Iterative Interferometric Denoising Filter for Traveltime Picking
Abstract
:Featured Application
Abstract
1. Introduction
2. Methods
- Normalize each trace in the processed seismic data and define a rough interval around the initial guess of the first-arrival time. In this method, there will be a rough offset-time window , which can be used to isolate the early-arrival waveform we want.
- Apply the rough window to the seismic data (d) to obtain the muted early-arrival waveform (WD).
- Apply the proposed interferometric denoising filter (IDF) on the muted waveform (WD) to focus the information with regular and symmetrical patterns on both time and offset domains; in the meantime, the incoherent noise will be suppressed.
- Normalize each trace in the processed seismic data again.
- Check the S/R ratio; if it does not improve enough, repeat steps 3 and 4.
3. Synthetic Example
4. Field Data Example
4.1. Gulf of Aqaba
4.2. Qademah Fault in King Abdullah Economic City
5. Computation Cost
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, X.; Sixta, D.; Angstman, B. Tomostatics: Turning-ray tomography + static corrections. Lead. Edge 1992, 11, 15–23. [Google Scholar] [CrossRef]
- Jiang, W.; Zhang, J.; Bell, L. 3D seismic geometry control and corrections by applying machine learning. Geophysics 2019, 84, P87–P96. [Google Scholar] [CrossRef]
- Zhang, J.; Toköz, M.N. Nonlinear refraction traveltime tomography. Geophysics 1998, 63, 1726–1737. [Google Scholar] [CrossRef]
- Jiang, W.; Zhang, J. First-arrival traveltime tomography with modified total-variation regularization. Geophys. Prospect. 2017, 65, 1138–1154. [Google Scholar] [CrossRef]
- Woodward, M. Wave equation tomography. Geophysics 1991, 57, 15–26. [Google Scholar] [CrossRef]
- Luo, Y.; Schuster, G.T. Wave-equation traveltime inversion. Geophysics 1991, 56, 645–653. [Google Scholar] [CrossRef]
- Zelt, C.A.; Barton, P.J. Three-dimensional seismic refraction tomography: A comparison of two methods applied to data from the Faeroe Basin. J. Geophys. Res. Solid Earth 1998, 103, 7187–7210. [Google Scholar] [CrossRef]
- Sheng, J.; Leeds, A.; Buddensiek, M.; Schuster, G.T. Early arrival waveform tomography on near-surface refraction data. Geophysics 2006, 71, U47–U57. [Google Scholar] [CrossRef]
- Jiang, W.; Zhang, J. Imaging complex near-surface land area with joint traveltime and waveform inversion. In Proceedings of the 2015 Workshop: Depth Model Building: Full-Waveform Inversion, Beijing, China, 18–19 June 2015; Volume 2015, pp. 142–145. [Google Scholar]
- Yu, H.; Hanafy, S.M. An application of multiscale early arrival waveform inversion to shallow seismic data. Near Surf. Geophys. 2014, 12, 549–557. [Google Scholar] [CrossRef]
- Jiang, W. 3-D joint inversion of seismic waveform and airborne gravity gradiometry data. Geophys. J. Int. 2020, 223, 746–764. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, J.; Liu, D.; Du, J. CT image-guided electrical impedance tomography for medical imaging. IEEE Trans. Med. Imaging 2019, 39, 1822–1832. [Google Scholar] [CrossRef] [PubMed]
- Sacchi, M. Statistical and Transform Methods in Geophysical Signal Processing; Department of Physics, University of Alberta: Edmonton, AB, Canada, 2002. [Google Scholar]
- Fernhout, C.; Zwartjes, P.; Yoo, J. Automatic first break picking with deep learning. IOSR J. Appl. Geol. Geophys. (IOSR-JAGG) 2020, 8, 24–36. [Google Scholar]
