Functionality of Muffins Fortified with Apple Pomace: Nutritional, Textural, and Sensory Aspects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. The Production of Apple Pomace Powder
2.3. Optimization of the Muffin Formulations with Apple Pomace Powder
2.4. Physicochemical Characterization of the Apple Pomace Powders
2.5. Determination of Total Polyphenol Content by Folin–Ciocâlteu Method
2.6. Determination of the Total Flavonoid Content
2.7. DPPH-Scavenging Activity
2.8. The Antimicrobial Potential and the Microbial Contamination of the Samples
2.9. The Cytotoxic and Anti-Proliferative Potential of the Methanolic Extracts of the by-Products
2.10. Extraction and Analysis of Volatile Compounds Using ITEX/GC-MS Technique
2.11. Characterization of the Muffins Containing Apple Pomace Powder
2.11.1. Textural Analysis
2.11.2. Sensory Evaluation of Different Muffin Prototypes
2.12. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Characterization of the Apple Pomace and the Obtained Powders
3.2. Volatile Compounds Determined from Apple Pomace before and after Its Processing into Powder
3.3. Volatile Compounds Determined in the Muffin Prototypes
3.4. Textural Characterisation of the Muffin Prototypes
3.5. Sensory Evaluation of Different Muffin Prototypes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Musacchi, S.; Serra, S. Apple Fruit Quality: Overview on Pre-Harvest Factors. Sci. Hortic. 2018, 234, 409–430. [Google Scholar] [CrossRef]
- Shalini, R.; Gupta, D.K. Utilization of pomace from apple processing industries: A review. J. Food Sci. Technol. 2010, 47, 365–371. [Google Scholar] [CrossRef]
- Da Costa Branco, P.M.S. Integrated Valorization of Anona cherimola Mill. Seeds. Ph.D. Thesis, Universidade da Madeira, Funchal, Portugal, 2016; pp. 1–239. [Google Scholar]
- Pandey, A.; Negi, P.S. Use of Natural Preservatives for Shelf Life Extension of Fruit Juices. In Fruit Juices; Rajauria, G., Tiwari, B.K., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 571–605. [Google Scholar]
- Perussello, C.A.; Zhang, Z.; Marzocchella, A.; Tiwari, B.K. Valorization of Apple Pomace by Extraction of Valuable Compounds. Compr. Rev. Food Sci. Food Saf. 2017, 16, 776–796. [Google Scholar] [CrossRef] [PubMed]
- Lyu, F.; Luiz, S.F.; Azeredo, D.R.P.; Cruz, A.G.; Ajlouni, S.; Ranadheera, C.S. Apple pomace as a functional and healthy ingredient in food products: A review. Processes 2020, 8, 319. [Google Scholar] [CrossRef]
- Iqbal, A.; Schulz, P.; Rizvi, S.S. Valorization of bioactive compounds in fruit pomace from agro-fruit industries: Present Insights and future challenges. Food Biosci. 2021, 44, 101384. [Google Scholar] [CrossRef]
- Wolfe, K.L.; Liu, R.H. Apple peel as a value-added food ingredient. J. Agric. Food Chem. 2003, 51, 1676–1683. [Google Scholar] [CrossRef] [PubMed]
