Settlement Foundations by Exploring the Collapse of Unsaturated Soils
Abstract
:1. Introduction
2. Adopted Numerical Framework Using EBBM Theoretical to Predict Collapse
2.1. Elastic Deformation
2.2. Plastic Deformation
3. Validation of the Theoretical Framework
4. Development of a Deterministic Framework Affected by Rainfall Infiltration on the Collapsibility of the Foundation
4.1. Hydraulic Variation
4.2. Collapse Settlements
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Mahmood, M.S.; Abrahim, M.J. A Review of Collapsible Soils Behavior and Prediction. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1094, 012044. [Google Scholar] [CrossRef]
- Al-Rawas, A.A. State-of-the-Art-Review of Collapsible Soils. Sultan Qaboos Univ. J. Sci. 2000, 5, 115–135. [Google Scholar] [CrossRef]
- Basma, A.A.; Tuncer, E.R. Evaluation and Control of Collapsible Soils. J. Geotech. Eng. 1992, 118, 1491–1504. [Google Scholar] [CrossRef]
- Opukumo, A.W.; Davie, C.T.; Glendinning, S.; Oborie, E. A Review of the Identification Methods and Types of Collapsible Soils. J. Eng. Appl. Sci. 2022, 69, 17. [Google Scholar] [CrossRef]
- Reznik, Y.M. Influence of Physical Properties on Deformation Characteristics of Collapsible Soils. Eng. Geol. 2007, 92, 27–37. [Google Scholar] [CrossRef]
- Rogers, C. Types and Distribution of Collapsible Soils. In Genesis and Properties of Collapsible Soils; Springer: Dordrecht, The Netherlands, 1995; Volume 468, pp. 1–17. [Google Scholar]
- Fredlund, D.; Gan, J.K. The Collapse Mechanism of a Soil Subjected to One-Dimensional Loading and Wetting. In Genesis and Properties of Collapsible Soils; Springer: Dordrecht, The Netherlands, 1995; Volume 468, pp. 173–198. [Google Scholar]
- Houston, S.; Houston, W.N. Collapsible Soils Engineering; Geotechnical Special Publication: Reston, VA, USA, 1997. [Google Scholar]
- Li, P.; Vanapalli, S.; Li, T. Review of Collapse Triggering Mechanism of Collapsible Soils Due to Wetting. J. Rock Mech. Geotech. Eng. 2016, 8, 256–274. [Google Scholar] [CrossRef]
- Barrera, M.; Romero, E.; Lloret, A.; Gens, A. Collapse Test on Isotropic and Anisotropic Compacted Soils. In Experimental Evidence and Theoretical Approaches in Unsaturated Soils, 1st ed.; CRC Press: London, UK, 2000; pp. 14–28. [Google Scholar]
- El Howayek, A.; Huang, P.-T.; Bisnett, R.; Santagata, M.C. Identification and Behavior of Collapsible Soils; Joint Transportation Research Program; Purdue University: West Lafayette, IN, USA, 2011. [Google Scholar]
- Jennings, J.E.B.; Knight, K. A Guide to Construction on or with Materials Exhibiting Additional Settlement Due to “Collapse” of Grain Structure. In Proceedings of the 6th Regional Conference for Africa on Soil Mechanics and Foundation Engineering, Durban, Africa, September 1975; pp. 99–105. Available online: https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=PASCALGEODEBRGM7720382974 (accessed on 21 August 2024).
