Sedimentary Environment Reconstruction and Organic Matter Enrichment Mechanisms in Various Lithofacies of the Lacustrine Shale: A Case Study of the Da’anzhai Member, Central Sichuan Basin, China
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
3.1. Materials
3.2. Experimental Methods
3.3. Geochemical Indicators for Identifying Paleoenvironments
4. Results
4.1. Mineral Composition, TOC Content, and Lithofacies Classification
4.2. Major and Trace Elements
5. Discussion
5.1. Paleoenvironment Reconstruction
5.1.1. Paleoclimate and Weathering
5.1.2. Redox Condition
5.1.3. Salinity
5.1.4. Terrigenous Debris Influx and Primary Productivity
5.2. Organic Matter Enrichment Mechanisms and Depositional Models of Various Lithofacies
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ORA | Organic-rich argillaceous shale |
OPA | Organic-poor argillaceous shale |
ORM | Organic-rich mixed shale |
TOC | Total organic carbon |
XRD | X-ray Diffraction |
XRF | X-ray fluorescence |
ICP-MS | Inductively coupled plasma mass spectrometer |
EFs | Enrichment factors |
PAAS | Post-Archean Australian shale content |
CIA | Chemical Index of Alteration |
T-OAE | Toarcian Oceanic Anoxic Event |
References
- Guo, T. Key controls on accumulation and high production of large non-marine gas fields in northern Sichuan Basin. Petrol. Explor. Dev. 2013, 40, 139–149. [Google Scholar] [CrossRef]
- Hu, T.; Pang, X.; Jiang, S.; Wang, Q.; Zheng, X.; Ding, X.; Zhao, Y.; Zhu, C.; Li, H. Oil content evaluation of lacustrine organic-rich shale with strong heterogeneity: A case study of the Middle Permian Lucaogou Formation in Jimusaer Sag, Junggar Basin, NW China. Fuel 2018, 221, 196–205. [Google Scholar] [CrossRef]
- Li, C.; Pang, X.; Huo, Z.; Wang, E.; Xue, N. A revised method for reconstructing the hydrocarbon generation and expulsion history and evaluating the hydrocarbon resource potential: Example from the first member of the Qingshankou Formation in the Northern Songliao Basin, Northeast China. Mar. Pet. Geol. 2020, 121, 104577. [Google Scholar] [CrossRef]
- Liu, B.; Sun, J.; Zhang, Y.Q.; He, J.; Fu, X.; Yang, L.; Xing, J.; Zhao, X. Reservoir space and enrichment model of shale oil in the first member of Cretaceous Qingshankou Formation in the Changling Sag, southern Songliao Basin, NE China. Petrol. Explor. Dev. 2021, 48, 608–624. [Google Scholar] [CrossRef]
- Wang, E.; Feng, Y.; Guo, T.; Li, M. Oil content and resource quality evaluation methods for lacustrine shale: A review and a novel three-dimensional quality evaluation model. Earth-Sci. Rev. 2022, 232, 104134. [Google Scholar] [CrossRef]
- Hu, Z.; Liu, Z.; Li, Q.; Wu, Z. Exploring source rock-reservoir coupling mechanisms in lacustrine shales based on varying-scale lithofacies assemblages: A case study of the Jurassic shale intervals in the Sichuan Basin. Oil Gas Geol. 2024, 45, 893–909, (In Chinese with English abstract). [Google Scholar]
- Zou, C.; Dong, D.; Wang, Y.; Li, X.; Huang, J.; Wang, S.; Guan, Q.; Zhang, C.; Wang, H.; Liu, H.; et al. Shale gas in China: Characteristics, challenges and prospects (II). Petrol. Explor. Dev. 2016, 43, 166–178. [Google Scholar] [CrossRef]
- Guo, X.; Hu, D.; Li, Y.; Wei, Z.; Wei, X.; Liu, Z. Geological factors controlling shale gas enrichment and high production in Fuling shale gas field. Petrol. Explor. Dev. 2017, 44, 481–491. [Google Scholar] [CrossRef]
- Feng, Y.; Xiao, X.; Gao, P.; Wang, E.; Hu, D.; Liu, R.; Li, G.; Lu, C. Restoration of sedimentary environment and geochemical features of deep marine Longmaxi shale and its significance for shale gas: A case study of the Dingshan area in the Sichuan Basin, South China. Mar. Pet. Geol. 2023, 151, 106186. [Google Scholar] [CrossRef]
