Effect of Processing and Storage of Very-Low-Sugar Apple Jams Prepared with Sugar Substitution by Steviol Glycosides on Chosen Physicochemical Attributes and Sensory and Microbiological Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Preparation of Apple Jams
2.2. Storage of Jams
2.3. Sensory Analysis
2.3.1. Expert Evaluation
- -
- odor—apple, sweet, nectar, wine, metallic, sharp, and “other” (none–strong);
- -
- taste—sweet, bitter, and sour (none–strong);
- -
- flavor—apple, nectar, spicy (woody), metallic, bland, astringent, and “other” (none–strong);
- -
- color (light–dark);
- -
- sensory balance—the degree of harmonization between the sensory attributes (low–high).
2.3.2. Consumer Evaluation
2.4. Instrumental Color Measurements
- 0 < ΔE* < 1—the difference in color is visually nonrecognizable by a standard observer;
- 1 < ΔE* < 2—the difference is visually recognizable only by an experienced observer;
- 2 < ΔE* < 3.5—the difference can be visually recognized by an inexperienced observer;
- 3.5 < ΔE* < 5—every observer can easily see the difference;
- ΔE* > 5—an observer recognizes two different colors [41].
2.5. Physicochemical Composition
2.6. Microbiological Analysis
2.7. Statistical Analysis
3. Results
3.1. Optimization of the Addition of Steviol Glycosides to Very-Low-Sugar Apple Jams
3.2. Consumer Evaluation of Very-Low-Sugar Apple Jams with Added Steviol Glycosides
3.3. The Effect of Storage on the Sensory Quality of Very-Low-Sugar Apple Jams with Added SGs
3.4. The Effect of Storage on the Physicochemical Parameters of Very-Low-Sugar Apple Jams with Added Steviol Glycosides
3.5. The Effect of Storage on the Microbiological Quality of Very-Low-Sugar Apple Jams with Added Steviol Glycosides
4. Discussion
4.1. The Effect of Storage on the Sensory Quality of Very-Low-Sugar Apple Jams with Sugar Substitution by SGs
4.2. The Effect of Sugar Substitution with SGs on Physicochemical Parameters and Microbiological Quality of Very-Low-Sugar Apple Jams and Changes during Storage
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO Regional Office for Europe. Sugars Factsheet; WHO Regional Office for Europe: Copenhagen, Denmark, 2022; Available online: https://www.who.int/europe/publications/m/item/sugars-factsheet (accessed on 7 July 2024).
- WHO. Regional Office for Europe Overweight. European Health Information Gateway Copenhagen. 2020. Available online: https://gateway.euro.who.int/en/indicators/h2020_6-overweight/visualizations/#id=17077 (accessed on 7 July 2024).
- Pielak, M.; Czarniecka-Skubina, E.; Trafiałek, J.; Głuchowski, A. Contemporary Trends and Habits in the Consumption of Sugar and Sweeteners—A Questionnaire Survey among Poles. J. Environ. Res. Public Health 2019, 16, 1164. [Google Scholar] [CrossRef] [PubMed]
- Alkhatib, A.; Tsang, C.; Tiss, A.; Bahorun, T.; Arefanian, H.; Barake, R.; Khadir, A.; Tuomilehto, J. Functional Foods and Lifestyle Approaches for Diabetes Prevention and Management. Nutrients 2017, 9, 1310. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Arcot, J.; Gill, T.; Louie, J.C.Y.; Rangan, A. A review of food reformulation of baked products to reduce added sugar intake. Trends Food Sci. Technol. 2019, 86, 412–425. [Google Scholar] [CrossRef]
- Chauhan, K.; Rao, A. Clean-Label Alternatives for Food Preservation: An Emerging Trend. Heliyon 2024, 10, e35815. [Google Scholar] [CrossRef]