- Dubois-Deruy, E.; Peugnet, V.; Turkieh, A.; Pinet, F. Oxidative Stress in Cardiovascular Diseases. Antioxidants 2020, 9, 864. [Google Scholar] [CrossRef] [PubMed]
- Schmitz-Eiberger, M.; Weber, V.; Treutter, D.; Baab, G.; Lorenz, J. Bioactive components in fruits from different apple varieties. J. Appl. Bot. 2003, 77, 167–171. [Google Scholar]
- Burda, S.; Oleszek, W.; Lee, C.Y. Phenolic compounds and their changes in apples during maturation and cold storage. J. Agric. Food. Chem. 1990, 38, 945–948. [Google Scholar] [CrossRef]
- Gowe, C. Review on potential use of fruit and vegetables by-products as a valuable source of natural food additives. Food Sci. Qual. Manag. 2015, 45, 47–61. [Google Scholar]
- Rakholiya, K.; Kaneria, M.; Sumitra, C. Vegetable and fruit peels as a novel source of antioxidants. J. Med. Plants Res. 2011, 5, 63–71. [Google Scholar]
- Sudha, M.L.; Baskaran, V.; Leelavathi, K. Apple pomace as a source of dietary fiber and polyphenols and its effect on the rheological characteristics and cake making. Food Chem. 2007, 104, 686–692. [Google Scholar] [CrossRef]
- Elleuch, M.; Bedigian, D.; Roiseux, O.; Besbes, S.; Blecker, C.; Attia, H. Dietary fibre and fibre-rich by-products of food processing: Characterisation, technological functionality and commercial applications: A review. Food Chem. 2011, 124, 411–421. [Google Scholar] [CrossRef]
- Turksoy, S.; Özkaya, B. Pumpkin and carrot pomace powders as a source of dietary fiber and their effects on the mixing properties of wheat flour dough and cookie quality. Food Sci. Technol. Res. 2011, 17, 545–553. [Google Scholar] [CrossRef]
- Yates, M.; Gomez, M.R.; Martin-Luengo, M.A.; Ibañez, V.Z.; Serrano, A.M.M. Multivalorization of apple pomace towards materials and chemicals. Waste to wealth. J. Clean. Prod. 2017, 143, 847–853. [Google Scholar] [CrossRef]
- Vlaic, R.A.; Muresan, V.; Muresan, A.E.; Muresan, C.C.; Paucean, A.; Mitre, V.; Chis, S.M.; Muste, S. The Changes of polyphenols, flavonoids, anthocyanins and chlorophyll content in plum peels during growth phases: From Fructification to Ripening. Not. Bot. Horti Agrobot. 2017, 46, 148. [Google Scholar] [CrossRef]
- Odriozola-Serrano, I.; Soliva-Fortuny, R.; Martín-Belloso, O. Phenolic Acids, Flavonoids, Vitamin C and Antioxidant Capacity of Strawberry Juices Processed by High-Intensity Pulsed Electric Fields or Heat Treatments. Eur. Food Res. Technol. 2008, 228, 239. [Google Scholar] [CrossRef]
- Niculae, M.; Stan, L.; Pall, E.; Paștiu, A.I.; Balaci, I.M.; Muste, S.; Spînu, M. In vitro Synergistic Antimicrobial Activity of Romanian Propolis and Antibiotics against Escherichia coli Isolated from Bovine Mastitis. Not. Bot. Horti Agrobot. Cluj-Napoca 2015, 43, 327–334. [Google Scholar] [CrossRef]
- Radji, M.; Agustama, R.A.; Elya, B.; Tjampakasari, C.R. Antimicrobial activity of green tea extract against isolates of methicillin–resistant Staphylococcus aureus and multi–drug resistant Pseudomonas aeruginosa. Asian Pac. J. Trop. 2013, 3, 663–667. [Google Scholar]