- Feng, Y.; Xiao, X.; Wang, E.; Gao, P.; Lu, C.; Li, G.; Wang, Z.; Zhou, Q. Origins of Siliceous Minerals and Their Influences on Organic Matter Enrichment and Reservoir Physical Properties of Deep Marine Shale in the Sichuan Basin, South China. Energy Fuels 2023, 37, 11982–11995. [Google Scholar] [CrossRef]
- Wang, W.; Pang, X.; Chen, Z.; Chen, D.; Zheng, T.; Luo, B.; Li, J.; Yu, R. Quantitative prediction of oil and gas prospects of the Sinian-Lower Paleozoic in the Sichuan Basin in central China. Energy 2019, 174, 861–872. [Google Scholar] [CrossRef]
- Ma, Y.; Cai, X.; Zhao, P.; Hu, Z.; Liu, H.; Gao, B.; Wang, W.; Li, Z.; Zhang, Z. Geological characteristics and exploration practices of continental shale oil in China. Acta Geol. Sin. 2022, 96, 155–171, (In Chinese with English abstract). [Google Scholar]
- Li, M.; Ma, X.; Jin, Z.; Li, Z.; Jiang, Q.; Wu, S.; Li, Z.; Xu, Z. Diversity in the lithofacies assemblages of marine and lacustrine shale strata and significance for unconventional petroleum exploration in China. Oil Gas. Geol. 2022, 43, 1–25, (In Chinese with English abstract). [Google Scholar]
- Dapples, E.C.; Krumbein, W.C.; Sloss, L.L. Tectonic control of lithofacies associations. AAPG (Am. Assoc. Pet. Geol.) Bull. 1948, 32, 1924–1947. [Google Scholar]
- He, W.; Bai, X.; Meng, Q.; Li, J.; Zhang, D.; Wang, Y.Z. Accumulation geological characteristics and major discoveries of lucustrine shale oil in Sichuan Basin. Acta Pet. Sin. 2022, 43, 885–898, (In Chinese with English abstract). [Google Scholar]
- Wang, E.; Feng, Y.; Guo, T.; Li, M.; Xiong, L.; Lash, G.G.; Dong, X.; Wang, T.; Ouyang, J. Sedimentary differentiation triggered by the Toarcian Oceanic Anoxic Event and formation of lacustrine shale oil reservoirs: Organic matter accumulation and pore system evolution of the Early Jurassic sedimentary succession, Sichuan Basin, China. J. Asian Earth. Sci. 2023, 256, 105825. [Google Scholar] [CrossRef]
- Wang, E.; Fu, Y.; Guo, T.; Li, M. A new approach for predicting oil mobilities and unveiling their controlling factors in a lacustrine shale system: Insights from interpretable machine learning model. Fuel 2025, 379, 132958. [Google Scholar] [CrossRef]
- Fang, R.; Jiang, Y.; Yang, C.; Deng, H.; Jiang, C.; Hong, H.; Tang, S.; Gu, Y.; Zhu, X.; Sun, S.; et al. Occurrence states and mobility of shale oil in different lithologic assemblages in the Jurassic Lianggaoshan Formation, Sichuan Basin. Oil Gas Geol. 2024, 45, 752–769, (In Chinese with English abstract). [Google Scholar]
- Guo, X.; Wei, Z.; Wei, X.; Liu, Z.; Chen, C.; Wang, D. Enrichment conditions and exploration direction of Jurassic continental shale oil and gas in Sichuan Basin. Acta Pet. Sin. 2023, 44, 14–27, (In Chinese with English abstract). [Google Scholar]
- Wang, E.; Li, M.; Ma, X.; Qian, M.; Cao, T.; Li, Z.; Yang, W.; Jin, Z. Diahopane and diasterane as the proxies for paleoenvironment, hydrocarbon generation condition, and shale oil accumulation. Chem. Geol. 2024, 670, 122447. [Google Scholar] [CrossRef]
- Yang, Y.; Wen, L.; Wang, X.; Hong, H.; Zhu, H.; Xiong, Y.; Li, M.; Lu, J.; Ceng, D.; Yang, W. Geological characteristics and favorable exploration area selection of shale oil and gas of the Lower Jurassic Da’anzhai Member in the Sichuan Basin. Nat. Gas Ind. 2023, 43, 32–42, (In Chinese with English abstract). [Google Scholar]
- He, J.; Jian, W.; Harald, M.; Qiu, Z.; Yu, Q. The characteristics and formation mechanism of a regional fault in shale strata: Insights from the Middle-Upper Yangtze, China. Mar. Pet. Geol. 2020, 121, 104592. [Google Scholar] [CrossRef]
- Qiu, Z.; He, J.L. Depositional environment changes and organic matter accumulation of Pliensbachian-Toarcian lacustrine shales in the Sichuan basin, SW China. J. Asian Earth Sci. 2022, 232, 105035. [Google Scholar] [CrossRef]