- Cisneros-Yupanqui, M.; Lante, A.; Rizzi, C. Preliminary Characterization of a Functional Jam from Red Chicory By-Product. Open Biotechnol. J. 2021, 15, 183–189. [Google Scholar] [CrossRef]
- Mora, M.R.; Dando, R. The sensory properties and metabolic impact of natural and synthetic sweeteners. CRFSFS 2021, 20, 1554–1583. [Google Scholar] [CrossRef]
- Castro-Muñoz, R.; Correa-Delgado, M.; Córdova-Almeida, R.; Lara-Nava, D.; Chávez-Muñoz, M.; Velásquez-Chávez, V.F.; Ahmad, M.Z. Natural sweeteners: Sources, extraction, and current uses in foods and food industries. Food Chem. 2022, 370, 130991. [Google Scholar] [CrossRef]
- Wang, F.; Ma, R.; Zhu, J.; Zhan, J.; Li, J.; Tian, Y. Physicochemical properties, in vitro digestibility, and pH-dependent release behavior of starch–steviol glycoside composite hydrogels. Food Chem. 2024, 434, 137420. [Google Scholar] [CrossRef] [PubMed]
- Pielak, M.; Czarniecka- Skubina, E.; Głuchowski, A. Effect of Sugar Substitution with Steviol Glycosides on Sensory Quality and Physicochemical Composition of Low-Sugar Apple Preserves. Foods 2020, 9, 293. [Google Scholar] [CrossRef] [PubMed]
- Orellana-Paucar, A.M. Steviol glycosides from Stevia rebaudiana: An updated overview of their sweetening activity, pharmacological properties, and safety aspects. Molecules 2023, 28, 1258. [Google Scholar] [CrossRef]
- de Andrade, M.V.S.; Lucho, S.R.; de Castro, R.D.; Ribeiro, P.R. Alternative for natural sweeteners: Improving the use of stevia as a source of steviol glycosides. Ind. Crops Prod. 2024, 208, 117801. [Google Scholar] [CrossRef]
- Huang, C.; Wang, Y.; Zhou, C.; Fan, X.; Sun, Q.; Han, J.; Hua, C.; Li, Y.; Niu, Y.; Okonkwo, C.; et al. Properties, extraction and purification technologies of Stevia rebaudiana steviol glycosides: A review. Food Chem. 2024, 453, 139622. [Google Scholar] [CrossRef] [PubMed]
- Belovi’c, M.; Torbica, A.; Paji’c-Lijakovi´c, I.; Mastilovi´c, J. Development of low calorie jams with increased content of natural dietary fibre made from tomato pomace. Food Chem. 2017, 237, 1226–1233. [Google Scholar] [CrossRef] [PubMed]
- Council Directive 2004/84/EC of 10 June 2004 amending Directive 2001/113/EC relating to fruit jams. jellies and marmalades and sweetened chestnut purée intended for human consumption. Off. J. Eur. Union 2004, L219, 8–10.
- Basu, S.; Shivhare, U.S.; Singh, T.V.; Beniwal, V.S. Rheological. textural and spectral characteristics of sorbitol substituted mango jam. J. Food Eng. 2011, 105, 503–512. [Google Scholar] [CrossRef]
- De Souza, V.R.; Pereira, P.A.P.; Pinheiro, A.C.M.; Bolini, H.M.A.; Borges, S.V.; Queiroz, F. Analysis of various sweeteners in low-sugar mixed fruit jam: Equivalent sweetness. time intensity analysis and acceptance test. Int. J. Food Sci. 2013, 48, 1541–1548. [Google Scholar] [CrossRef]
- Abolila, R.M.; Barakat, H.; El-Tanahy, H.A.; El-Mansy, H.A. Chemical. Nutritional and Organoleptical Characteristics of Orange-Based Formulated Low-Calorie Jams. J. Nutr. Sci. 2015, 6, 1229–1244. [Google Scholar] [CrossRef]
- Commission Regulation (EU) No 1131/2011 of 11 November 2011 amending Annex II to Regulation (EC) No 1333/2008 of the European Parliament and of the Council with regard to steviol glycosides. Off. J. Eur. Union 2011, L295/205, 1.
