Detection of Decision-Making Manipulation in the Pairwise Comparison Method
Abstract
:1. Introduction
2. Motivation
3. Preliminaries
3.1. PC Matrices
3.2. Inconsistency
3.3. Error Measurement
3.4. Distance Measurement
3.5. Machine Learning
- supervised learning, where models are trained to predict the values of output variables (labels) based on the input variables (features) by presenting the model with labeled instances. The function that maps features to labels can be implemented using a broad spectrum of algorithms;
- unsupervised learning, where the instances are unlabeled, and the models instead try to learn patterns that can be discovered in the data;
- reinforcement learning, where the data are not explicitly labeled and the algorithm only receives a performance score to guide its actions.
- convolutional layers serve as the foundation of CNNs, functioning as feature extractors that capture patterns and structures from raw input data. These layers detect edges, textures, and other salient features by convolving learnable filters across the input, enabling the network to discern complex visual patterns.
- pooling layers play a pivotal role in spatial downsampling, reducing the computational burden while retaining essential information. These layers distill the most salient features through operations such as max pooling and average pooling, facilitating robustness and generalization.
- activation functions infuse nonlinearities into the network, empowering it to learn intricate mappings between input and output. Activation functions like Rectified Linear Unit (ReLU) enable CNNs to capture and model intricate relationships within data by introducing complexity and expressiveness.
- fully connected layers integrate the high-level features extracted by preceding layers, culminating in decision-making or classification. These layers, analogous to the brain’s association areas, synthesize abstract representations into actionable insights, guiding the network’s predictions.
4. Problem Statement
4.1. Naive Algorithm
Algorithm 1 Naive algorithm |
1: function attack(it takes matrix C and index p on input) 2: set the initial value for and generate a list of indexes to modify 3: For each index and in the list to be modified, set as element the value of and, due to the reciprocity preservation, its inverse i.e., set to . 4: end function |
4.2. Basic Algorithm
4.3. Advanced Algorithm
5. Detecting Manipulation Using Machine Learning
6. Experiments and Results
- —for the naive algorithm, it is equal to the size of the matrix ; otherwise, it is a uniformly distributed random number between 1.1 and 5;
- r—index of the reference alternative, is always equal to the index of the highest ranked alternative evaluated from the initial matrix ;
- p—index of the alternative to be promoted, randomly selected and different from r.
- the number of hidden (convolutional) layers;
- the number of feature maps in each layer, parametrized by the index of the layer;
- the size of filters;
- the learning rate (with logarithmic sampling);
7. Discussion
8. Summary
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bac, M. Corruption, Connections and Transparency: Does a Better Screen Imply a Better Scene? Public Choice 2001, 107, 87–96. [Google Scholar] [CrossRef]