- Kong, X.; Zeng, J.; Luo, Q.; Tan, J.; Zhang, R.; Wang, X.; Wang, Q.Y. Controls of Continental Shale Lithofacies on Pore Structure of Jurassic Da’anzhai Member in Central Sichuan Basin. Xinjiang Pet. Geol. 2023, 44, 392–403, (In Chinese with English abstract). [Google Scholar]
- Liu, Y.; Qiu, N.; Xie, Z.; Yao, Q.; Zhu, C. Overpressure compartments in the central paleo-uplift, Sichuan Basin, southwest China. AAPG Bull. 2016, 100, 867–888. [Google Scholar] [CrossRef]
- Habulashenmu, Y.; Wang, X.; Qiu, L.; Yang, Y.; Chen, S.; Khan, D.; Teng, J.; Hu, Y. Lithofacies characteristics and genetic mechanism of hybrid sedimentary rocks in Da’anzhai member, Sichuan Basin. Mar. Pet. Geol. 2024, 162, 106695. [Google Scholar] [CrossRef]
- Li, D.; Xia, Y.; Xu, L. Coupling and formation mechanism of continental intraplate basin and orogen-Examples from the Qinghai-Tibet Plateau and adjacent basins. Earth Sci. Front. 2009, 16, 110–119. [Google Scholar] [CrossRef]
- Li, Y.; He, D.; Chen, L.; Mei, Q.; Li, C.; Zhang, L. Cretaceous sedimentary basins in Sichuan, SW China: Restoration of tectonic and depositional environments. Cretac. Res. 2016, 57, 50–65. [Google Scholar] [CrossRef]
- Li, Y.; Li, S.; He, D.; Gao, J.; Wang, Y.; Huang, H.; Zhang, J.; Zhang, Y. Middle Triassic tectono-sedimentary development of Sichuan Basin: Insights into the cratonic differentiation. Geol. J. 2021, 56, 1858–1878. [Google Scholar] [CrossRef]
- Wang, X.; Yang, Z.; Han, B. Superposed evolution of Sichuan Basin and its petroleum accumulation. Earth Sci. Front. 2015, 22, 161–173. [Google Scholar]
- Yang, Y.; Huang, D. Geological characteristics and new understandings of exploration and development of Jurassic lacustrine shale oil and gas in the Sichuan Basin. Nat. Gas Ind. 2019, 39, 22–33. [Google Scholar]
- Chen, S.; Zhang, H.; Lu, J.; Yang, Y.; Liu, C.; Wang, L.; Zou, X.; Yang, J.; Tang, H.; Yao, Y.; et al. Controlling factors of Jurassic Da’anzhai Member tight oil accumulation and high production in central Sichuan Basin, SW China. Petrol. Explor. Dev. 2015, 42, 206–214. [Google Scholar] [CrossRef]
- Su, K.; Lu, J.; Zhang, G.; Chen, S.; Li, Y.; Xiao, Z.; Wang, P.; Qiu, W. Origin of natural gas in Jurassic Da’anzhai member in the western part of central Sichuan basin, China. J. Pet. Sci. Eng. 2018, 167, 890–899. [Google Scholar] [CrossRef]
- Hu, Z.; Wang, R.; Liu, Z. Source-reservoir characteristics and coupling evaluations for the Lower Jurassic lacustrine shale gas reservoir in the Sichuan basin. Earth Sci. Front. 2021, 28, 261–272, (In Chinese with English abstract). [Google Scholar]
- Guo, Y.; Zeng, D.; Zhang, R.; Wang, X.; Huang, D.; Zhang, B.; Xie, S. Paleoenvironment and Its Petroleum Geological Significance of the Jurassic Da’anzhai Member in the Central-Eastern Sichuan Basin. Acta Sedimentol. Sin. 2023, 42, 1016–1031, (In Chinese with English abstract). [Google Scholar]
- Zou, C.; Yang, Z.; Wang, H.; Dong, D.; Liu, H.; Shi, Z.; Zhang, B.; Sun, S.; Liu, D.; Li, G.; et al. “Exploring petroleum inside source kitchen”: Jurassic unconventional continental giant shale oil & gas field in Sichuan Basin, China. Acta Geol. Sin. 2019, 93, 1551–1562, (In Chinese with English abstract). [Google Scholar]
- Taylor, S.R.; McLennan, S.M. The Continental Crust: Its Composition and Evolution; Blackwell: Oxford, UK, 1985; 312p. [Google Scholar]
- Tribovillard, N.; Algeo, T.J.; Baudin, F.; Riboulleau, A.J.C.G. Analysis of marine environmental conditions based onmolybdenum–uranium covariation—Applications to Mesozoic paleoceanography. Chem. Geol. 2012, 324, 46–58. [Google Scholar] [CrossRef]
- Minyuk, P.S.; Brigham–Grette, J.; Melles, M.; Borkhodoev, V.Y.; Glushkova, O.Y. Inorganic geochemistry of El’gygytgyn Lake sediments (northeastern Russia) as an indicator of paleoclimatic change for the last 250 kyr. J. Paleolimnol. 2007, 37, 123–133. [Google Scholar] [CrossRef]