- Kroyer, G. Stevioside and Stevia-sweetener in food: Application. stability and interaction with food ingredients. JCF 2010, 5, 225–229. [Google Scholar] [CrossRef]
- Wölwer-Rieck, U.; Tomberg, W.; Wawrzun, A. Investigations on the stability of Stevioside and Rebaudioside A in soft drinks. J. Agric. Food Chem. 2010, 58, 12216–12220. [Google Scholar] [CrossRef]
- Kovačević, D.B.; Maras, M.; Barba, F.J.; Granato, D.; Roohinejad, S.; Mallikarjunan, K.; Montesano, D.; Lorenzo, J.M.; Putnik, P. Innovative technologies for the recovery of phytochemicals from Stevia rebaudiana Bertoni leaves: A review. Food Chem. 2018, 268, 513–521. [Google Scholar] [CrossRef] [PubMed]
- Typek, R.; Dawidowicz, A.L.; Stankevič, M. Stability of stevioside in food processing conditions: Unexpected recombination of stevioside hydrolysis products in ESI source. Food Chem. 2020, 331, 127262. [Google Scholar] [CrossRef] [PubMed]
- Abbas, H.M. Utilization of stevia (Stevia rebaudiana Bertoni) leaves powder as natural non-caloric sweetener in production of pomegranate jam. Minia J. Agric. Res. Dev. 2007, 27, 457–479. [Google Scholar]
- Carvalho, A.C.G.D.; Oliveira, R.C.G.D.; Navacchi, M.F.P.; Costa, C.E.M.D.; Mantovani, D.; Dacôme, A.S.; Costa, S.C.D. Evaluation of the potential use of rebaudioside-A as a sweetener for diet jam. Food Sci. Technol. Int. 2013, 33, 555–560. [Google Scholar] [CrossRef]
- Ahmad, U.; Ahmad, R.S. Antidiabetic property of aqueous extract of Stevia rebaudiana Bertoni leaves in Streptozotocin-induced diabetes in albino rats. BMC Complement. Altern. Med. 2018, 18, 179. [Google Scholar] [CrossRef]
- Ahmad, J.; Khan, I.; Johnson, S.K.; Alam, I.; Din, Z.U. Effect of incorporating stevia and moringa in cookies on postprandial glycemia, appetite, palatability, and gastrointestinal well-being. J. Am. Coll. Nutr. 2018, 37, 133–139. [Google Scholar] [CrossRef]
- Anker, C.C.B.; Rafiq, S.; Jeppesen, P.B. Effect of steviol glycosides on human health with emphasis on type 2 diabetic biomarkers: A systematic review and meta-analysis of randomized controlled trials. Nutrients 2019, 11, 1965. [Google Scholar] [CrossRef]
- Farhat, G.; Berset, V.; Moore, L. Effects of stevia extract on postprandial glucose response, satiety, and energy intake: A three-arm crossover trial. Nutrients 2019, 11, 3036. [Google Scholar] [CrossRef]
- Sutwal, R.; Dhankhar, J.; Kindu, P.; Mehla, R. Development of low calorie jam by replacement of sugar with natural sweetener stevia. Int. J. Curr. Res. Rev. 2019, 11, 10. [Google Scholar] [CrossRef]
- Carrera-Lanestosa, A.; Coral-Martínez, T.; Ruíz-Ciau, D.; Moguel-Ordoñez, Y.; Segura-Campos, M.R. Phenolic compounds and major steviol glucosides by HPLC-DAD-RP and invitro evaluation of the biological activity of aqueous and ethanolic extracts of leaves and stems: S. rebaudiana Bertoni (creole variety INIFAP C01) S. rebaudiana Bertoni (creole variety INIFAP C01): Bioactive compounds and Functionality. J. Food Prop. 2020, 23, 199–212. [Google Scholar] [CrossRef]
- Khilar, S.; Singh, A.P.; Biagi, M.; Sharma, A. An Insight into attributes of Stevia rebaudiana Bertoni: Recent advances in extraction techniques, phytochemistry, food applications and health benefits. J. Agric. Res. 2022, 10, 100458. [Google Scholar] [CrossRef]
- Codex Alimentarius, International Food Standards. Standard for Jams, Jellies and Marmalades. CXS 296-2009. Adopted in 2009. Amended in 2017, 2020, 2022. FAO, WHO, Codex, 2009, 296. Available online: https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B296-2009%252FCXS_296e.pdf (accessed on 7 July 2024).
- Civille, G.V.; Carr, B.T. Sensory Evaluation Techniques, 5th ed.; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- PN-EN ISO 13299:2016-05; Sensory Analysis. Methodology. General Guidelines for Determining the Sensory Profile. International Organization for Standardization: Geneva, Switzerland, 2016.
- PN-ISO 3972:2016-07; Analiza Sensoryczna. Metodyka. Metoda Sprawdzania Wrażliwości Sensorycznej. Polish Committee for Standardization: Warsaw, Poland, 2016. (In Polish)
- PN-EN ISO 8586:2014-03; Polish Standard. Sensory Analysis. General Guidelines for the Selection, Training and Monitoring of Selected Assessors and Expert Sensory Assessors. ISO: Geneva, Switzerland, 2012.