- Han, S.; Liu, Y.; Li, Y.; Luo, Y. First arrival traveltime picking through 3D U-NET. IEEE Geosci. Remote Sens. Lett. 2021, 19, 1–5. [Google Scholar]
- Soubaras, R. Signal preserving noise attenuation by the f-x prediction filter. In SEG Technical Program Expanded Abstracts; Society of Exploration Geophysicists: Houston, TX, USA, 1994; pp. 1576–1579. [Google Scholar]
- Sacchi, M.; Kuehl, H. Arma formulation of f-x prediction error filters and projection filters. J. Seism. Explor 1994, 9, 185–197. [Google Scholar]
- Ulrych, T.; Freire, S.; Siston, P. Eigenimage processing of seismic sections. In SEG Technical Program Expanded Abstract; Society of Exploration Geophysicists: Houston, TX, USA, 1988. [Google Scholar] [CrossRef]
- Golub, G.H. Matrix Computations, 3rd ed.; The Johns Hopkins University Press: Baltimore, MD, USA, 1996. [Google Scholar]
- Zhou, B.; Greenhalgh, S.A. Linear and parabolic-p revisited. Geophysics 1994, 59, 1133–1149. [Google Scholar] [CrossRef]
- Kriegel, H.; Kroger, P.; Schubert, E.; Zimek, A. A general framework for increasing the robustness of PCA-based correction clustering algorithms. Sci. Stat. Database Manag. Lect. Notes Comput. Sci. 2008, 5069, 418–435. [Google Scholar]
- Schuster, G.T. Seismic Interferometry; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Iqbal, N.; Al-Shuhail, A.A.; Kaka, S.I.; Liu, E.; Raj, A.G.; McClellan, J.H. Iterative interferometry-based method for picking microseismic events. J. Appl. Geophys. 2017, 140, 52–61. [Google Scholar] [CrossRef]
- Dong, S.; Sheng, J.; Schuster, G.T. Theory and Practice of Refraction Interferometry. 76th Annual International Meeting. In SEG Expanded Abstracts; Society of Exploration Geophysicists: Houston, TX, USA, 2006; pp. 3021–3025. [Google Scholar]
- Al-Hagan, O.; Hanafy, S.; Schuster, G.T. Iterative supervirtual refraction interferometry. Geophysics 2014, 79, Q21–Q30. [Google Scholar] [CrossRef]
- Hanafy, S.M.; Schuster, G.T. Parsimonious refraction interferometry and tomography. Geophys. J. Int. 2017, 209, 695–712. [Google Scholar] [CrossRef]
- Li, Y.; Ma, Z. Deep learning-based noise reduction for seismic data. J. Phys. Conf. Ser. 2021, 1861, 012011. [Google Scholar] [CrossRef]
- Wigner, E. On the Quantum correlation for thermodynamic equilibrium. Phys. Rev. 1932, 40, 749–759. [Google Scholar] [CrossRef]
- Borcea, L.; Papanicolaou, G.; Tsogka, C. Coherent interferometric imaging in clutter. Geophysics 2006, 71, SI165–SI175. [Google Scholar] [CrossRef]
- Borcea, L.; Papanicolaou, G.; Tsogka, C. Adaptive interferometric imaging in clutter and optimal illumination. Inverse Probl. 2006, 22, 1405. [Google Scholar] [CrossRef]
- Borcea, L.; Papanicolaou, G.; Tsogka, C. Coherent interferometry in finely layered random media. Multiscale Model. Simul. 2006, 5, 62–83. [Google Scholar] [CrossRef]
- Sava, P.; Poliannikov, O. Interferometric imaging condition for wave-equation migration. Geophysics 2008, 73, S47–S61. [Google Scholar] [CrossRef]
- Sava, P. Micro-earthquake monitoring with sparsely sampled data. J. Pet. Explor. Prod. Technol. 2011, 1, 43–49. [Google Scholar] [CrossRef]
- Wang, C.; Cheng, C.Y.J.; Liu, H. Microseismic seismic events location of surface and borehole observation with reverse-time focusing using interferometry technique. Chin. J. Geophys. 2013, 56, 584–597. [Google Scholar]
- Li, Z.; Sheng, W.W.G.; Cui, Q.; Zhou, D. Time-reverse microseismic hypocenter location with interferometric imaging condition based on surface and downhole multi-components. Chin. J. Geophys. 2014, 49, 666–671. [Google Scholar]