- Lawton, E.C.; Fragaszy, R.J.; Hetherington, M.D. Review of Wetting-Induced Collapse in Compacted Soil. J. Geotech. Eng. 1992, 118, 1376–1394. [Google Scholar] [CrossRef]
- Vilar, O.M.; Rodrigues, R.A. Collapse Behavior of Soil in a Brazilian Region Affected by a Rising Water Table. Can. Geotech. J. 2011, 48, 226–233. [Google Scholar] [CrossRef]
- Lim, Y.Y.; Miller, G.A. Wetting-Induced Compression of Compacted Oklahoma Soils. J. Geotech. Geoenviron. Eng. 2004, 130, 1014–1023. [Google Scholar] [CrossRef]
- Rabbi, A.T.M.Z.; Rahman, M.; Cameron, D. Prediction of Collapse Potential for Silty Glacial Sand. Aust. Geomech. J. 2014, 49, 45–55. [Google Scholar]
- Zorlu, K.; Kasapoglu, K. Determination of Geomechanical Properties and Collapse Potential of a Caliche by in Situ and Laboratory Tests. Environ. Geol. 2009, 56, 1449–1459. [Google Scholar] [CrossRef]
- Ayadat, T.; Hanna, A. Effects of Hydraulic Shear Stress and Rate of Erosion on the Magnitude, Degree, and Rate of Collapse. Geomech. Geoeng. 2008, 3, 59–69. [Google Scholar] [CrossRef]
- Ashour, M.; Abbas, A.; Altahrany, A.; Alaaeldin, A. Modelling the Behavior of Inundated Collapsible Soils. Eng. Rep. 2020, 2, e12156. [Google Scholar] [CrossRef]
- Alassal, M.A.; Hassan, A.M.; Elmamlouk, H.H. Collapse Potential Prediction and Characteristics of Unsaturated Sandy Soils. Geotech. Geol. Eng. 2023, 41, 2759–2774. [Google Scholar] [CrossRef]
- Frei, C.; Schöll, R.; Fukutome, S.; Schmidli, J.; Vidale, P.L. Future Change of Precipitation Extremes in Europe: Intercomparison of Scenarios from Regional Climate Models. J. Geophys. Res. Atmos. 2006, 111, D6. [Google Scholar] [CrossRef]
- Bicalho, K.; Cui, Y.; Camporez, L. Study of Climatic Effects on the Soil Suction and Water Content Changes in an Embankment Constructed with Two Clays. Comun. Geol. 2014, 101, 1405–1407. [Google Scholar]
- Ng, C.W.W.; Zhan, L.T.; Bao, C.G.; Fredlund, D.G.; Gong, B.W. Performance of an Unsaturated Expansive Soil Slope Subjected to Artificial Rainfall Infiltration. Geotechnique 2003, 53, 143–157. [Google Scholar] [CrossRef]
- Au, S. Rain-Induced Slope Instability in Hong Kong. Eng. Geol. 1998, 51, 1–36. [Google Scholar] [CrossRef]
- Alonso, E.E.; Gens, A.; Josa, A. A Constitutive Model for Partially Saturated Soils. Géotechnique 1990, 40, 405–430. [Google Scholar] [CrossRef]
- Cui, Y.; Delage, P. Yielding and Plastic Behaviour of an Unsaturated Compacted Silt. Géotechnique 1996, 46, 291–311. [Google Scholar] [CrossRef]
- Georgiadis, K.; Potts, D.M.; Zdravkovic, L. Three-Dimensional Constitutive Model for Partially and Fully Saturated Soils. Int. J. Geomech. 2005, 5, 244–255. [Google Scholar] [CrossRef]
- Kavvadas, M.; Amorosi, A. A Constitutive Model for Structured Soils. Géotechnique 2000, 50, 263–273. [Google Scholar] [CrossRef]
- Romero, E.; Sánchez, M.; Gai, X.; Barrera, M.; Lloret, A. Mechanical Behavior of an Unsaturated Clayey Silt: An Experimental and Constitutive Modelling Study. Can. Geotech. J. 2019, 56, 1461–1474. [Google Scholar] [CrossRef]
- Savvides, A.A.; Papadrakakis, M. A Computational Study on the Uncertainty Quantification of Failure of Clays with a Modified Cam-Clay Yield Criterion. SN Appl. Sci. 2021, 3, 659. [Google Scholar] [CrossRef]