- Kontek, K.; Sosnowska, H. Specific Tastes or Cliques of Jurors? How to Reduce the Level of Manipulation in Group Decisions? Group Decis. Negot. 2020, 29, 1057–1084. [Google Scholar] [CrossRef]
- Gorsira, M.; Steg, L.; Denkers, A.; Huisman, W. Corruption in Organizations: Ethical Climate and Individual Motives. Adm. Sci. 2018, 8, 4. [Google Scholar] [CrossRef]
- Kendall, G.; Lenten, L.J. When sports rules go awry. Eur. J. Oper. Res. 2017, 257, 377–394. [Google Scholar] [CrossRef]
- Faliszewski, P.; Hemaspaandra, E.; Hemaspaandra, L.A.; Rothe, J. Llull and Copeland Voting Computationally Resist Bribery and Constructive Control. J. Artif. Intell. Res. (JAIR) 2009, 35, 275–341. [Google Scholar] [CrossRef]
- Csató, L. Quantifying incentive (in)compatibility: A case study from sports. Eur. J. Oper. Res. 2022, 302, 717–726. [Google Scholar] [CrossRef]
- Duggan, M.; Levitt, S.D. Winning Isn’t Everything: Corruption in Sumo Wrestling. Am. Econ. Rev. 2002, 92, 1594–1605. [Google Scholar] [CrossRef]
- Pelta, D.A.; Yager, R.R. Analyzing the Robustness of Decision Strategies in Multiagent Decision Making. Group Decis. Negot. 2014, 23, 1403–1416. [Google Scholar] [CrossRef]
- Frank, B.; Li, S.; Bühren, C.; Qin, H. Group Decision Making in a Corruption Experiment: China and Germany Compared. Jahrb. Natl. Stat. 2015, 235, 207–227. [Google Scholar] [CrossRef]
- Dong, Y.; Zha, Q.; Zhang, H.; Herrera, F. Consensus Reaching and Strategic Manipulation in Group Decision Making with Trust Relationships. IEEE Trans. Syst. Man Cybern. Syst. 2021, 51, 6304–6318. [Google Scholar] [CrossRef]
- Kułakowski, K.; Szybowski, J.; Mazurek, J.; Ernst, S. Resilient heuristic aggregation of judgments in the pairwise comparisons method. Inf. Sci. 2024, 657, 119979. [Google Scholar] [CrossRef]
- Brandt, F.; Conitzer, V.; Endriss, U.; Lang, J.; Procaccia, A.D. (Eds.) Handbook of Computational Social Choice; Cambridge University Press: Cambridge, UK, 2016; pp. 1–554. [Google Scholar]
- Sasaki, Y. Strategic manipulation in group decisions with pairwise comparisons: A game theoretical perspective. Eur. J. Oper. Res. 2023, 304, 1133–1139. [Google Scholar] [CrossRef]
- Szybowski, J.; Kułakowski, K.; Ernst, S. Almost optimal manipulation of pairwise comparisons of alternatives. J. Glob. Optim. 2024, 90, 243–259. [Google Scholar] [CrossRef]
- Mazurek, J. Advances in Pairwise Comparisons: Detection, Evaluation and Reduction of Inconsistency; Multiple Criteria Decision Making; Springer Nature: Cham, Switzerland, 2023. [Google Scholar]
- Thurstone, L.L. A Law of Comparative Judgment, reprint of an original work published in 1927. Psychol. Rev. 1994, 101, 266–270. [Google Scholar] [CrossRef]
- Miller, J.R. The Assessment of Worth: A Systematic Procedure and Its Experimental Validation. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 1966. [Google Scholar]
- David, H.A. The method of paired comparisons. In Proceedings of the Fifth Conference on the Design of Experiments in Army Research Developments and Testing, the U.S. Army Biological Warfare Laboratories Fort Detrick, Frederick, MD, USA, 4–6 November 1959; pp. 1–16. [Google Scholar]
- Saaty, T.L. A scaling method for priorities in hierarchical structures. J. Math. Psychol. 1977, 15, 234–281. [Google Scholar] [CrossRef]
- Srdjevic, B.; Srdjevic, Z. Prioritisation in the analytic hierarchy process for real and generated comparison matrices. Expert Syst. Appl. 2023, 225, 120015. [Google Scholar] [CrossRef]