- PN-EN ISO 11136:2017-08; Analiza Sensoryczna. Metodyka. Ogólne Wytyczne Przeprowadzania Testów Hedonicznych z Konsumentami na Obszarze Kontrolowanym. Polish Committee for Standardization: Warsaw, Poland, 2017. (In Polish)
- Baryłko-Pikielna, N.; Matuszewska, I. Sensoryczne Badania Żywności. Podstawy. Metody. Zastosowania. Wyd. II., Wydawnictwo Naukowe; PTTŻ: Kraków, Poland, 2014; pp. 181–199. (In Polish) [Google Scholar]
- Mokrzycki, W.; Tatol, M. Colour diference Delta E—A survey. Mach. Graph. Vis. 2011, 20, 383–411. [Google Scholar]
- PN-A-75101-02:1990; Przetwory Owocowe i Warzywne. Przygotowanie Próbek i Metody Badań Fizykochemicznych. Polish Committee for Standardization: Warsaw, Poland, 1990. (In Polish)
- PN-90/A-75101-08/Az1:2002; Przetwory Owocowe i Warzywne. Przygotowanie Próbek i Metody Badań Fizykochemicznych. Oznaczanie Zawartości Popiołu Ogólnego i Jego Alkaliczności. Polish Committee for Standardization: Warsaw, Poland, 2002. (In Polish)
- EN 1132:1994; Fruit and Vegetable Juices—Determination of the pH Value. Committee Europeen de Normalisation: Brussels, Belgium, 1994.
- ISO 750:1998(en); Fruit and Vegetable Products. Determination of Titratable Acidity. International Organization for Standardization: Geneva, Switzerland; Warsaw, Poland, 1998.
- APHA, American Public Health Association. Compendium of Methods for the Microbiological Examination of Foods, 3rd ed.; Vanderzant, C., Splittsloesse, D.F., Eds.; APHA: Washington, DC, USA, 1992. [Google Scholar]
- PN-EN ISO 11290-2:2000+A1:2005+Ap1:2006+Ap2:2007; Mikrobiologia Żywności i Pasz—Horyzontalna Metoda Wykrywania Obecności i Oznaczania Liczby Listeria Monocytogenes Część 2: Metoda Oznaczania Liczby. Polish Committee for Standardization: Warsaw, Poland, 2006. (In Polish)
- PN-EN-ISO 11290-2:2017-07; Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Listeria Monocytogenes and of Listeria spp. Part 2: Enumeration Method. International Standard: Geneva, Switzerland, 2017.
- PN-EN ISO 6888-2:2001+A1:2004; Mikrobiologia Żywności i Pasz—Horyzontalna Metoda Oznaczania Liczby Gronkowców Koagulazo-Dodatnich (Staphylococcus aureus i Innych Gatunków). Część 2: Metoda z Zastosowaniem Pożywki Agarowej z Plazmą Króliczą i Fibrynogenem. Polish Committee for Standardization: Warsaw, Poland, 2004. (In Polish)
- PN-EN ISO 4833-1:2013-12; Mikrobiologia Łańcucha Żywnościowego-Horyzontalna Metoda Oznaczania Liczby Drobnoustrojów—Część 2: Oznaczanie Liczby Metodą Posiewu Zalewowego w Temperaturze 30 °C. Polish Committee for Standardization: Warsaw, Poland, 2013. (In Polish)
- PN-EN ISO 21527-2:2009; Mikrobiologia Żywności i Pasz—Horyzontalna Metoda Oznaczania Liczby Drożdży i Pleśni. Część 2: Metoda Liczenia Kolonii w Produktach o Aktywności Wody Niższej lub Równej 0.95. Polish Committee for Standardization: Warsaw, Poland, 2009. (In Polish)
- Borgognone, M.G.; Bussi, J.; Hough, G. Principal component analysis in sensory analysis: Covariance or correlation matrix? Food Qual. Pref. 2001, 12, 323–326. [Google Scholar] [CrossRef]
- Rozporządzenie Komisji (WE) nr 2073/2005 z dnia 15 Listopada 2005 r. w Sprawie kryteriów Mikrobiologicznych Dotyczących Środków Spożywczych (Dz. Urz. L 338 z 22.12.2008, str. 1–26; Sprostowanie: Dz. Urz. L 278/32 z 10.10.2006, ze zm.). Available online: https://eur-lex.europa.eu/legal-content/PL/TXT/PDF/?uri=CELEX:02005R2073-20111201&from=de (accessed on 7 July 2024). (In Polish).