- Chiş, M.S.; Păucean, A.; Man, S.M.; Bonta, V.; Pop, A.M.; Stan, L.; Beldean, B.V.; Pop, C.R.; Mureșan, V.; Muste, S. Effect of rice flour fermentation with Lactobacillus spicheri DSM 1549 on the nutritional features of gluten free muffins. Foods 2020, 9, 822. [Google Scholar] [CrossRef]
- Bhushan, S.; Kalia, K.; Sharma, M.; Singh Band Ahuja, P.S. Processing of apple pomace for bioactive molecules. Crit. Rev. Biotechnol. 2008, 28, 285–296. [Google Scholar] [CrossRef] [PubMed]
- Malinowska, M.; Śliwa, K.; Sikora, E.; Ogonowski, J.; Oszmiański, J.; Kolniak-Ostek, J. Ultrasound-assisted and micelle-mediated extraction as a method to isolate valuable active compounds from apple pomace. J. Food Process. Preserv. 2018, 42, e13720. [Google Scholar] [CrossRef]
- Kołodziejczyk, K.; Markowski, J.; Kosmala, M.; Król, B.; Płocharski, W. Apple pomace as a potential source of nutraceutical products. Pol. J. Food Nutr. Sci. 2007, 57, 291–295. [Google Scholar]
- Gupta, M.B.; Bhalla, T.N.; Gupta, G.P.; Mitra, C.R.; Bhargava, K.P. Anti-inflammatory activity of natural products (I) Triterpenoids. Eur. J. Pharmacol. 1969, 6, 67–70. [Google Scholar] [CrossRef] [PubMed]
- Espino-Díaz, M.; Sepúlveda, D.R.; González-Aguilar, G.; Olivas, G.I. Biochemistry of Apple Aroma: A Review. Food Technol. Biotechnol. 2016, 54, 375–394. [Google Scholar] [CrossRef] [PubMed]
- Panasiuk, O.; Talley, F.B.; Sapers, G.M. Correlation between aroma and volatile composition of McIntosh apples. J. Food Sci. 1990, 45, 989–991. [Google Scholar] [CrossRef]
- Levaj, B.; Dragović-Uzelac, V.; Delonga, K.; Kovačević Ganić, K.; Banović, M.; Bursać Kovačević, D. Polyphenols and Volatiles in Fruits of Two Sour Cherry Cultivars, Some Berry Fruits and Their Jams. Food Technol. Biotechnol. 2010, 48, 538–547. [Google Scholar]
- Kebede, B.; Ting, V.; Eyres, G.; Oey, I. Volatile changes during storage of shelf stable apple juice: Integrating GC-MS fingerprinting and chemometrics. Foods 2020, 9, 165. [Google Scholar] [CrossRef] [PubMed]
- Annan, N.T.; Poll, L.; Sefa-Dedeh, S.; Plahar, W.A.; Jakobsen, M. Volatile compounds produced by Lactobacillus fermentum, Saccharomyces cerevisiae and Candida krusei in single starter culture fermentations of Ghanaian maize dough. J. Appl. Microbiol. 2003, 94, 462–474. [Google Scholar] [CrossRef]
- Purlis, E. Browning development in bakery products—A review. J. Food Eng. 2009, 99, 239–249. [Google Scholar] [CrossRef]
- Boscaino, F.; Cutri, G.; Volpe, M.G.; Blaiotta, G.; Sorrentino, A. Evolution of polyphenols, volatile aroma compounds and natural yeast flora of Coda di Volpe white grape. Chem. Eng. Trans. 2015, 43, 7–12. [Google Scholar]
- Beal, A.D.; Mottram, D.S. Compounds contributing to the characteristic aroma of malted barley. J. Agric. Food Chem. 1994, 42, 2880–2884. [Google Scholar] [CrossRef]