- Sheng, D.; Fredlund, D.G.; Gens, A. A New Modelling Approach for Unsaturated Soils Using Independent Stress Variables. Can. Geotech. J. 2008, 45, 511–534. [Google Scholar] [CrossRef]
- Sheng, D.; Gens, A.; Fredlund, D.G.; Sloan, S.W. Unsaturated Soils: From Constitutive Modelling to Numerical Algorithms. Comput. Geotech. 2008, 35, 810–824. [Google Scholar] [CrossRef]
- Thu, T.M.; Rahardjo, H.; Leong, E.-C. Elastoplastic Model for Unsaturated Soil with Incorporation of the Soil-Water Characteristic Curve. Can. Geotech. J. 2007, 44, 67–77. [Google Scholar] [CrossRef]
- Vaunat, J.; Cante, J.; Ledesma, A.; Gens, A. A Stress Point Algorithm for an Elastoplastic Model in Unsaturated Soils. Int. J. Plast. 2000, 16, 121–141. [Google Scholar] [CrossRef]
- Wheeler, S.; Sivakumar, V. An Elasto-Plastic Critical State Framework for Unsaturated Soil. Géotechnique 1995, 45, 35–53. [Google Scholar] [CrossRef]
- Ali, T.; Showkat, R.; Babu, G.S. Hydro-Mechanical Simulations of Unsaturated Soil Slope. Indian Geotech. J. 2021, 51, 861–869. [Google Scholar] [CrossRef]
- Jamei, M.; Guiras, H.; Olivella, S. Analysis of Slope Movement Initiation Induced by Rainfall Using the Elastoplastic Barcelona Basic Model. Eur. J. Environ. Civ. Eng. 2015, 19, 1033–1058. [Google Scholar] [CrossRef]
- Le, T.M.H.; Gallipoli, D.; Sanchez, M.; Wheeler, S. Rainfall-Induced Differential Settlements of Foundations on Heterogeneous Unsaturated Soils. Géotechnique 2013, 63, 1346–1355. [Google Scholar] [CrossRef]
- Showkat, R.; Babu, G.S. Deterministic and Probabilistic Analysis of the Response of Shallow Footings on Unsaturated Soils Due to Rainfall. Transp. Geotech. 2023, 43, 101150. [Google Scholar] [CrossRef]
- Xu, Y.; Leung, C.; Yu, J.; Chen, W. Numerical Modelling of Hydro-Mechanical Behaviour of Ground Settlement Due to Rising Water Table in Loess. Nat. Hazards 2018, 94, 241–260. [Google Scholar] [CrossRef]
- Wang, Q.; Tang, A.M.; Cui, Y.-J.; Barnichon, J.-D.; Ye, W.-M. Investigation of the Hydro-Mechanical Behaviour of Compacted Bentonite/Sand Mixture Based on the BExM Model. Comput. Geotech. 2013, 54, 46–52. [Google Scholar] [CrossRef]
- Gens, A.; Alonso, E. A Framework for the Behaviour of Unsaturated Expansive Clays. Can. Geotech. J. 1992, 29, 1013–1032. [Google Scholar] [CrossRef]
- Casini, F. Deformation Induced by Wetting: A Simple Model. Can. Geotech. J. 2012, 49, 954–960. [Google Scholar] [CrossRef]
- Kim, Y.; Park, H.; Jeong, S. Settlement Behavior of Shallow Foundations in Unsaturated Soils under Rainfall. Sustainability 2017, 9, 1417. [Google Scholar] [CrossRef]
- Liu, C.; Yan, Y.; Yang, H.-Q. Numerical Modeling of Small-Scale Unsaturated Soil Slope Subjected to Transient Rainfall. Geosyst. Geoenviron. 2023, 2, 100193. [Google Scholar] [CrossRef]
- Francisca, F.M.; Giomi, I.; Rocca, R.J. Inverse Analysis of Shallow Foundation Settlements on Collapsible Loess: Understanding the Impact of Varied Soil Mechanical Properties during Wetting. Comput. Geotech. 2024, 167, 106090. [Google Scholar] [CrossRef]
- COMSOL Multiphysics® 6.1; n.d. Available online: https://www.comsol.com/ (accessed on 15 August 2024).