- Rozporządzenie Komisji (WE) NR 1441/2007 z dnia 5 Grudnia 2007 r. Zmieniające Rozporządzenie (WE) nr 2073/2005 w Sprawie Kryteriów Mikrobiologicznych Dotyczących Środków Spożywczych (Tekst Mający Znaczenie dla EOG) (Dz.U. L 322 z 7.12.2007, s. 12). Available online: https://eur-lex.europa.eu/legal-content/PL/TXT/PDF/?uri=CELEX:02007R1441-20071227 (accessed on 7 July 2024). (In Polish).
- Rozporządzenie Ministra Zdrowia z dnia 13.01.2003 w Sprawie Maksymalnych Poziomów Zanieczyszczeń Chemicznych I Biologicznych, Które mogą się Znajdować w Żywności, Składnikach Żywności, Dozwolonych Substancjach Dodatkowych, Substancjach Pomagających w Przetwarzaniu albo na Powierzchni Żywności. Dz.U. 2003, nr 37, poz. 326. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20030370326 (accessed on 7 July 2024). (In Polish)
- Yazdi, A.P.G.; Pouya, A.; Hojjatoleslamy, M.; Kermat, J.; Shariati, M.A. Replacing sucrose by Stevioside and adding Arabic Gum: Investigation of Rheological properties of Apple Jam. IJAAS 2014, 9, 508–513. [Google Scholar]
- Hemada, H.M.; Shehata, E.N.; Mohamed, E.F.; Abd Elmagied, S.F. The Impact of Natural Stevia Extract (Stevioside) as Sucrose Replace on Quality Characteristics of Selected Food Products. Middle East J. Appl. Sci. 2016, 6, 40–50. [Google Scholar]
- Hellfritsch, C.; Brockhoff, A.; Stähler, F.; Meyerhof, W.; Hofmann, T. Human psychometric and taste receptor responses to steviol glycosides. J. Agric. Food Chem. 2012, 60, 6782–6793. [Google Scholar] [CrossRef]
- Hergesell, L.; Schöne, F.; Greiling, A.; Schaefer, U.; Jahreis, G. Possibilities and limitations of sugar reduction by steviol glycosides in yoghurt. Ernahrungs Umschau 2014, 61, 181–187. [Google Scholar] [CrossRef]
- Prakash, I.; DuBois, G.E.; Clos, J.F.; Wilkens, K.L.; Fosdick, L.E. Development of rebiana, a natural, non-caloric sweetener. Food Chem Toxicol. 2008, 46, S75–S82. [Google Scholar] [CrossRef]
- Yousefi, A.M.; Goli, S.A.H.; Kadivar, M. Optimization of low-calorie quince jam production with stevioside sweetener. J. Food Res. 2012, 22, 155–164. [Google Scholar]
- Banaś, A.; Korus, A.; Korus, J. The influence of storage conditions on texture parameters and sensory quality of sour cherry jams with various plant additives. Żywn. Nauka Technol. Jakość. 2018, 25, 100–115. [Google Scholar] [CrossRef]
- Korus, A.; Banaś, A.; Korus, J. Effects of plant ingredients with pro-health properties and storage conditions on texture. color and sensory attributes of strawberry (Fragaria × ananassa Duch.) jam. EJFA 2017, 29, 610–619. [Google Scholar] [CrossRef]
- Korus, A.; Jaworska, G.; Bernaś, E.; Juszczak, L. Characteristics of physico-chemical properties of bilberry (Vaccinium myrtillus L.) jams with added herbs. J. Food Technol. 2015, 52, 2815–2823. [Google Scholar] [CrossRef] [PubMed]
- Banaś, A.; Korus, A.; Korus, J. Texture, color, and sensory features of low-sugar gooseberry jams enriched with plant ingredients with prohealth properties. J. Food Qual. 2017, 1, 1646894. [Google Scholar] [CrossRef]