- Nesbitt, H.W.; Young, G.M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 1982, 299, 715–717. [Google Scholar] [CrossRef]
- McLennan, S.M.; Hemming, S.; McDaniel, D.K.; Hanson, G.N. Geochemical approaches to sedimentation, provenance, and tectonics. Geol. Soc. Am. Spec. Pap. 1993, 284, 21–40. [Google Scholar]
- Zou, C.N.; Zhang, G.; Yang, Z.; Tao, S.; Hou, L.; Zhu, R.; Yuan, X.; Ran, Q.; Li, D.; Wang, Z. Geological concepts, characteristics, resource potential and key techniques of unconventional hydrocarbon: On unconventional petroleum geology. Petrol. Explor. Dev. 2013, 40, 385–399. [Google Scholar] [CrossRef]
- Loucks, R.G.; Ruppel, S.C. Mississippian Barnett Shale: Lithofacies and depositional setting of a deep-water shale-gas succession in the Fort Worth Basin, Texas. AAPG (Am. Assoc. Pet. Geol.) Bull. 2007, 91, 579–601. [Google Scholar] [CrossRef]
- Gamero-Diaz, H.; Miller, C.; Lewis, R.E. sCore: A mineralogy based classification scheme for organic mudstones. In Proceedings of the SPE Annual Technical Conference, New Orleans, LA, USA, 30 September–2 October 2013. [Google Scholar]
- Wu, Z.; Zhao, X.; Wang, E.; Pu, X.; Lash, G.; Han, W.; Zhang, W.; Feng, Y. Sedimentary environment and organic enrichment mechanisms of lacustrine shale: A case study of the Paleogene Shahejie Formation, Qikou Sag, Bohai Bay Basin. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2021, 573, 110404. [Google Scholar] [CrossRef]
- Liu, J.; Cao, J.; He, T.; Liang, F.; Pu, J.; Wang, Y. Lacustrine redox variations in the Toarcian Sichuan Basin across the Jenkyns Event. Glob. Planet. Chang. 2022, 215, 103860. [Google Scholar] [CrossRef]
- Algeo, T.J.; Liu, J.S. A re-assessment of elemental proxies for paleoredox analysis. Chem. Geol. 2020, 540, 119549. [Google Scholar] [CrossRef]
- Jones, B.; Manning, D.A. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chem. Geol. 1994, 111, 111–129. [Google Scholar] [CrossRef]
- Algeo, T.J.; Ingall, E. Sedimentary Corg:P ratios, paleocean ventilation, and Phanerozoic atmospheric pO2. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2007, 256, 130–155. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, J.; Ahmed, M.S.; Fu, X.; Shen, L. Lacustrine Environmental Perturbations during the Early Jurassic in the Qiangtang Basin, Northern Tibet. Minerals 2024, 14, 762. [Google Scholar] [CrossRef]
- Wei, W.; Algeo, T.J. Elemental proxies for paleosalinity analysis of ancient shales and mudrocks. Geochim. Cosmochim. Acta 2020, 287, 341–366. [Google Scholar] [CrossRef]
- Tribovillard, N.; Algeo, T.; Lyons, T.; Riboulleau, A. Trace metals as paleoredox and paleoproductivity proxies: An update. Chem. Geol. 2006, 232, 12–32. [Google Scholar] [CrossRef]
- Yang, C.; Gao, Y. Application of trace metal elements in the study of paleolimnological redox states. South. China Geol. 2020, 36, 295–307. [Google Scholar]
- Jenkyns, H.C. Geochemistry of oceanic anoxic events. Geochem. Geophys. Geosys. 2010, 11. [Google Scholar] [CrossRef]
- Xu, W.; Ruhl, M.; Jenkyns, H.C.; Hesselbo, S.P.; Riding, J.B.; Selby, D.; Naafs, B.D.A.; Weijers, J.W.; Pancost, R.D.; Tegelaar, E.W.; et al. Carbon sequestration in an expanded lake system during the Toarcian oceanic anoxic event. Nat. Geosci. 2017, 10, 129–134. [Google Scholar] [CrossRef]
- Liu, J.; Cao, J.; Hu, G.; Wang, Y.; Liao, Z. Water-level and redox fluctuations in a sichuan basin lacustrine system coincident with the Toarcian OAE. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2020, 558, 109942. [Google Scholar] [CrossRef]
- Them, T.R., II; Gill, B.C.; Caruthers, A.H.; Grocke, D.R.; Tulsky, E.T.; Martindale, R.C.; Poulton, T.P.; Smith, P.L. High-resolution carbon isotope records of the Toarcian Oceanic Anoxic Event (Early Jurassic) from North America and implications for the global drivers of the Toarcian carbon cycle. Earth Planet Sci. Lett. 2017, 459, 118–126. [Google Scholar] [CrossRef]
