Global Phenolic Composition and Antioxidant Capacity of Extracts from the Endophytic Fungi Cophinforma mamane with Potential Use in Food Systems: The Effects of Time, Temperature, and Solvent on the Extraction Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Chemicals
2.2. Endophytic Fungi
2.3. Production of Fungal Metabolites
2.4. Extraction of Fungal Metabolites
2.5. Global Phenolic Content
2.6. Antioxidant Assays
2.7. Chemical Profile of the Fungal Extract
2.8. Individual Phenolic Acid Profile of the Fungal Extract
2.9. Lipid Oxidation Protection Assay
2.10. Statistical Analysis
3. Results
3.1. Total Phenolic Content
3.2. Antioxidant Capacity
3.3. Global Phenol Content
3.4. Chemical Profile of the Fungal Extract
3.5. Individual Phenolic Acids of the Fungal Extract
3.6. Lipid Oxidation Protection
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vuolo, M.M.; Lima, V.S.; Maróstica, M.R., Jr. Phenolic compounds: Structure, classification, and antioxidant power. In Bioactive Compounds: Health Benefits and Potential Applications; Campos, M.R.S., Ed.; Woodhead Publishing: Oxford, UK, 2019; pp. 33–50. [Google Scholar]
- Abbas, O.; Compère, G.; Larondelle, Y.; Pompeu, D.; Rogez, H.; Baeten, V. Phenolic compound explorer: A mid-infrared spectroscopy database. Vib. Spectrosc. 2017, 92, 111–118. [Google Scholar] [CrossRef]
- Wong, D.W.S.; Lorenzo, P.L. Quimica de los Alimentos: Mecanismos y Teoria; Acribia: Zaragoza, Spain, 1995; pp. 1–10. [Google Scholar]
- Chorilli, M.; Leonardi, G.; Salgado, H.R.N. Free radicals and antioxidant agents: Concepts to applicationin pharmaceutical and cosmetic formulations. Rev. Bras. Farm. 2007, 88, 113–118. [Google Scholar]
- Lin, D.; Xiao, M.; Zhao, J.; Li, Z.; Xing, B.; Li, X.; Kong, M.; Li, L.; Zhang, Q.; Yaowen, L.; et al. An overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes. Molecules 2016, 21, 1374. [Google Scholar] [CrossRef] [PubMed]
- De la Rosa, L.A.; Moreno-Escamilla, J.O.; Rodrigo-García, J.; Alvarez-Parilla, E. Phenolic compounds. In Postharvest Physiology and Biochemistry of Fruits and Vegetables; Yahia, E.M., Ed.; Woodhead Publishing: Oxford, UK, 2019; pp. 253–271. [Google Scholar]
- Zimowska, B.; Bielecka, M.; Abramczyk, B.; Nicoletti, R. Bioactive products from endophytic fungi of Sages (Salvia spp.). Agriculture 2020, 10, 543. [Google Scholar] [CrossRef]
- Basappa, K.S.; Raghava, S.; Umesha, S. Potential of endophytic fungus untapped, including novel bioactive compounds. Pharmacog. Com. 2023, 13, 50–63. [Google Scholar] [CrossRef]
- Fadiji, A.E.; Babalola, O.O. Elucidating mechanisms of endophytes used in plant protection and other bioactives with multifunctional prospects. Front. Bioeng. Biotecnol. 2020, 8, 467. [Google Scholar]
- Zhang, J.; Zhu, Y.; Si, J.; Wu, L. Metabolites of medicine food homology-derived endophytic fungi and their activities. Curr. Res. Food Sci. 2022, 5, 1882–1896. [Google Scholar] [CrossRef]
- Jha, P.; Kaur, T.; Chhabra, I.; Panja, A.; Paul, S.; Kumar, V.; Malik, T. Endophytic fungi: Hidden treasure chest of antimicrobial metabolites interrelationship of endophytes and metabolites. Front. Microbiol. 2023, 14, 1227830. [Google Scholar] [CrossRef]