- Zhou, Y.; Zhang, Q.; Zhang, W. PS interferometric imaging condition for microseismic source elastic time-reversal imaging. Geophys. J. Int. 2022, 229, 505–521. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, W.; Chen, X.; Guo, Q. An effective polarity correction method for microseismic migration-based location. Geophysics 2020, 85, KS115–KS125. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, W. An efficient diffraction stacking interferometric imaging location method for microseismic events. Geophysics 2022, 87, KS73–KS82. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, W.; Wu, X.; Zhang, J.; Kuang, W.; Si, X. Deep learning for efficient microseismic location using source migration based imaging. J. Geophys. Res. Solid Earth 2022, 127, e2021JB022649. [Google Scholar] [CrossRef]
- Aki, K.; Richards, P. Quantitative Seismology; University Science Books: Herndon, VA, USA, 1995. [Google Scholar]
- Lay, T.; Wallace, T. Modern Global Seismology; Academic Press: Cambridge, MA, USA, 1995. [Google Scholar]
- Hanafy, S.M. Iterative Super-Virtual Refraction Interferometry and Traveltime Tomography of Seismic Data: Field Example at Gulf of Aqaba; EAGE Conference & Exhibition: London, UK, 2019; pp. 3–6. [Google Scholar]
- Roobol, M.; Kadi, K. Cenozoic Faulting in the Rabigh Area, Central-West Saudi Arabia (Including the Sites of King Abdullah Economic City and King Abdullah University of Science and Technology); Saudi Geological Survey Technical Report; Saudi Geological Survey: Jeddah, Saudi Arabia, 2008. [Google Scholar]
- Hanafy, S.M. Mapping the Qademah fault with traveltime, surface-wave, and resistivity tomograms. In SEG Technical Program Expanded Abstracts; Society of Exploration Geophysicists: Houston, TX, USA, 2015. [Google Scholar]
- Levander, A. Fourth-order finite-difference P-SV seismograms. Geophysics 1998, 53, 1425–1436. [Google Scholar] [CrossRef]
- Zhang, W.; Shen, Y. Unsplit complex frequency-shifted PML implementation using auxiliary differential equations for seismic wave modeling. Geophysics 2010, 75, T141–T154. [Google Scholar] [CrossRef]
- Virieux, J.; Operto, S. An overview of full-waveform inversion in exploration geophysics. Geophysics 2009, 74, WCC1–WCC26. [Google Scholar] [CrossRef]
- Hanafy, S.; Sigurjon, J.; Yann, K. Imaging normal faults in alluvial fans using geophysical techniques: Field example from the coast of Gulf of Aqaba, Saudi Arabia. In SEG Technical Program Expanded Abstracts; Society of Exploration Geophysicists: Houston, TX, USA, 2014. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiao, H.; Zhou, Y.; Hanafy, S.M.; Liu, C. Iterative Interferometric Denoising Filter for Traveltime Picking. Appl. Sci. 2024, 14, 733. https://doi.org/10.3390/app14020733
Qiao H, Zhou Y, Hanafy SM, Liu C. Iterative Interferometric Denoising Filter for Traveltime Picking. Applied Sciences. 2024; 14(2):733. https://doi.org/10.3390/app14020733
Chicago/Turabian StyleQiao, Hanqing, Yicheng Zhou, Sherif M. Hanafy, and Cai Liu. 2024. "Iterative Interferometric Denoising Filter for Traveltime Picking" Applied Sciences 14, no. 2: 733. https://doi.org/10.3390/app14020733
APA StyleQiao, H., Zhou, Y., Hanafy, S. M., & Liu, C. (2024). Iterative Interferometric Denoising Filter for Traveltime Picking. Applied Sciences, 14(2), 733. https://doi.org/10.3390/app14020733