- Chen, W.; Kemp, D.B.; He, T.; Newton, R.J.; Xiong, Y.; Jenkyns, H.C.; Izumi, K.; Cho, T.; Huang, C.; Poulton, S.W. Shallow- and deep-ocean Fe cycling and redox evolution across the Pliensbachian-Toarcian boundary and Toarcian Oceanic Anoxic Event in Panthalassa. Earth Planet Sci. Lett. 2023, 602, 117959. [Google Scholar] [CrossRef]
- Kemp, D.B.; Suan, G.; Fantasia, A.; Jin, S.; Chen, W. Global organic carbon burial during the Toarcian oceanic anoxic event: Patterns and controls. Earth Sci. Rev. 2022, 231, 104086. [Google Scholar] [CrossRef]
- Kemp, D.B.; Chen, W.; Cho, T.; Algeo, T.J.; Shen, J.; Ikeda, M. Deep-ocean anoxia across the Pliensbachian-Toarcian boundary and the Toarcian Oceanic Anoxic Event in the Panthalassic Ocean. Glob. Planet. Chang. 2022, 212, 103782. [Google Scholar] [CrossRef]
- Qiu, R.; Fang, L.; Lv, P.; Jiang, F.; Zhang, X.; Zhang, X.; Zhang, P.; Zhu, L.; Shi, S. Long eccentricity forcing of the Late Pliensbachian to Early Toarcian (Jurassic) terrestrial wildfire activities in the Tarim Basin, northwestern China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2023, 613, 111408. [Google Scholar] [CrossRef]
- Qiu, R.; Fang, L.; Lu, Y.; Chen, Y.; Huang, R.; Lei, W.; Zhang, P.; Li, M. Cyclostratigraphy of the Lower Jurassic (Toarcian) terrestrial successions in the Sichuan Basin, southwestern China. J. Asian Earth Sci. 2023, 250, 105617. [Google Scholar] [CrossRef]
- Liu, H.; Liu, X.; Liu, G.; Li, G.; Wang, J.; Gao, Y.; Sun, B.; Hou, J.; Liu, H.; Su, X. Sedimentary environment controls on the lacustrine shale lithofacies: A case study from the Nanpu depression Bohai Bay Basin. Geoenergy Sci. Eng. 2023, 225, 211704. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, C.; Liang, H.; Wang, J.; Bai, J.; Yang, M.; Liu, G.; Huang, H.; Guan, Y. Paleoenvironmental conditions, organic matter accumulation, and unconventional hydro-carbon potential for the Permian Lucaogou Formation organic-rich rocks in Santanghu Basin NW China. Int. J. Coal Geol. 2018, 185, 44–60. [Google Scholar] [CrossRef]
- Lin, D.; Xi, Z.; Tang, S.; Lash, G.G.; Guo, Q.; Wang, H.; Zhu, Y. Organic matter enrichment in shale deposited proximal to paleo-uplifts and its impact on shale gas exploration. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2024, 633, 111900. [Google Scholar] [CrossRef]
Depth | Quartz | Potassium Feldspar | Plagioclase Feldspar | Calcite | Ferrodolomite | Dolomite | Siderite | Pyrite | Fluorapatite | Siliceous Mineral | Clay Mineral | Carbonate Mineral | TOC | Lithofacies |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(m) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | |
2955.37 | 32.4 | 5.1 | 2.1 | 1.9 | 1.6 | 37.5 | 56.5 | 5.6 | 0.9 | OPA | ||||
2956.15 | 30.9 | 4.6 | 1.2 | 1.1 | 35.5 | 62.2 | 1.2 | 0.9 | OPA | |||||
2956.75 | 39.1 | 7.7 | 1.8 | 0.5 | 46.8 | 50.9 | 1.8 | 1.0 | OPA | |||||
2957.22 | 29.2 | 3.4 | 4.8 | 1.9 | 0.5 | 32.6 | 60.2 | 6.7 | 0.9 | OPA | ||||
2958.67 | 33.0 | 6.3 | 2.7 | 2.3 | 39.3 | 54.8 | 0.0 | 1.6 | ORA | |||||
2958.87 | 33.0 | 5.7 | 0.8 | 3.3 | 38.7 | 55.9 | 0.8 | 1.4 | ORA | |||||
2958.98 | 28.8 | 5.3 | 3.4 | 1.2 | 34.1 | 60.8 | 3.4 | 1.3 | ORA | |||||
2959.78 | 36.6 | 4.7 | 1.6 | 3.9 | 41.3 | 53.2 | 1.6 | 1.6 | ORA | |||||
2961.13 | 35.1 | 2.3 | 11.3 | 6.8 | 37.4 | 44.5 | 18.1 | 1.6 | ORM | |||||
2964.08 | 32.0 | 1.9 | 9.6 | 2.9 | 33.9 | 53.6 | 12.5 | 0.9 | OPA | |||||
2964.21 | 36.8 | 2.8 | 5.9 | 2.0 | 0.4 | 39.6 | 52.1 | 7.9 | 0.9 | OPA | ||||
2965.11 | 20.7 | 2.7 | 1.3 | 0.6 | 23.4 | 74.7 | 1.3 | 0.8 | OPA | |||||
2965.19 | 23.0 | 3.4 | 0.6 | 23.0 | 73.0 | 3.4 | 0.8 | OPA | ||||||