- Fearnside, M.P. The intrinsic value of Amazon biodiversity. Biodivers. Conserv. 2021, 30, 1199–1202. [Google Scholar] [CrossRef]
- Phillips, A.J.L.; Alves, A.; Abdollahzadeh, J.; Slippers, B.; Wingfield, M.J.; Groenewald, J.Z.; Crous, P.W. The Botryosphaeriaceae: Genera and species known from culture. Stud. Mycol. 2013, 76, 51–167. [Google Scholar] [CrossRef]
- Gurgel, R.S.; Pereira, D.I.M.; Garcia, A.V.F.; Souza, A.T.F.; Silva, T.M.; Andrade, C.P.; Silva, W.L.; Nunez, C.V.; Fantin, C.; Procópio, R.E.L.; et al. Antimicrobial and antioxidant activities of endophytic fungi associated with Arrabidaea chica (Bignoniaceae). J. Fungi 2023, 9, 864. [Google Scholar] [CrossRef] [PubMed]
- Alara, O.R.; Abdurahman, N.H.; Ukaegbu, C.I. Extraction of phenolic compounds: A review. Curr. Res. Food Sci. 2021, 4, 200–214. [Google Scholar] [CrossRef] [PubMed]
- Pereira, D.I.M.; Gurgel, R.S.; Souza, A.T.F.; Matias, R.R.; Falcão, L.S.; Chaves, F.C.M.; Silva, G.F.; Martínez, J.G.; Procópio, R.E.L.; Fantin, C.; et al. Isolation and identification of pigment-producing endophytic fungi from the Amazonian species Fridericia chica. J. Fungi. 2024, 10, 77. [Google Scholar] [CrossRef]
- Castellani, A. Viability of some pathogenic fungi in distilled water. J. Trop. Med. Hyg. 1939, 42, 225–226. [Google Scholar]
- Bose, P.; Gowrie, S.U.; Chathurdevi, G. Optimization of culture conditions of growth and production of bioactive metabolites by endophytic fungus—Aspergillus tamarii. Int. J. Pharm. Biol. Sci. 2019, 9, 469–478. [Google Scholar]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Viticult. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Ribéreau-Gayon, P.; Glories, Y.; Maujean, A.; Dubourdieu, D. Handbook of Enology—The Chemistry of Wine Stabilization and Treatments, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2007; Volume 2. [Google Scholar]
- Kramling, T.E.; Singleton, V.L. An estimate of the nonflavonoid phenols in wines. Am. J. Enol. Viticult. 1969, 20, 86–92. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. Lebensm. Wiss. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying and improved ABTS radical cátion decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a measure of “Antioxidant Power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Lopes, J.L.C. Cromatografia em Camada Delgada. In Fundamentos de Cromatografia; Collins, C.H., Braga, G.L., Bonato, P.S., Eds.; Editora da Unicamp: Campinas, Brazil, 2006; pp. 67–86. [Google Scholar]
- Whelan, L.C.; Geary, M.; Healy, J. A novel, simple rapid reverse-phase HPLC-DAD analysis, for the simultaneous determination of phenolic compounds and abscisic acid commonly found in foodstuff and beverages. J. Chromatogr. Sci. 2022, 60, 648–654. [Google Scholar] [CrossRef]
- Commission Regulation (EEC) No. 2568 of 11 July 1991. Concerning the Characteristics of Olive Oils and Olive Pomace Oils, as Well as Related Methods of Analysis; FAO: Rome, Italy, 1991.