- Pozo-Bayon, M.A.; Ruiz-Rodriguez, A.; Pernin, K.; Cayot, N. Influence of Eggs on the Aroma Composition of a Sponge Cake and on the Aroma Release in Model Studies on Flavored Sponge Cakes. J. Agric. Food Chem. 2007, 55, 1418–1426. [Google Scholar] [CrossRef] [PubMed]
- Katragadda, H.R.; Fullana, A.; Sidhu, S.; Carbonell-Barrachina, Á.A. Emissions of volatile aldehydes from heated cooking oils. Food Chem. 2010, 120, 59–65. [Google Scholar] [CrossRef]
Apple By-Product | Dry Matter [%] | Acidity [%] | Minerals [%] | Fat [%] |
---|---|---|---|---|
Frozen | 21.18 ± 0.53 | 0.95 ± 0.07 | 2.40 ± 0.51 | 2.07 ± 0.13 |
F | 92.21 ± 0.57 | 3.76 ± 0.33 | 4.10 ± 0.81 | 3.62 ± 0.01 |
Dried 80 °C/5 h | 91.90 ± 0.42 | 2.15 ± 0.05 | 3.88 ± 0.10 | 3.52 ± 0.06 |
Apple By-Product | Soluble Substances [°Brix] | DPPH Antioxidant Activity [%] | Total Flavonoid Content [mg QE/100 g] | Total Polyphenolic Content [mg GAE/100 g] |
---|---|---|---|---|
Frozen | 0.50 ± 0.00 | 75.07 ± 0.20 | 578.1 ± 2.30 | 37.59 ± 0.64 |
Dried 50 °C/12 h | 2.00 ± 0.00 | 89.59 ± 0.82 | 1837.64 ± 2.32 | 54.78 ± 1.92 |
Dried 80 °C/5 h | 2.00 ± 0.00 | 92.29 ± 0.27 | 1661.25 ± 1.99 | 51.61 ± 2.56 |
Sample Parameter | Control Methanol | Frozen Apple By-Product | Dried Apple By-Product (50 °C/12 h) | Dried Apple By-Product (80 °C/5 h) |
---|---|---|---|---|
DO repetition 1 | 0.394 | 0.301 | 0.246 | 0.302 |
DO repetition 2 | 0.370 | 0.290 | 0.292 | 0.300 |
Mean of the DO | 0.382 | 0.296 | 0.269 | 0.301 |
% Viability | 100% | 77.36 | 70.42 | 78.80 |
Code | Sample | Salmonella enteritidis | Salmonella typhimurium | Staphylococcus aureus | Bacillus cereus |
---|---|---|---|---|---|
3 | Frozen by-product | - | - | 9.5 ± 0.41 | - |
4 | Dried by-product 80 °C/5 h | - | - | - | 10.5 ± 0.41 |
1 | Dried 50 °C/12 h | 9 ± 0 | - | 10 ± 0.82 | 9.5 ± 0.41 |
Volatile Compounds | Odor Perception | Raw By-Product | Apple Pomace Powder |
---|---|---|---|
Alcohols and aldehydes | |||
2-metil-1-butanol | Wine, Onion | 6.48 | N.D. |
1-pentanol | Balsamine, Oil, Sweet, Chemical Mint | 0.64 | 0.13 |
1-Hexanol | Ethereal, Oil, Alcohol, Green, Fruity, Sweet, Woody, Floral | 18.52 | 20.98 |
1-Dodecanol | Coconut, Earthy, Honey, Soapy, Wax | 0.66 | N.D. |
2-Methyl-1-butanol | Pleasant, Roasted, Wine, Onion, Fruity Fusel Alcoholic Whiskey | N.D. | 3.93 |
1-Octen-3-ol | Mushroom, Green, Vegetative | N.D. | 0.25 |
Aldehydes and Ketones | |||
Hexanal | Fresh, Green/Sharp, Earthy Overall Intensity Good, Green Apple, Fruity, Grass-Like | 51.37 | 24.43 |
2-Hexenal | Apple, Green | 1.44 | N.D. |
Heptanal | Soap, Orange Peel, Tallow | 0.38 | 0.58 |
2-Heptenal | Floral, Green, Fatty | 0.17 | 0.72 |
Benzaldehyde | Almond, String, Sharp, Sweet, Bitter, Cherry | 0.53 | 30.46 |
Nonanal | Aldehydic, Rose, Waxy, Citrus, Orange, Floral | 0.19 | 0.74 |
Octanal | Aldehydic, Waxy, Citrus, Orange Peel, Green, Fatty | N.D. | 0.22 |