2966.31 | 25.7 | 5.2 | 6.3 | 0.6 | 0.8 | 30.9 | 61.4 | 6.9 | 1.1 | ORA | ||||
2966.98 | 31.9 | 6.5 | 2.8 | 31.9 | 55.8 | 6.5 | 1.1 | ORA | ||||||
2968.08 | 19.8 | 2.0 | 24.7 | 2.5 | 21.8 | 50.8 | 24.7 | 1.4 | ORA | |||||
2968.74 | 26.6 | 0.4 | 2.2 | 6.8 | 1.7 | 29.2 | 61.9 | 6.8 | 1.9 | ORA | ||||
2969.37 | 29.0 | 2.6 | 1.4 | 2.1 | 29.0 | 64.9 | 4.0 | 1.6 | ORA | |||||
2970.07 | 28.0 | 1.6 | 2.4 | 29.6 | 67.2 | 0.0 | 1.6 | ORA | ||||||
2972.2 | 26.7 | 4.9 | 3.9 | 0.8 | 0.7 | 1.9 | 31.6 | 61.1 | 5.4 | 2.3 | ORA | |||
2972.45 | 28.5 | 2.6 | 4.0 | 1.6 | 31.1 | 62.6 | 4.0 | 1.9 | ORA | |||||
2972.5 | 21.2 | 4.1 | 1.3 | 25.3 | 72.2 | 0.0 | 1.8 | ORA | ||||||
2978.23 | 29.9 | 7.3 | 2.0 | 3.3 | 0.6 | 37.2 | 56.9 | 5.3 | 0.9 | OPA | ||||
2980.07 | 31.0 | 4.3 | 11.0 | 1.1 | 35.3 | 52.6 | 11.0 | 0.9 | OPA | |||||
2982.09 | 29.3 | 5.7 | 23.4 | 0.9 | 35.0 | 36.8 | 23.4 | 1.1 | ORM | |||||
2983.9 | 31.6 | 4.9 | 3.3 | 1.5 | 36.5 | 58.7 | 3.3 | 0.7 | OPA | |||||
2985.04 | 30.6 | 5.1 | 6.6 | 35.7 | 54.5 | 6.6 | 0.8 | OPA | ||||||
2986.3 | 26.3 | 5.0 | 20.0 | 1.8 | 31.3 | 46.9 | 20.0 | 1.4 | ORM | |||||
2988.6 | 32.0 | 5.9 | 6.7 | 1.2 | 37.9 | 54.2 | 6.7 | 0.8 | OPA | |||||
2991.95 | 11.7 | 8.3 | 12.1 | 7.0 | 20.0 | 54.9 | 19.1 | 0.6 | OPA | |||||
2995.1 | 17.0 | 4.8 | 23.7 | 0.4 | 21.8 | 54.1 | 23.7 | 0.7 | OPA | |||||
3000.3 | 17.2 | 3.2 | 4.2 | 1.0 | 20.4 | 74.4 | 4.2 | 0.4 | OPA | |||||
3004.11 | 39.1 | 2.3 | 4.7 | 2.2 | 41.4 | 51.7 | 6.9 | 0.6 | OPA |
Depth | TOC | SiO2 | Al2O3 | MgO | Na2O | K2O | P2O5 | TiO2 | CaO | TFe2O3 | MnO | SO2 | LOI |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(m) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) |
2955.37 | 0.94 | 57.70 | 19.95 | 2.20 | 0.67 | 3.26 | 0.15 | 0.84 | 1.11 | 5.80 | 0.08 | 0.08 | 7.60 |
2956.15 | 0.88 | 56.55 | 21.25 | 2.28 | 0.65 | 3.50 | 0.12 | 0.83 | 0.61 | 6.00 | 0.05 | 0.08 | 7.53 |
2956.75 | 0.95 | 60.96 | 18.38 | 2.02 | 0.72 | 2.83 | 0.18 | 0.84 | 1.37 | 5.48 | 0.06 | 0.11 | 6.44 |
2957.22 | 0.86 | 59.52 | 18.96 | 2.12 | 0.58 | 3.41 | 0.12 | 0.69 | 1.29 | 5.79 | 0.05 | 0.08 | 6.82 |
2958.67 | 1.57 | 56.44 | 19.45 | 2.12 | 0.69 | 3.29 | 0.27 | 0.67 | 1.09 | 7.36 | 0.05 | 1.21 | 6.80 |
2958.87 | 1.38 | 57.54 | 18.89 | 2.07 | 0.65 | 3.01 | 0.19 | 0.66 | 1.33 | 7.30 | 0.04 | 1.29 | 6.44 |
2958.98 | 1.32 | 58.74 | 18.66 | 2.07 | 0.64 | 3.37 | 0.27 | 0.64 | 0.76 | 6.47 | 0.03 | 0.79 | 6.96 |
2959.38 | 0.63 | 52.59 | 18.43 | 1.87 | 0.65 | 3.05 | 0.16 | 0.82 | 4.63 | 6.34 | 0.05 | 1.33 | 9.57 |
2959.78 | 1.55 | 58.11 | 19.11 | 2.20 | 0.64 | 3.37 | 0.09 | 0.72 | 0.71 | 7.15 | 0.05 | 0.58 | 6.70 |
2961.13 | 1.56 | 54.82 | 18.1 | 2.01 | 0.47 | 2.97 | 0.10 | 0.67 | 4.42 | 5.12 | 0.09 | 0.06 | 10.63 |
2964.08 | 0.87 | 52.77 | 21.14 | 2.17 | 0.43 | 3.50 | 0.16 | 0.80 | 3.14 | 6.01 | 0.09 | 0.05 | 9.24 |
2964.21 | 0.93 | 57.29 | 19.56 | 1.89 | 0.46 | 3.13 | 0.11 | 0.69 | 2.91 | 4.98 | 0.06 | 0.08 | 8.27 |
2965.11 | 0.84 | 52.70 | 25.3 | 2.07 | 0.54 | 3.64 | 0.10 | 0.85 | 0.68 | 5.77 | 0.05 | 0.10 | 7.68 |
2965.19 | 0.76 | 53.37 | 25.31 | 2.06 | 0.54 | 3.66 | 0.10 | 0.83 | 0.57 | 5.62 | 0.04 | 0.13 | 7.25 |
2966.31 | 1.05 | 50.59 | 24.17 | 2.16 | 0.60 | 3.62 | 0.11 | 0.76 | 1.95 | 6.68 | 0.06 | 0.12 | 8.67 |
2966.98 | 1.11 | 57.02 | 21 | 1.81 | 0.45 | 3.46 | 0.10 | 0.65 | 1.86 | 5.03 | 0.04 | 0.13 | 7.87 |
2967.03 | 0.64 | 17.27 | 3.59 | 0.54 | 0.13 | 0.58 | 0.03 | 0.16 | 41.47 | 2.03 | 0.44 | 0.10 | 33.49 |
2968.08 | 1.44 | 45.85 | 15.45 | 1.60 | 0.39 | 2.52 | 0.14 | 0.43 | 11.66 | 5.82 | 0.05 | 0.89 | 14.76 |
2968.74 | 1.86 | 51.57 | 22.86 | 2.16 | 0.53 | 3.69 | 0.09 | 0.66 | 0.58 | 7.28 | 0.03 | 0.96 | 9.07 |
2969.37 | 1.62 | 57.99 | 19.3 | 2.07 | 0.55 | 3.54 | 0.12 | 0.62 | 0.86 | 6.30 | 0.04 | 0.24 | 7.80 |
2970.07 | 1.58 | 58.83 | 17.77 | 2.06 | 0.51 | 3.45 | 0.17 | 0.58 | 1.10 | 6.73 | 0.03 | 0.06 | 8.12 |