- Tousif, M.I.; Tauseef, S.; Nabeelah, S.; Sharmeen, J.; Zengin, G.; Legoabe, L.; Imran, M.; Mahomoodal, M.F. Phenolics from endophytic fungi as natural α-glucosidase inhibitors: A comprehensive review. J. Mol. Struct. 2023, 1291, 135852. [Google Scholar] [CrossRef]
- Vu, T.H.N.; Pham, N.S.; Quach, N.T.; Le, P.C.; Pham, Q.A.; Ngo, C.C.; Nguyen, V.T.; Anh, D.H.; Quang, T.H.; Chu, H.H.; et al. Fusarium foetens AQF6 isolated from Amentotaxus ynnanensis H.L.Li as a prolific source of antioxidant compounds. Appl. Sci. 2024, 14, 2048. [Google Scholar] [CrossRef]
- Singh, V.K.; Kumar, A. Secondary metabolites from endophytic fungi: Production, methods of analysis, and diverse pharmaceutical potential. Symbiosis 2023, 90, 111–125. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, P.L.N.; Silva, E.O.; Chagas-Paula, D.A.; Luiz, J.H.H.; Ikegaki, M. Importance and implications of the production of phenolic secondary metabolites by endophytic fungi: A mini-review. Mini Rev. Med. Chem. 2016, 16, 259–271. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.W.; Lin, L.G.; Ye, W.C. Techniques for extraction and isolation of natural products: A comprehensive review. Chin. Med. 2018, 13, 20. [Google Scholar] [CrossRef]
- Shi, L.; Zhao, W.; Yang, Z.; Subbiah, V.; Suleria, H.A.R. Extraction and characterization of phenolic compounds and their potential antioxidant activities. Environ. Sci. Pollut. Res. Int. 2022, 29, 81112–81129. [Google Scholar] [CrossRef]
- Silva, M.H.R.; Cueva-Yesquén, L.G.; Boaventura, S.B., Jr.; Garcia, V.L.; Sartoratto, A.; Angelis, D.F.; Angelis, D.A. Endophytic fungi from Passiflora incarnata: An antioxidant compound source. Arch. Microbiol. 2020, 202, 2779–2789. [Google Scholar] [CrossRef]
- Tang, Z.; Qin, Y.; Chen, W.; Zhao, Z.; Lin, W.; Xiao, Y.; Chen, H.; Liu, Y.; Chen, H.; Bu, T.; et al. Diversity, chemical constituents, and biological activities of endophytic fungi isolated from Ligusticum chuanxiong Hort. Front. Microbiol. 2021, 12, 771000. [Google Scholar] [CrossRef]
- Jamal, H.A.A.; Husaini, A.; Sing, N.N.; Roslan, H.A.; Zulkharnain, A.; Akinkunmi, W.A. Characterization of bioactive compounds produced by endophytic fungi isolated from Gynura procumbens (Sambung Nyawa). Braz. J. Microbiol. 2022, 53, 1857–1870. [Google Scholar] [CrossRef]
- Rocha, P.S.; Paula, V.M.B.; Olinto, S.C.F.; Santos, E.L.; Souza, K.P.; Estevinho, L.M. Diversity, chemical constituents and biological activities of endophytic fungi isolated from Schinus terebinthifolius Raddi. Microorganisms 2020, 8, 859. [Google Scholar] [CrossRef] [PubMed]
- Aguirre, J.J.; Toledo, H.L.G.; Cruz, A.Z.; Belmares, R.C.; Aguilar, N.C. The optimization of phenolic compounds extraction from cactus pear (Opuntia ficus-indica) skin in a reflux system using response surface methodology. Asian Pac. J. Trop. Biomed. 2013, 3, 436–442. [Google Scholar]
- Kaur, N.; Arora, D.S.; Kalia, N.; Kaur, M. Antibiofilm, antiproliferative, antioxidant and antimutagenic activities of an endophytic fungus Aspergillus fumigatus from Moringa oleifera. Mol. Biol. Rep. 2020, 47, 2901–2911. [Google Scholar] [CrossRef] [PubMed]