- Lespirand, A.R.; Bambicha, R.R.; Mascheroni, R.H. Quality parameters assessment in kiwi jam during pasteurization. Modeling and optimization of the thermal process. Food Bioprod. Process. 2012, 90, 799–808. [Google Scholar]
- Awulachew, M. Fruit jam production. IJFS 2021, 10, 532–537. [Google Scholar] [CrossRef]
- Patras, A.; Brunton, N.P.; Tiwari, B.K.; Butler, F. Stability and degradation kinetics of bioactive compounds and colour in strawberry jam during storage. Food Sci. Biotechnol. 2011, 4, 1245–1252. [Google Scholar] [CrossRef]
- Alves de Oliveira, E.N.; da Costa Santos, D.; Gomes, J.P.; Rocha, A.P.T.; da Silva, W.P. Physicochemical stability of diet Umbu-Caja jams stored under ambient conditions. J. Food Process. Preserv. 2015, 39, 70–79. [Google Scholar] [CrossRef]
- Selvamuthukumaran, M.; Khanum, F. Effect of Modified Atmospheric Packaging on Physicochemical, Sensory and Microbiological Properties of Spray-Dried Seabuckthorn Fruit Juice Powder Stored in Metallized Polyester Pouch at Room Temperature. J. Food Process. Preserv. 2015, 39, 231–238. [Google Scholar] [CrossRef]
- Martinsen, B.K.; Aaby, K.; Skrede, G. Effect of temperature on stability of anthocyanins, ascorbic acid and color in strawberry and raspberry jams. Food Chem. 2020, 316, 126297. [Google Scholar] [CrossRef]
- Touati, N.; Tarazona-Diaz, M.P.; Aguayo, E.; Louaileche, H. Effect of storage time and temperature on the physicochemical and sensory characteristics of commercial apricot jam. Food Chem. 2014, 145, 23–24. [Google Scholar] [CrossRef]
- Felicetti, E.; Mattheis, J.P. Quantification and histochemical localization of ascorbic acid in ‘Delicious’, ‘Golden Delisious’ amd ‘Fuji’ apple fruit during on-tree development and cold storage. Postharvest Biol. Technol. 2010, 56, 56–63. [Google Scholar] [CrossRef]
- Tobal, T.M.; Rodrigues, L.V. Effect of storage on the bioactive compounds, nutritional composition and sensory acceptability of pitanga jams. Food Sci. Technol. 2019, 39, 581–587. [Google Scholar] [CrossRef]
- Scrob, T.; Varodi, S.M.; Vintilă, G.A.; Casoni, D.; Cimpoiu, C. Estimation of degradation kinetics of bioactive compounds in several lingonberry jams as affected by different sweeteners and storage conditions. Food Chem. 2022, 16, 100471. [Google Scholar] [CrossRef] [PubMed]
- Savita, S.M.; Sheela, K.; Sunanda, S.; Shankar, A.G.; Ramakrishna, P. Stevia rebaudiana—A functional component for food industry. Hum. Ecol. 2004, 15, 261–264. [Google Scholar] [CrossRef]
Variant | Sugar (g) | Steviol Glycosides | Pectin (g 100 g−1) | Citric Acids (g 100 g−1) | |
---|---|---|---|---|---|
(g) | (%) * | ||||
VL0 | 10 | 0.00 | 0 | 0.3 | 0.52 |
VL10 | 9 | 0.01 | 10 | 0.3 | 0.51 |
VL20 | 8 | 0.02 | 20 | 0.3 | 0.50 |
VL30 | 7 | 0.03 | 30 | 0.3 | 0.49 |
VL40 | 6 | 0.04 | 40 | 0.3 | 0.48 |
VL50 | 5 | 0.05 | 50 | 0.3 | 0.46 |
VL60 | 4 | 0.06 | 60 | 0.3 | 0.45 |
VL70 | 3 | 0.07 | 70 | 0.3 | 0.44 |
VL80 | 2 | 0.08 | 80 | 0.3 | 0.43 |