2972.2 | 2.32 | 54.40 | 22.05 | 2.10 | 0.53 | 3.53 | 0.16 | 0.75 | 0.89 | 6.56 | 0.04 | 0.12 | 8.33 |
2972.45 | 1.87 | 53.84 | 22.55 | 2.15 | 0.53 | 3.54 | 0.16 | 0.76 | 0.93 | 7.15 | 0.04 | 0.14 | 7.69 |
2972.5 | 1.75 | 54.60 | 21.21 | 2.01 | 0.53 | 3.26 | 0.23 | 0.69 | 1.62 | 7.01 | 0.04 | 0.12 | 8.14 |
2978.23 | 0.85 | 54.64 | 23.35 | 1.96 | 0.78 | 3.29 | 0.15 | 0.94 | 1.18 | 5.65 | 0.05 | 0.10 | 7.37 |
2980.07 | 0.85 | 53.01 | 21.96 | 1.80 | 0.67 | 2.91 | 0.12 | 0.82 | 3.55 | 5.70 | 0.06 | 0.17 | 8.70 |
2982.09 | 0.7 | 52.65 | 16.61 | 1.78 | 0.57 | 2.21 | 0.31 | 0.71 | 7.47 | 5.49 | 0.10 | 0.15 | 11.42 |
2983.9 | 0.66 | 55.95 | 21.1 | 2.12 | 0.54 | 3.12 | 0.16 | 0.79 | 1.18 | 6.97 | 0.10 | 0.09 | 7.32 |
2985.04 | 0.79 | 56.55 | 19.73 | 1.72 | 0.69 | 2.61 | 0.20 | 0.80 | 1.76 | 7.26 | 0.09 | 0.10 | 7.93 |
2986.3 | 1.44 | 53.62 | 17.45 | 1.96 | 0.58 | 2.99 | 0.25 | 0.59 | 5.00 | 6.94 | 0.05 | 0.14 | 9.90 |
2988.6 | 0.77 | 58.53 | 19.5 | 1.85 | 0.72 | 2.83 | 0.24 | 0.85 | 1.80 | 5.60 | 0.06 | 0.07 | 7.38 |
2991.95 | 0.64 | 54.52 | 18.07 | 1.88 | 0.51 | 2.48 | 0.22 | 0.72 | 3.12 | 8.71 | 0.27 | 0.17 | 8.79 |
2995.1 | 0.65 | 27.14 | 10.51 | 0.93 | 0.26 | 1.51 | 0.06 | 0.46 | 30.56 | 3.18 | 0.18 | 0.89 | 24.03 |
3000.1 | 0.21 | 52.71 | 20.91 | 1.63 | 0.69 | 3.11 | 0.17 | 0.89 | 4.57 | 5.43 | 0.06 | 0.18 | 9.11 |
3000.3 | 0.4 | 53.03 | 25.58 | 1.71 | 0.60 | 3.71 | 0.11 | 0.92 | 1.16 | 5.15 | 0.04 | 0.10 | 7.36 |
3004.11 | 0.56 | 59.25 | 19.65 | 1.83 | 0.47 | 3.00 | 0.11 | 0.85 | 1.78 | 5.16 | 0.06 | 0.06 | 7.19 |
Depth | TOC | 51V | 52Cr | 59Co | 60Ni | 63Cu | 66Zn | 88Sr | 95Mo | 137Ba | 238U | 232Th |
---|---|---|---|---|---|---|---|---|---|---|---|---|
(m) | (%) | (ppm) | (ppm) | (ppm) | (ppm) | (ppm) | (ppm) | (ppm) | (ppm) | (ppm) | (ppm) | (ppm) |
2955.37 | 0.94 | 148.75 | 92.92 | 19.22 | 54.89 | 37.04 | 163.70 | 147.71 | 0.54 | 796.80 | 2.43 | 13.48 |
2956.15 | 0.88 | 174.33 | 100.72 | 18.06 | 54.47 | 39.49 | 138.37 | 146.61 | 0.62 | 911.35 | 2.26 | 13.27 |
2956.75 | 0.95 | 147.81 | 91.73 | 19.12 | 49.47 | 37.36 | 139.66 | 165.13 | 0.72 | 699.40 | 2.28 | 13.56 |
2957.22 | 0.86 | 157.40 | 92.27 | 15.64 | 50.08 | 34.50 | 119.96 | 160.71 | 0.66 | 726.01 | 2.33 | 12.74 |
2958.67 | 1.57 | 169.68 | 77.71 | 17.79 | 49.97 | 49.95 | 135.49 | 166.97 | 1.41 | 730.60 | 2.17 | 11.96 |
2958.87 | 1.38 | 163.49 | 75.72 | 17.25 | 46.66 | 46.42 | 130.78 | 173.51 | 1.19 | 722.77 | 1.96 | 11.09 |
2958.98 | 1.32 | 169.72 | 98.09 | 14.92 | 48.02 | 48.15 | 133.77 | 157.29 | 0.98 | 771.85 | 1.83 | 10.71 |
2959.38 | 0.63 | 164.50 | 93.22 | 15.10 | 43.82 | 43.07 | 111.14 | 197.15 | 1.37 | 742.88 | 1.47 | 9.51 |
2959.78 | 1.55 | 181.07 | 83.93 | 17.61 | 48.53 | 40.27 | 134.44 | 141.45 | 1.44 | 775.43 | 2.36 | 11.77 |
2961.13 | 1.56 | 133.67 | 100.71 | 22.10 | 49.80 | 29.38 | 76.68 | 147.50 | 0.78 | 577.51 | 2.24 | 16.79 |
2964.08 | 0.87 | 159.01 | 93.98 | 15.38 | 47.10 | 36.22 | 94.55 | 155.15 | 0.37 | 664.97 | 2.82 | 17 |
2964.21 | 0.93 | 144.34 | 85.46 | 25.74 | 55.91 | 31.82 | 108.38 | 172.60 | 0.79 | 631.44 | 2.52 | 16.56 |
2965.11 | 0.84 | 187.76 | 89.66 | 22.36 | 59.70 | 47.15 | 145.11 | 143.69 | 0.81 | 858.55 | 3.34 | 16.15 |
2965.19 | 0.76 | 187.26 | 102.19 | 23.54 | 60.17 | 45.86 | 137.75 | 149.77 | 0.89 | 857.34 | 2.96 | 14.58 |
2966.31 | 1.05 | 184.40 | 104.15 | 18.83 | 55.61 | 45.02 | 125.83 | 163.30 | 0.70 | 869.59 | 2.82 | 13.62 |
2966.98 | 1.11 | 158.58 | 77.73 | 19.56 | 51.17 | 39.07 | 125.50 | 132.17 | 1.04 | 604.00 | 3.23 | 17.74 |
2968.08 | 1.44 | 132.33 | 69.45 | 13.59 | 42.12 | 32.71 | 84.36 | 197.82 | 0.88 | 629.29 | 1.86 | 9.05 |
2968.74 | 1.86 | 199.38 | 115.07 | 18.49 | 54.82 | 46.84 | 133.20 | 156.00 | 1.02 | 912.41 | 2.35 | 11.74 |
2969.37 | 1.62 | 176.28 | 100.94 | 15.60 | 50.11 | 45.38 | 125.68 | 127.16 | 0.93 | 953.21 | 2.29 | 11 |