2-Octenal, (E)- | Fresh Cucumber, Fatty, Herbal, Banana, Waxy, Green Leaf | N.D. | 0.27 |
5-Hepten-2-one | Citrus, Green, Musty, Lemongrass, Apple | 4.97 | 1.29 |
Acetophenone | Floral, Amond | 0.12 | N.D. |
ethanone, 1-[4-(1-methylethyl)phenyl] | Musk-related odors | N.D. | 0.46 |
Terpenes and terpenoids | |||
beta-Myrcene | Balsamic, Must, Spice | 0.14 | N.D. |
Limonene | Citrus, Mint | 0.57 | N.D. |
alpha-Farnesene | Mild, Green-Floral, Herbaceous, Sweet, Warm, Woody | 0.67 | N.D. |
alpha-Pinene | Pine, Turpentine | 0.21 | |
beta-Pinene | Fresh Minty, Eucalyptus, Camphoraceous note with a spicy, peppery nutmeg nuance | N.D. | 0.2 |
p-Cymene | Fruity, Sweet | N.D. | 0.11 |
D-Limonene | Lemon, Orange | N.D. | 5.36 |
Eucalyptol | Liquor, Mint, Pine | N.D. | 0.14 |
beta-Linalool | Nf | N.D. | 0.29 |
alpha-Terpineol | Oily, Anise, Minty, Peach-Like | N.D. | 0.31 |
Acids | |||
Butanoic acid, ethyl ester | Green Grass, Fruit | 0.42 | N.D. |
Butanoic acid, propyl ester | Nf | 0.28 | N.D. |
Butanoic acid, butyl ester | Nf | 0.91 | N.D. |
Butyl 2-methyl butanoate | Nf | 1.43 | N.D. |
n-Butyric acid 2-ethylhexyl ester | Nf | 0.55 | N.D. |
Butanoic acid | Rancid, Cheese | 1.4 | N.D. |
Benzoic Acid | Faint Balsam, Urine, Wine-Like, Very Weak | 0.11 | N.D. |
Butanoic acid, hexyl ester | Sweet, Slightly Waxy, Fruity, Apple, Apple Peel Aroma | 4.44 | N.D. |
Hexanoic acid | Sour, Fat, Sweat, Cheesy | 2.61 | 0.22 |
Octanoic acid, hexyl ester | Nf | 0.11 | N.D. |
Propanoic acid | Pungent, Rancid, Soy | 0.16 | 0.17 |
Acetic acid, hexyl ester | Sharp, Acrid, Vinegar, Sour | N.D. | 0.2 |
Miscellaneous compound | |||
Toluene | Nf | N.D. | 0.13 |
Furfural | Sweet Woody, Almond, Fragrant, Baked Bread | N.D. | 5.19 |
2-Pentylfuran | Sweet | N.D. | 1.6 |
Styrene | Sweet, Balsamic, Floral, Plastic | 0.44 | N.D. |
Isopentyl hexanoate | Sweet, Fruity | 0.08 | N.D. |
Volatile Compounds | Odor Perception | M_W0 | M_WB10% | M_WB20% | M_WB30% | M_WB40% |
---|---|---|---|---|---|---|
Alcohols and aldehydes | ||||||
Hexanal | Fresh, Green, Fatty, Fruity, Sweaty, Aldehydic, Grass, Leafy | 1.29 | 1.38 | 1.4 | 1.18 | 1.18 |
Heptanal | Soap, Orange Peel, Tallow, | 0.29 | N.D. | N.D. | N.D. | N.D. |
Octanal | Aldehydic, Waxy Citrus, Green Orange Peel | 0.2 | N.D. | N.D. | N.D. | N.D. |
2-Methyl propanal | Fresh Sweet, Mint, Floral | 0.11 | 0.12 | 0.13 | 0.12 | 0.13 |
2-Methyl butanal | Musty, Cocoa, Coffee, Nutty | 0.32 | 0.33 | 0.33 | 0.32 | 0.33 |
3-Methyl butanal | Ethereal, Aldehydic, Chocolate, Peach, Fatty | 0.79 | 0.80 | 0.79 | 0.80 | 0.80 |
Maltol | Sweet, Caramel, Cotton Candy, Jam, Fruity, Baked Bread | 0.05 | 0.06 | 0.06 | 0.05 | 0.06 |
Terpenes and terpenoids | ||||||
beta-Myrcene | Balsamic, Must, Spice | 3.07 | 2.68 | 3.12 | 2.66 | 2.64 |
alpha-Pinene | Pine, Turpentine | 1.18 | 1.27 | 0.83 | 0.89 | 0.70 |
