | 91.48 | 92.81 | 93.30 |
MCLDNN | 30.14 | 40.02 | 55.30 | 72.10 | 85.47 | 91.14 | 92.52 | 93.26 |
MCNet | 27.82 | 38.86 | 53.03 | 67.85 | 78.71 | 84.74 | 87.38 | 88.48 |
CGDNet | 31.76 | 40.83 | 51.79 | 67.53 | 80.12 | 87.01 | 89.96 | 90.07 |
ResNet | 25.36 | 37.43 | 50.98 | 64.46 | 77.19 | 84.93 | 88.47 | 90.33 |
IC-AMCNet | 24.21 | 37.73 | 54.13 | 68.55 | 81.71 | 88.38 | 90.53 | 91.77 |
Model | Average Accuracy (%) | |||||||
---|---|---|---|---|---|---|---|---|
−10 dB | −8 dB | −6 dB | −4 dB | −2 dB | 0 dB | 2 dB | 4 dB | |
CNN-BiLSTM-DNN | 27.73 | 39.55 | 56.18 | 69.23 | 80.05 | 88.68 | 91.32 | 93.18 |
MCLDNN | 23.50 | 38.09 | 56.32 | 67.27 | 81.05 | 88.36 | 89.59 | 90.86 |
MCNet | 22.45 | 38.00 | 56.00 | 65.27 | 72.45 | 78.23 | 79.09 | 82.27 |
CGDNet | 18.64 | 33.36 | 51.95 | 64.95 | 74.95 | 79.27 | 81.59 | 84.00 |
ResNet | 20.45 | 29.95 | 48.32 | 58.45 | 68.91 | 77.95 | 79.14 | 82.23 |
IC-AMCNet | 19.59 | 33.18 | 53.00 | 63.59 | 73.00 | 80.23 | 81.55 | 84.77 |
Dataset | Model | Highest Accuracy (%) | Average Accuracy (%) |
---|---|---|---|
RadioML2016.10b | With Attention | 93.79 | 64.76 |
Without Attention | 93.53 | 64.25 | |
RadioML2016.10a | With Attention | 93.18 | 62.73 |
Without Attention | 91.32 | 60.98 |
Model | Total Parameter Quantity | Training Time (Second/Epoch) | Training Epochs | Highest Accuracy (%) | Average Accuracy (%) |
---|---|---|---|---|---|
CNN-BiLSTM-DNN | 806,392 | 30 | 69 | 93.18 | 62.73 |
MCLDNN | 406,070 | 20 | 98 | 92.77 | 61.75 |
MCNet | 121,611 | 15 | 101 | 83.50 | 56.20 |
CGDNet | 124,933 | 7 | 188 | 84.00 | 56.21 |
ResNet | 3,098,283 | 25 | 124 | 83.45 | 54.74 |
IC-AMCNet | 1,263,882 | 6 | 235 | 84.91 | 56.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Luo, Z.; Xiao, W. CNN-BiLSTM-DNN-Based Modulation Recognition Algorithm at Low SNR. Appl. Sci. 2024, 14, 5879. https://doi.org/10.3390/app14135879
Zhang X, Luo Z, Xiao W. CNN-BiLSTM-DNN-Based Modulation Recognition Algorithm at Low SNR. Applied Sciences. 2024; 14(13):5879. https://doi.org/10.3390/app14135879
Chicago/Turabian StyleZhang, Xueqin, Zhongqiang Luo, and Wenshi Xiao. 2024. "CNN-BiLSTM-DNN-Based Modulation Recognition Algorithm at Low SNR" Applied Sciences 14, no. 13: 5879. https://doi.org/10.3390/app14135879
APA StyleZhang, X., Luo, Z., & Xiao, W. (2024). CNN-BiLSTM-DNN-Based Modulation Recognition Algorithm at Low SNR. Applied Sciences, 14(13), 5879. https://doi.org/10.3390/app14135879