- Shen, N.; Chen, Z.; Cheng, G.; Lin, W.; Qin, Y.; Xiao, Y.; Chen, H.; Tang, Z.; Li, Q.; Yuan, M.; et al. Diversity, chemical constituents and biological activities of endophytic fungi from Alisma orientale (Sam.) Juzep. Front. Microbiol. 2023, 14, 1190624. [Google Scholar] [CrossRef]
- Kadar, N.N.M.A.; Ahmad, F.; Teoh, S.L.; Yahaya, M.F. Caffeic acid on metabolic syndrome: A review. Molecules 2021, 26, 5490. [Google Scholar] [CrossRef]
- Espíndola, K.M.M.; Ferreira, R.G.; Narvaez, L.E.M.; Rosario, A.C.R.S.; Silva, A.H.M.; Silva, A.G.B.; Vieira, A.P.O.; Monteiro, M.C. Chemical and pharmacological aspects of caffeic acid and its activity in hepatocarcinoma. Front. Oncol. 2019, 9, 541–551. [Google Scholar] [CrossRef]
- Xu, D.P.; Li, Y.; Meng, X.; Zhou, T.; Zhou, Y.; Zheng, J.; Zhang, J.J.; Li, H.B. Natural antioxidants in foods and medicinal plants: Extraction, assessment and resources. Int. J. Mol. Sci. 2017, 18, 96. [Google Scholar] [CrossRef]
- Correia, A.C.; Jordão, A.M. Antioxidant capacity, radical scavenger activity, lipid oxidation protection analysis and antimicrobial activity of red grape extracts from different varieties cultivated in Portugal. Nat. Prod. Res. 2015, 29, 438–440. [Google Scholar] [CrossRef]
- ANVISA—Agência Nacional de Vigilância Sanitária. Resolução da Diretoria Colegiada (RDC) nº 740 de 9 de Agosto de 2022. Autoriza o Uso de Aditivos Alimentares e Coadjuvantes de Tecnologia em Diversas Categorias de Alimentos; ANVISA: Brasília, Brazil, 2022. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gurgel, R.S.; Pereira, D.I.M.; Martins, B.; Falcão, L.S.; Lacerda, C.D.; Neves, C.M.B.; Pinto, A.F.; Jordão, A.M.; Albuquerque, P.M. Global Phenolic Composition and Antioxidant Capacity of Extracts from the Endophytic Fungi Cophinforma mamane with Potential Use in Food Systems: The Effects of Time, Temperature, and Solvent on the Extraction Process. Appl. Sci. 2024, 14, 8784. https://doi.org/10.3390/app14198784
Gurgel RS, Pereira DIM, Martins B, Falcão LS, Lacerda CD, Neves CMB, Pinto AF, Jordão AM, Albuquerque PM. Global Phenolic Composition and Antioxidant Capacity of Extracts from the Endophytic Fungi Cophinforma mamane with Potential Use in Food Systems: The Effects of Time, Temperature, and Solvent on the Extraction Process. Applied Sciences. 2024; 14(19):8784. https://doi.org/10.3390/app14198784
Chicago/Turabian StyleGurgel, Raiana S., Dorothy I. M. Pereira, Bárbara Martins, Lucas S. Falcão, Caroline D. Lacerda, Cláudia M. B. Neves, António F. Pinto, António M. Jordão, and Patrícia M. Albuquerque. 2024. "Global Phenolic Composition and Antioxidant Capacity of Extracts from the Endophytic Fungi Cophinforma mamane with Potential Use in Food Systems: The Effects of Time, Temperature, and Solvent on the Extraction Process" Applied Sciences 14, no. 19: 8784. https://doi.org/10.3390/app14198784
APA StyleGurgel, R. S., Pereira, D. I. M., Martins, B., Falcão, L. S., Lacerda, C. D., Neves, C. M. B., Pinto, A. F., Jordão, A. M., & Albuquerque, P. M. (2024). Global Phenolic Composition and Antioxidant Capacity of Extracts from the Endophytic Fungi Cophinforma mamane with Potential Use in Food Systems: The Effects of Time, Temperature, and Solvent on the Extraction Process. Applied Sciences, 14(19), 8784. https://doi.org/10.3390/app14198784