- Ossadnik, W.; Schinke, S.; Kaspar, R.H. Group Aggregation Techniques for Analytic Hierarchy Process and Analytic Network Process: A Comparative Analysis. Group Decis. Negot. 2015, 25, 421–457. [Google Scholar] [CrossRef]
- Brunelli, M. A survey of inconsistency indices for pairwise comparisons. Int. J. Gen. Syst. 2018, 47, 751–771. [Google Scholar] [CrossRef]
- Kułakowski, K.; Talaga, D. Inconsistency indices for incomplete pairwise comparisons matrices. Int. J. Gen. Syst. 2020, 49, 174–200. [Google Scholar] [CrossRef]
- Ágoston, K.C.; Csató, L. Inconsistency thresholds for incomplete pairwise comparison matrices. Omega 2022, 108, 102576. [Google Scholar] [CrossRef]
- Alrasheedi, M.A. Incomplete pairwise comparative judgments: Recent developments and a proposed method. Decis. Sci. Lett. 2019, 8, 261–274. [Google Scholar] [CrossRef]
- Kułakowski, K.; Szybowski, J.; Prusak, A. Towards quantification of incompleteness in the pairwise comparisons methods. Int. J. Approx. Reason. 2019, 115, 221–234. [Google Scholar] [CrossRef]
- Park, J.H.; Park, I.Y.; Kwun, Y.C.; Tan, X. Extension of the TOPSIS method for decision making problems under interval-valued intuitionistic fuzzy environment. Appl. Math. Model. 2011, 35, 2544–2556. [Google Scholar] [CrossRef]
- Duleba, S.; Çelikbilek, Y.; Moslem, S.; Esztergár-Kiss, D. Application of grey analytic hierarchy process to estimate mode choice alternatives: A case study from Budapest. Transp. Res. Interdiscip. Perspect. 2022, 13, 100560. [Google Scholar] [CrossRef]
- Bartl, D.; Ramík, J. A new algorithm for computing priority vector of pairwise comparisons matrix with fuzzy elements. Inf. Sci. 2022, 615, 103–117. [Google Scholar] [CrossRef]
- Brunelli, M.; Rezaei, J. A multiplicative best–worst method for multi-criteria decision making. Oper. Res. Lett. 2019, 47, 12–15. [Google Scholar] [CrossRef]
- Bana e Costa, C.; De Corte, J.M.; Vansnick, J. On the Mathematical Foundation of MACBETH. In Multiple Criteria Decision Analysis: State of the Art Surveys; Figueira, J., Greco, S., Ehrgott, M., Eds.; Springer: Boston, MA, USA; Dordrecht, The Netherlands; London, UK, 2016; pp. 421–463. [Google Scholar]
- Kędzior, A.; Kułakowski, K. Multiple-Criteria Heuristic Rating Estimation. Mathematics 2023, 11, 2806. [Google Scholar] [CrossRef]
- Greco, S.; Ehrgott, M.; Figueira, J.R. (Eds.) Multiple Criteria Decision Analysis: State of the Art Surveys; International Series in Operations Research & Management Science; Springer: New York, NY, USA, 2016. [Google Scholar]
- Patil, A.N.; Bhale, N.; Raikar, N.; Prabhakaran, M. Car Selection Using Hybrid Fuzzy AHP and Grey Relation Analysis Approach. Int. J. Perform. Eng. 2017, 13, 569–576. [Google Scholar] [CrossRef]
- Tomczyk, M.K.; Kadziński, M. On the elicitation of indirect preferences in interactive evolutionary multiple objective optimization. In Proceedings of the ‘20 Genetic and Evolutionary Computation Conference, Cancún, Mexico, 8–12 July 2020; pp. 569–577. [Google Scholar] [CrossRef]
- Orgad, K.; Avinatan, H.; Noam, H. New Approximations for Coalitional Manipulation in General Scoring Rules. JAIR 2019, 64, 109–145. [Google Scholar] [CrossRef]
- McGurran, D. What Do People Really Think of Politicians? BBC News, 28 January 2012. Available online: https://www.bbc.com/news/uk-england-16760660 (accessed on 12 March 2024).