VL90 | 1 | 0.09 | 90 | 0.3 | 0.42 |
VL100 | 0 | 0.10 | 100 | 0.3 | 0.41 |
Content | Method |
---|---|
Dry matter | PN-A-75101-02:1990 [42] |
Total ash | PN-90/A-75101-08/Az1:2002 [43] |
Total soluble solids | measured using the refractometric method according to PN-A-75101-02:1990 [42] |
pH | measured with the potentiometric method using pH-meter Knick 913 (Elektronische Messgeräte, GmbH & Co. KG, Berlin, Germany) according to EN 1132:1994 [44] |
Titratable acidity | ISO 750:1998 [45]; the results were expressed as mg g−1 of malic acid equivalent (MAE) |
Vitamin C | measurement conducted by high-performance liquid chromatography according to the method presented in a previous study [11] |
Microorganisms | Method |
---|---|
Listeria monocytogenes | PN-EN ISO 11290-2:2000+; A1:2005+Ap1:2006+Ap2:2007 [47]; PN-EN-ISO 11290-2:2017-07 [48] |
Coagulase-positive staphylococci | PN-EN ISO 6888-2:2001+A1:2004 [49] |
Total number of colonies at 30 °C | PN-EN ISO 4833-1:2013-12 [50] |
Yeast and mold counts | PN-EN ISO 21527-2:2009 [51] |
Color (L*a*b*) | Addition of SGs (%) to Very-Low-Sugar (VL) Jams | |||
---|---|---|---|---|
0 | 30 | 50 | 80 | |
Color of Apple Jams at the Beginning of Storage * | ||||
L* | 32.6 ± 0.74 | 33.89 ± 0.61 | 34.1 ± 0.56 | 34.53 ± 0.06 |
ΔL | - | 1.29 | 1.5 | 1.93 |
a* | −0.39 ± 0.02 | −0.41 ± 0.19 | −0.44 ± 0.36 | −0.48 ± 0.01 |
Δa | - | −0.02 | −0.05 | −0.09 |
b* | 15.77 ± 0.78 | 16.1 ± 0.65 | 16.31 ± 0.48 | 16.79 ± 0.09 |
Δb | - | 0.33 | 0.54 | 1.02 |
C | 15.76 | 16.09 | 16.30 | 16.78 |
ΔC | - | 0.33 | 0.54 | 1.02 |
(ΔE) | - | 1.33 | 1.60 | 2.18 |
Color change after 3 months of storage ** | ||||
L* | 32.51 ± 0.74 | 33.43 ± 0.01 | 33.87 ± 0.01 | 34.21 ± 0.2 |
ΔL | −0.09 | −0.46 | −0.23 | −0.32 |
a* | −0.05 ± 0.02 | −0.38 ± 0.02 | −0.43 ± 0.01 | −0.44 ± 0.02 |
Δa | 0.02 | 0.03 | 0.01 | 0.04 |
b* | 15.47 ± 0.02 | 15.3 ± 0.13 | 15.85 ± 0.05 | 16.19 ± 0.04 |
Δb | −0.3 | −0.8 | −0.46 | −0.18 |
C | 15.76 | 15.29 | 15.84 | 16.18 |
ΔC | 0.3 | 0.8 | 0.46 | 0.18 |
(ΔE) | 0.3 | 0.92 | 0.51 | 0.37 |
Color change after 6 months of storage ** | ||||
L* | 32.38 ± 0.01 | 33.18 ± 0.01 | 33.63 ± 0.01 | 33.9 ± 0.2 |
ΔL | −0.22 | −0.71 | −0.47 | −0.63 |
a* | −0.15 ± 0.08 | −0.32 ± 0.22 | −0.36 ± 0.16 | −0.4 ± 0.09 |
Δa | 0.24 | 0.09 | 0.08 | 0.08 |
b* | 15.47 ± 0.02 | 15.55 ± 0.13 | 15.84 ± 0.05 | 15.9 ± 0.04 |
Δb | −0.3 | −0.55 | −0.47 | −0.89 |
C | 15.76 | 15.54 | 15.83 | 15.89 |
ΔC | 0.38 | 0.56 | 0.48 | 0.89 |
(ΔE) | 0.38 | 0.9 | 0.67 | 1.09 |
SGs (%) | Time of Storage | Average Value ± SD | |||||
---|---|---|---|---|---|---|---|
Dry Matter (%) | Vitamin C (mg/100 g) | Total Ash (%) | pH | Titratable Acidity (°) | Malic Acid (g/100 g) | ||
0 | 0 | 24.7 ± 0.2 ax | 0.58 ± 0.02 ax | 0.184 ± 0.012 ax | 3.48 ± 0.02 ax | 8.53 ± 0.04 ax | 0.573 ± 0.003 ax |
3 | 25.0 ± 0.1 a | 0.41 ± 0.01 b | 0.234 ± 0.008 b | 3.30 ± 0.08 b | 10.32 ± 0.03 b | 0.691 ± 0.002 b | |
6 | 25.1 ± 0.3 a | 0.22 ± 0.01 c | 0.334 ± 0.004 c | 3.12 ± 0.02 c | 13.90 ± 0.10 c | 0.931 ± 0.001 c | |