- Pedroso, D.M.; Farias, M.M. Extended Barcelona Basic Model for Unsaturated Soils under Cyclic Loadings. Comput. Geotech. 2011, 38, 731–740. [Google Scholar] [CrossRef]
- Richards, L.A. Capillary Conduction of Liquids through Porous Mediums. J. App. Phys. 1931, 1, 318–333. [Google Scholar] [CrossRef]
- Van Genuchten, M.T. A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef]
- Mualem, Y. A New Model for Predicting the Hydraulic Conductivity of Unsaturated Porous Media. Water Resour. Res. 1976, 12, 513–522. [Google Scholar] [CrossRef]
- Liang, C.; Cao, C.; Wu, S. Hydraulic-Mechanical Properties of Loess and Its Behavior When Subjected to Infiltration-Induced Wetting. Bull. Eng. Geol. Environ. 2018, 77, 385–397. [Google Scholar] [CrossRef]
- Peranić, J.; Arbanas, Ž.; Cuomo, S.; Maček, M. Soil-Water Characteristic Curve of Residual Soil from a Flysch Rock Mass. Geofluids 2018, 2018, 6297819. [Google Scholar] [CrossRef]
- Johari, A.; Talebi, A. Stochastic Analysis of Rainfall-Induced Slope Instability and Steady-State Seepage Flow Using Random Finite-Element Method. Int. J. Geomech. 2019, 19, 04019085. [Google Scholar] [CrossRef]
- Johari, A.; Hooshmand Nejad, A. An Approach to Estimate Wetting Path of Soil–Water Retention Curve from Drying Path. Iran. J. Sci. Technol. Trans. Civ. Eng. 2018, 42, 85–89. [Google Scholar] [CrossRef]
- Pham, H.Q.; Fredlund, D.G.; Barbour, S.L. A Study of Hysteresis Models for Soil-Water Characteristic Curves. Can. Geotech. J. 2005, 42, 1548–1568. [Google Scholar] [CrossRef]
- Maswoswe, J. Stress Paths for Compacted Soil during Collapse Due to Wetting. PhD Thesis, Imperial College, London, UK, 1985. [Google Scholar]
- Seki, K.; Toride, N.; Van Genuchten, M.T. Evaluation of a General Model for Multimodal Unsaturated Soil Hydraulic Properties. J. Hydrol. Hydromech. 2023, 71, 22–34. [Google Scholar] [CrossRef]
- Nian, G.; Chen, Z.; Bao, M.; Zhang, L.; Zhu, T. Rainfall Infiltration and Three-Dimensional Stability Analyses of Fractured Rock Slopes Considering Preferential Flow. Nat. Hazards 2023, 118, 2629–2656. [Google Scholar] [CrossRef]
- Zhang, L.; Fredlund, D.; Zhang, L.; Tang, W. Numerical Study of Soil Conditions under Which Matric Suction Can Be Maintained. Can. Geotech. J. 2004, 41, 569–582. [Google Scholar] [CrossRef]
- Alonso, E.; Romero, E. Collapse Behaviour of Sand; In Proceeding of the Asian conference on unsaturated soil, Osaka, Japan, 15–17 April 2003; pp 325–334.
Basma and Tuncer (1992) [3] |
Lim and Miller (2004) [15] |
Ayadat and Hanna (2008) [18] |
Zorlu and Kasapoglu (2009) [17] |
Rabbi et al. (2015) [16] Ashour et al. (2020) [19] Alassal et al. (2023) [20] (X = −15.15 for Dr ≈ 35%, wi = 5%, fines content = 40%). |
Description | Value | |
---|---|---|
G | Shear modulus | 7 [MPa] |
K | Swelling index | 0.0077 |
Ks | Swelling index for variation in suction | 0.001 |
λ(0) | Compression index at zero suction | 0.066 |
λs | Compression index for variation in suction | 0.025 |
Pref | Reference pressure | 0.012 [MPa] |
Initial preconsolidation pressure | 0.02 [MPa] | |
w | Weight parameter | 0.25 |
m(1/β) | Soil stiffness parameter | 0.05 [MPa] |
b | Plastic potential parameter | 100 |
Sy0 | Initial yield value for suction | 0.3 [MPa] |
ks | Tension-to-suction ratio | 0.8 |
M | Slope of critical state line | 1.2 |
Parameter | Value |
---|---|
Ks | 0.75 [m/day] |
α | 0.44 [1/m] |
n | 1.103 |
l | 0.5 |
3.59 × 10−23 | |
0.37 | |
χf | 4 × 10−10 [1/Pa] |
χp | 1 × 10−4 [1/Pa] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fatahizadeh, M.; Nowamooz, H. Settlement Foundations by Exploring the Collapse of Unsaturated Soils. Appl. Sci. 2024, 14, 7688. https://doi.org/10.3390/app14177688
Fatahizadeh M, Nowamooz H. Settlement Foundations by Exploring the Collapse of Unsaturated Soils. Applied Sciences. 2024; 14(17):7688. https://doi.org/10.3390/app14177688
Chicago/Turabian StyleFatahizadeh, Marieh, and Hossein Nowamooz. 2024. "Settlement Foundations by Exploring the Collapse of Unsaturated Soils" Applied Sciences 14, no. 17: 7688. https://doi.org/10.3390/app14177688
APA StyleFatahizadeh, M., & Nowamooz, H. (2024). Settlement Foundations by Exploring the Collapse of Unsaturated Soils. Applied Sciences, 14(17), 7688. https://doi.org/10.3390/app14177688