- Taylor, A.D. Social Choice and the Mathematics of Manipulation; Outlooks; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar] [CrossRef]
- Liang, X.; Guo, J.; Liu, P. A consensus model considers managing manipulative and overconfident behaviours in large-scale group decision-making. Inf. Sci. 2024, 654, 119848. [Google Scholar] [CrossRef]
- Sun, Q.; Wu, J.; Chiclana, F.; Wang, S.; Herrera-Viedma, E.; Yager, R.R. An approach to prevent weight manipulation by minimum adjustment and maximum entropy method in social network group decision making. Artif. Intell. Rev. 2022, 56, 7315–7346. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Cao, M.; Chiclana, F.; Dong, Y.; Herrera-Viedma, E. An Optimal Feedback Model to Prevent Manipulation Behavior in Consensus Under Social Network Group Decision Making. IEEE Trans. Fuzzy Syst. 2021, 29, 1750–1763. [Google Scholar] [CrossRef]
- Xiong, K.; Dong, Y.; Zha, Q. Managing Strategic Manipulation Behaviors Based on Historical Data of Preferences and Trust Relationships in Large-Scale Group Decision-Making. IEEE Trans. Fuzzy Syst. 2024, 32, 1479–1493. [Google Scholar] [CrossRef]
- Li, S.; Rodríguez, R.M.; Wei, C. Managing manipulative and non-cooperative behaviors in large scale group decision making based on a WeChat-like interaction network. Inf. Fusion 2021, 75, 1–15. [Google Scholar] [CrossRef]
- Zhang, H.; Palomares, I.; Dong, Y.; Wang, W. Managing non-cooperative behaviors in consensus-based multiple attribute group decision making: An approach based on social network analysis. Knowl.-Based Syst. 2018, 162, 29–45. [Google Scholar] [CrossRef]
- Pelta, D.A.; Yager, R.R. Decision Strategies in Mediated Multiagent Negotiations: An Optimization Approach. IEEE Trans. Syst. Man Cybern.-Part A Syst. Hum. 2010, 40, 635–640. [Google Scholar] [CrossRef]
- Yager, R.R. Penalizing strategic preference manipulation in multi-agent decision making. IEEE Trans. Fuzzy Syst. 2001, 9, 393–403. [Google Scholar] [CrossRef]
- Yager, R.R. Defending against strategic manipulation in uninorm-based multi-agent decision making. Eur. J. Oper. Res. 2002, 141, 217–232. [Google Scholar] [CrossRef]
- Quesada, F.J.; Palomares, I.; Martínez, L. Managing experts behavior in large-scale consensus reaching processes with uninorm aggregation operators. Appl. Soft Comput. 2015, 35, 873–887. [Google Scholar] [CrossRef]
- Xu, X.; Du, Z.; Chen, X. Consensus model for multi-criteria large-group emergency decision making considering non-cooperative behaviors and minority opinions. Decis. Support Syst. 2015, 79, 150–160. [Google Scholar] [CrossRef]
- Forrest, D.; McHale, I.G. Using statistics to detect match fixing in sport. IMA J. Manag. Math. 2019, 30, 431–449. [Google Scholar] [CrossRef]
- Choo, E.U.; Wedley, W.C. A common framework for deriving preference values from pairwise comparison matrices. Comput. Oper. Res. 2004, 31, 893–908. [Google Scholar] [CrossRef]
- Koczkodaj, W.W.; Orlowski, M. An orthogonal basis for computing a consistent approximation to a pairwise comparisons matrix. Comput. Math. Appl. 1997, 34, 41–47. [Google Scholar] [CrossRef]
- Kou, G.; Lin, C. A cosine maximization method for the priority vector derivation in AHP. Eur. J. Oper. Res. 2014, 235, 225–232. [Google Scholar] [CrossRef]
- Crawford, R.; Williams, C. A note on the analysis of subjective judgement matrices. J. Math. Psychol. 1985, 29, 387–405. [Google Scholar] [CrossRef]
- Kułakowski, K.; Mazurek, J.; Strada, M. On the similarity between ranking vectors in the pairwise comparison method. J. Oper. Res. Soc. 2022, 73, 2080–2089. [Google Scholar] [CrossRef]