30 | 0 | 20.9 ± 0.2 ay | 0.56 ± 0.02 ax | 0.231 ± 0.017 ay | 3.41 ± 0.02 ay | 13.80 ± 0.25a y | 0.927 ± 0.002 ay |
3 | 20.7 ± 0.6 a | 0.37 ± 0.02 b | 0.250 ± 0.009 b | 3.36 ± 0.01 b | 14.78 ± 0.24 b | 0.970 ± 0.031 b | |
6 | 21.7 ± 1.0 a | 0.22 ± 0.01 c | 0.284 ± 0.004 c | 3.28 ± 0.03 c | 16.80 ± 0.40 c | 1.126 ± 0.004 c | |
50 | 0 | 17.9 ± 0.2 az | 0.55 ± 0.01 ax | 0.228 ± 0.009 ay | 3.44 ± 0.01 az | 15.81 ± 0.01 az | 1.060 ± 0.001 az |
3 | 18.3 ± 0.3 a | 0.34 ± 0.01 b | 0.235 ± 0.007 a | 3.40 ± 0.01 b | 14.88 ± 0.07 b | 0.993 ± 0.006 b | |
6 | 18.9 ± 0.6 a | 0.18 ± 0.01 c | 0.250 ± 0.002 b | 3.27 ± 0.02 c | 14.18 ± 0.05 c | 0.884 ± 0.004 c | |
80 | 0 | 16.9 ± 0.1 av | 0.57 ± 0.02 ax | 0.230 ± 0.030 ay | 3.38 ± 0.01 ay | 17.80 ± 0.20 av | 1.193 ± 0.020 av |
3 | 16.4 ± 0.9 a | 0.33 ± 0.01 b | 0.285 ± 0.060 b | 3.29 ± 0.01 b | 16.87 ± 0.31 b | 1.127 ± 0.021 b | |
6 | 16.3 ± 0.0 a | 0.14 ± 0.03 c | 0.320 ± 0.042 b | 3.20 ± 0.06 b | 16.50 ± 0.30 b | 1.033 ± 0.025 c |
SGs (%) | Storage (Month) | Coagulase- Positive Staphylococci * | Listeria monocytogenes ** | Yeast *** | Mold *** | Total Number of Colonies at 30 °C **** |
---|---|---|---|---|---|---|
[CFU/g] | ||||||
0 | 0 | n.d. | n.d. | <10 | <10 | <10 |
3 | n.d. | n.d. | <10 | <10 | <10 | |
6 | n.d. | n.d. | <10 | <10 | <10 | |
30 | 0 | n.d. | n.d. | <10 | <10 | <10 |
3 | n.d. | n.d. | <10 | <10 | <10 | |
6 | n.d. | n.d. | <10 | <10 | <10 | |
50 | 0 | n.d. | n.d. | <10 | <10 | <10 |
3 | n.d. | n.d. | <10 | <10 | <10 | |
6 | n.d. | n.d. | <10 | <10 | <10 | |
80 | 0 | n.d. | n.d. | <10 | <10 | <10 |
3 | n.d. | n.d. | <10 | <10 | <10 | |
6 | n.d. | n.d. | <10 | <10 | <10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pielak, M.; Czarniecka-Skubina, E. Effect of Processing and Storage of Very-Low-Sugar Apple Jams Prepared with Sugar Substitution by Steviol Glycosides on Chosen Physicochemical Attributes and Sensory and Microbiological Quality. Appl. Sci. 2024, 14, 8219. https://doi.org/10.3390/app14188219
Pielak M, Czarniecka-Skubina E. Effect of Processing and Storage of Very-Low-Sugar Apple Jams Prepared with Sugar Substitution by Steviol Glycosides on Chosen Physicochemical Attributes and Sensory and Microbiological Quality. Applied Sciences. 2024; 14(18):8219. https://doi.org/10.3390/app14188219
Chicago/Turabian StylePielak, Marlena, and Ewa Czarniecka-Skubina. 2024. "Effect of Processing and Storage of Very-Low-Sugar Apple Jams Prepared with Sugar Substitution by Steviol Glycosides on Chosen Physicochemical Attributes and Sensory and Microbiological Quality" Applied Sciences 14, no. 18: 8219. https://doi.org/10.3390/app14188219
APA StylePielak, M., & Czarniecka-Skubina, E. (2024). Effect of Processing and Storage of Very-Low-Sugar Apple Jams Prepared with Sugar Substitution by Steviol Glycosides on Chosen Physicochemical Attributes and Sensory and Microbiological Quality. Applied Sciences, 14(18), 8219. https://doi.org/10.3390/app14188219