beta-Pinene | Fresh Minty, Eucalyptus, Camphoraceous note with a spicy, peppery, nutmeg nuance | 2.00 | 1.74 | 1.43 | 1.58 | 1.23 |
p-Cymene | Citrus, Sweet, Herbal, Spicy | 1.95 | 2.36 | 1.47 | 2.36 | 2.11 |
D-Limonene | Lemon, Orange, Fresh Sweet | 84.64 | 83.67 | 86.97 | 87.04 | 87.52 |
Eucalyptol | Liquor, Mint, Pine | 0.07 | N.D. | N.D. | N.D. | N.D. |
alpha-Thujene | 0.49 | 0.55 | 0.35 | 0.35 | 0.32 | |
gamma-Terpinene | Turpentine, Herbaceous, Fruity, Sweet | 1.35 | 1.46 | 1.32 | 0.6 | 1.64 |
Acids | ||||||
Propanoic acid | Pungent, Rancid, Soy | 1.33 | 2.83 | 1.07 | 1.12 | 0.59 |
Miscellaneous compound | ||||||
Toluene | Nf | 0.09 | N.D. | N.D. | N.D. | N.D. |
Parameters | Muffin Samples | ||||
---|---|---|---|---|---|
M_W0 | M_WB10% | M_WB20% | M_WB30% | M_WB40% | |
Firmness [g] | 1055 | 754 | 1497 | 1757 | 1980 |
Total work [mJ] | 162.0 | 111.7 | 238.5 | 254.6 | 283.7 |
Fracturability [g] | 1055 | 750 | 1459 | 1757 | 1994 |
Deformation [%]—first fracture | 17.9 | 21.5 | 19.0 | 22.1 | 23.2 |
Peak load [dyn/cm2] | 23,418.6 | 16,737.1 | 33,230.0 | 39,001.4 | 42,300.2 |
Consistency [g] | 721 | 573 | 629 | 907 | 1124 |
Work done in cycle 2 [mJ] | 52.6 | 41.0 | 46.5 | 67.6 | 89.39 |
Elasticity | 0.75 | 0.82 | 0.72 | 0.73 | 0.75 |
Cohesiveness | 0.29 | 0.33 | 0.17 | 0.23 | 0.30 |
Gumminess [g] | 309 | 246 | 250 | 409 | 598 |
Chewiness [mJ] | 40.0 | 35.0 | 35.9 | 50.8 | 80.23 |
Mean consistency load [g] | 888 | 664 | 1063 | 1332 | 1690 |
Muffin Samples | Color | Taste | Aroma | Texture | Overall Acceptability |
---|---|---|---|---|---|
M_W0 | 8.04 ± 0.8 a | 7.66 ± 1.46 a | 8.04 ± 1.16 a | 8.57 ± 0.59 a | 8.19 ± 0.81 a |
M_WB10% | 7.85 ± 1.06 a | 7.90 ± 0.70 a | 8.00 ± 0.83 a | 8.42 ± 0.59 a | 7.90 ± 0.62 a |
M_WB 20% | 7.71 ± 1.00 a | 7.76 ± 0.76 a | 7.90 ± 0.83 a | 8.38 ± 0.66 a | 8.09 ± 0.76 a |
M_WB 30% | 7.71 ± 1.18 a | 7.71 ± 1.05 a | 7.71 ± 1.14 a | 8.33 ± 0.65 a | 8.00 ± 0.88 a |
M_WB 40% | 7.61 ± 1.20 a | 7.66 ± 1.31 a | 7.42 ± 1.28 a | 8.28 ± 0.64 a | 7.71 ± 1.18 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mureșan, A.E.; Man, S.; Socaci, S.A.; Pușcaș, A.; Tanislav, A.E.; Pall, E.; Mureșan, V.; Cerbu, C.G. Functionality of Muffins Fortified with Apple Pomace: Nutritional, Textural, and Sensory Aspects. Appl. Sci. 2024, 14, 6439. https://doi.org/10.3390/app14156439
Mureșan AE, Man S, Socaci SA, Pușcaș A, Tanislav AE, Pall E, Mureșan V, Cerbu CG. Functionality of Muffins Fortified with Apple Pomace: Nutritional, Textural, and Sensory Aspects. Applied Sciences. 2024; 14(15):6439. https://doi.org/10.3390/app14156439
Chicago/Turabian StyleMureșan, Andruța E., Simona Man, Sonia A. Socaci, Andreea Pușcaș, Anda Elena Tanislav, Emoke Pall, Vlad Mureșan, and Constantin G. Cerbu. 2024. "Functionality of Muffins Fortified with Apple Pomace: Nutritional, Textural, and Sensory Aspects" Applied Sciences 14, no. 15: 6439. https://doi.org/10.3390/app14156439