- Aguarón, J.; Moreno-Jiménez, J.M. The geometric consistency index: Approximated thresholds. Eur. J. Oper. Res. 2003, 147, 137–145. [Google Scholar] [CrossRef]
- Peláez, J.I.; Lamata, M.T. A new measure of consistency for positive reciprocal matrices. Comput. Math. Appl. 2003, 46, 1839–1845. [Google Scholar] [CrossRef]
- Koczkodaj, W.W.; Urban, R. Axiomatization of inconsistency indicators for pairwise comparisons. Int. J. Approx. Reason. 2018, 94, 18–29. [Google Scholar] [CrossRef]
- Kazibudzki, P.T. On Estimation of Priority Vectors Derived from Inconsistent Pairwise Comparison Matrices. J. Appl. Math. Comput. Mech. 2022, 21, 52–59. [Google Scholar] [CrossRef]
- Brunelli, M.; Cavallo, B. Distance-based measures of incoherence for pairwise comparisons. Knowl.-Based Syst. 2020, 187, 104808. [Google Scholar] [CrossRef]
- Kuo, T. An Ordinal Consistency Indicator for Pairwise Comparison Matrix. Symmetry 2021, 13, 2183. [Google Scholar] [CrossRef]
- Pant, S.; Kumar, A.; Ram, M.; Klochkov, Y.; Sharma, H.K. Consistency Indices in Analytic Hierarchy Process: A Review. Mathematics 2022, 10, 1206. [Google Scholar] [CrossRef]
- Cavallo, B. Functional relations and Spearman correlation between consistency indices. J. Oper. Res. Soc. 2020, 71, 301–311. [Google Scholar] [CrossRef]
- Brunelli, M.; Fedrizzi, M. Axiomatic properties of inconsistency indices for pairwise comparisons. J. Oper. Res. Soc. 2015, 66, 1–15. [Google Scholar] [CrossRef]
- Bozóki, S.; Rapcsák, T. On Saaty’s and Koczkodaj’s inconsistencies of pairwise comparison matrices. J. Glob. Optim. 2008, 42, 157–175. [Google Scholar] [CrossRef]
- Csató, L. Axiomatizations of inconsistency indices for triads. Ann. Oper. Res. 2019, 280, 99–110. [Google Scholar] [CrossRef]
- Saaty, T.L. Decision making—The Analytic Hierarchy and Network Processes (AHP/ANP). J. Syst. Sci. Syst. Eng. 2004, 13, 1–35. [Google Scholar] [CrossRef]
- Saaty, T.L. Relative Measurement and Its Generalization in Decision Making. Why Pairwise Comparisons are Central in Mathematics for the Measurement of Intangible Factors. The Analytic Hierarchy/Network Process. Estad. Investig. Oper./Stat. Oper. Res. (RACSAM) 2008, 102, 251–318. [Google Scholar] [CrossRef]
- Ágoston, K.C.; Csató, L. A lexicographically optimal completion for pairwise comparison matrices with missing entries. Eur. J. Oper. Res. 2024, 314, 1078–1086. [Google Scholar] [CrossRef]
- Tekile, H.A.; Brunelli, M.; Fedrizzi, M. A numerical comparative study of completion methods for pairwise comparison matrices. Oper. Res. Perspect. 2023, 10, 100272. [Google Scholar] [CrossRef]
- Samuel, A.L. Some Studies in Machine Learning Using the Game of Checkers. IBM J. Res. Dev. 1959, 3, 210–229. [Google Scholar] [CrossRef]
- Russel, S.; Norvig, P. Artificial Intelligence: A Modern Approach, 4th ed.; Pearson Education Inc.: London, UK, 2020. [Google Scholar]
- Koczkodaj, W.W.; Kakiashvili, T.; Szymańska, A.; Montero-Marin, J.; Araya, R.; Garcia-Campayo, J.; Rutkowski, K.; Strzałka, D. How to reduce the number of rating scale items without predictability loss? Scientometrics 2017, 111, 581–593. [Google Scholar] [CrossRef] [PubMed]
- Bousquet, O.; Luxburg, U.; Rätsch, G. Advanced Lectures on Machine Learning; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar] [CrossRef]
- Fushiki, T. Estimation of prediction error by using K-fold cross-validation. Stat. Comput. 2009, 21, 137–146. [Google Scholar] [CrossRef]
- Geron, A. Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd ed.; O’Reilly Media: Sebastopol, CA, USA, 2019. [Google Scholar]
- Csató, L.; Petróczy, D.G. On the monotonicity of the eigenvector method. Eur. J. Oper. Res. 2020, 292, 230–237. [Google Scholar] [CrossRef]
- Strada, M.; Kułakowski, K. Manipulation of individual judgments in the quantitative pairwise comparisons method. arXiv 2022, arXiv:2211.01809. [Google Scholar]
- Deng, L. The MNIST Database of Handwritten Digit Images for Machine Learning Research. IEEE Signal Process. Mag. 2012, 29, 141–142. [Google Scholar] [CrossRef]
- Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Lamata, M.T.; Peláez, J.I. A method for improving the consistency of judgements. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 2002, 10, 677–686. [Google Scholar] [CrossRef]
- Bottou, L. On-line Learning and Stochastic Approximations; Publications of the Newton Institute, Cambridge University Press: Cambridge, UK, 1999; pp. 9–42. [Google Scholar]
- Nesterov, Y.E. A method of solving a convex programming problem with convergence rate . Doklady Akademii Nauk SSSR 1983, 269, 543–547. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015. Conference Track Proceedings. [Google Scholar]
- Fülöp, J. Introduction to Decision Making Methods. BDEI-3 workshop, Washington. November 2005. [Google Scholar]
- Baker, D.; Bridges, D.; Hunter, R.; Johnson, G.; Krupa, J.; Murphy, J.; Sorenson, K. Guidebook to Decision-Making Methods; Westinghouse Savannah River Company: Aiken, SC, USA, 2001; Volume 45. [Google Scholar]
n | Naive Algorithm | Basic Algorithm | Advanced Algorithm |
---|---|---|---|
3 | 64 | 99 | 88 |
4 | 78 | 99 | 92 |
5 | 89 | 99 | 93 |
6 | 96 | 99 | 93 |
7 | 98 | ∼100 | 92 |
8 | 99 | ∼100 | 92 |
9 | ∼100 | 99 | 90 |
n | Naive Algorithm | Basic Algorithm | Advanced Algorithm |
---|---|---|---|
5 | FP: 86, FN: 354 | FP: 0, FN: 40 | FP: 235, FN: 48 |
6 | FP: 166, FN: 21 | FP: 1, FN: 16 | FP: 179, FN: 51 |
7 | FP: 72, FN: 5 | FP: 0, FN: 9 | FP: 148, FN: 76 |
8 | FP: 29, FN: 5 | FP: 0, FN: 2 | FP: 146, FN: 57 |
9 | FP: 11, FN: 2 | FP: 0, FN: 8 | FP: 138, FN: 53 |
Upper Threshold Value | Attack Detection Rate |
---|---|
9 | 70 |
20 | 79 |
50 | 86 |
100 | 93 |
200 | 97 |
n | Naive Algorithm | Basic Algorithm | Advanced Algorithm |
---|---|---|---|
5 | 89 | 86 | 79 |
6 | 95 | 77 | 80 |
7 | 98 | 68 | 82 |
8 | 99 | 67 | 83 |
9 | ∼100 | 58 | 82 |
n | Naive Algorithm | Basic Algorithm | Advanced Algorithm |
---|---|---|---|
5 | 491 | 504 | 488 |
6 | 704 | 546 | 592 |
7 | 686 | 660 | 651 |
8 | 759 | 793 | 767 |
9 | 945 | 964 | 945 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Strada, M.; Ernst, S.; Szybowski, J.; Kułakowski, K. Detection of Decision-Making Manipulation in the Pairwise Comparison Method. Appl. Sci. 2024, 14, 8946. https://doi.org/10.3390/app14198946
Strada M, Ernst S, Szybowski J, Kułakowski K. Detection of Decision-Making Manipulation in the Pairwise Comparison Method. Applied Sciences. 2024; 14(19):8946. https://doi.org/10.3390/app14198946
Chicago/Turabian StyleStrada, Michał, Sebastian Ernst, Jacek Szybowski, and Konrad Kułakowski. 2024. "Detection of Decision-Making Manipulation in the Pairwise Comparison Method" Applied Sciences 14, no. 19: 8946. https://doi.org/10.3390/app14198946
APA StyleStrada, M., Ernst, S., Szybowski, J., & Kułakowski, K. (2024). Detection of Decision-Making Manipulation in the Pairwise Comparison Method. Applied Sciences, 14(19), 8946. https://doi.org/10.3390/app14198946