2970.07 | 1.58 | 184.30 | 109.52 | 15.82 | 53.39 | 41.43 | 132.95 | 137.85 | 0.86 | 828.31 | 1.67 | 8.47 |
2972.2 | 2.32 | 181.58 | 117.76 | 19.25 | 58.60 | 45.61 | 122.22 | 141.99 | 0.95 | 903.15 | 2.11 | 12.5 |
2972.45 | 1.87 | 193.19 | 111.85 | 18.09 | 53.24 | 43.74 | 133.65 | 149.29 | 0.78 | 846.95 | 2.26 | 11.95 |
2972.5 | 1.75 | 182.56 | 108.11 | 18.15 | 50.52 | 39.87 | 128.52 | 156.22 | 0.72 | 839.97 | 2.43 | 11.47 |
2978.23 | 0.85 | 180.11 | 102.84 | 19.97 | 52.78 | 45.74 | 123.72 | 149.92 | 0.77 | 807.23 | 2.70 | 14.95 |
2980.07 | 0.85 | 159.99 | 91.46 | 18.33 | 49.98 | 40.98 | 156.97 | 200.72 | 0.72 | 731.84 | 2.40 | 13.26 |
2982.09 | 0.7 | 124.87 | 65.22 | 14.52 | 40.98 | 33.63 | 92.78 | 171.78 | 0.90 | 545.09 | 2.15 | 13.16 |
2983.9 | 0.66 | 163.38 | 93.21 | 18.53 | 51.94 | 40.08 | 108.99 | 137.06 | 0.55 | 801.41 | 2.50 | 14.22 |
2985.04 | 0.79 | 145.95 | 84.44 | 17.22 | 44.95 | 40.64 | 113.79 | 139.81 | 0.60 | 636.18 | 2.26 | 12.49 |
2986.3 | 1.44 | 153.82 | 96.17 | 16.31 | 49.53 | 43.72 | 110.78 | 170.65 | 0.71 | 710.43 | 1.69 | 9.57 |
2988.6 | 0.77 | 158.03 | 98.59 | 17.62 | 50.78 | 43.85 | 117.53 | 147.23 | 0.54 | 683.80 | 1.94 | 12.26 |
2991.95 | 0.64 | 127.64 | 92.35 | 16.80 | 44.41 | 34.29 | 141.64 | 175.92 | 0.58 | 607.75 | 2.33 | 13.02 |
3000.1 | 0.21 | 144.27 | 96.75 | 18.17 | 46.77 | 43.69 | 116.74 | 181.33 | 1.27 | 700.93 | 2.76 | 15.07 |
3000.3 | 0.4 | 175.13 | 107.04 | 14.88 | 50.00 | 44.00 | 115.67 | 137.76 | 0.81 | 741.62 | 2.78 | 17.33 |
3004.11 | 0.56 | 137.42 | 76.52 | 18.60 | 47.37 | 34.30 | 117.94 | 122.15 | 1.37 | 482.93 | 2.93 | 18.27 |
Depth (m) | Weathering and Paleoclimate | Redox Condition | Salinity | Terrigenous Detrital Input Al (%) | Primary Productivity | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
CIA | Fe/Mn | V/Cr | Ni/Co | U/Th | MoEF | Corg/P | Sr/Ba | Ni + Cu + Zn (ppm) | (Ni + Cu + Zn)/Al | ||
2955.37 | 79.83 | 72.50 | 1.60 | 2.86 | 0.18 | 0.54 | 37.06 | 0.19 | 9.98 | 255.63 | 0.0024 |
2956.15 | 81.70 | 120.00 | 1.73 | 3.02 | 0.17 | 0.62 | 43.37 | 0.16 | 10.63 | 232.33 | 0.0021 |
2956.75 | 78.88 | 91.33 | 1.61 | 2.59 | 0.17 | 0.72 | 31.21 | 0.24 | 9.19 | 226.49 | 0.0023 |
2957.22 | 78.22 | 115.80 | 1.71 | 3.20 | 0.18 | 0.66 | 42.38 | 0.22 | 9.48 | 204.54 | 0.0020 |
2958.67 | 79.32 | 147.20 | 2.18 | 2.81 | 0.18 | 1.41 | 34.39 | 0.23 | 9.73 | 235.41 | 0.0023 |
2958.87 | 79.10 | 182.50 | 2.16 | 2.70 | 0.18 | 1.19 | 42.96 | 0.24 | 9.45 | 223.86 | 0.0022 |
2958.98 | 79.64 | 215.67 | 1.73 | 3.22 | 0.17 | 0.98 | 28.91 | 0.20 | 9.33 | 229.94 | 0.0023 |
2959.38 | 68.87 | 126.80 | 1.76 | 2.90 | 0.15 | 1.37 | 23.29 | 0.27 | 9.22 | 198.03 | 0.0020 |
2959.78 | 80.19 | 143.00 | 2.16 | 2.76 | 0.20 | 1.44 | 101.86 | 0.18 | 9.56 | 223.24 | 0.0022 |
2961.13 | 69.72 | 56.89 | 1.33 | 2.25 | 0.13 | 0.78 | 92.26 | 0.26 | 9.05 | 155.86 | 0.0016 |
2964.08 | 74.94 | 66.78 | 1.69 | 3.06 | 0.17 | 0.37 | 32.16 | 0.23 | 10.57 | 177.87 | 0.0016 |
2964.21 | 75.06 | 83.00 | 1.69 | 2.17 | 0.15 | 0.79 | 50.00 | 0.27 | 9.78 | 196.11 | 0.0019 |
2965.11 | 83.89 | 115.40 | 2.09 | 2.67 | 0.21 | 0.81 | 49.68 | 0.17 | 12.65 | 251.96 | 0.0019 |
2965.19 | 84.14 | 140.50 | 1.83 | 2.56 | 0.20 | 0.89 | 44.95 | 0.17 | 12.66 | 243.78 | 0.0018 |
2966.31 | 79.66 | 111.33 | 1.77 | 2.95 | 0.21 | 0.70 | 56.45 | 0.19 | 12.09 | 226.46 | 0.0018 |
2966.98 | 78.45 | 125.75 | 2.04 | 2.62 | 0.18 | 1.04 | 65.65 | 0.22 | 10.50 | 215.74 | 0.0019 |
2967.03 | 78.84 | 4.61 | 1.97 | 2.69 | 0.28 | 1.54 | 126.17 | 2.51 | 1.80 | 32.61 | 0.0017 |
2968.08 | 71.47 | 116.40 | 1.91 | 3.10 | 0.21 | 0.88 | 60.83 | 0.31 | 7.73 | 159.19 | 0.0019 |
2968.74 | 82.65 | 242.67 | 1.73 | 2.96 | 0.20 | 1.02 | 122.23 | 0.17 | 11.43 | 234.86 | 0.0019 |
2969.37 | 79.59 | 157.50 | 1.75 | 3.21 | 0.21 | 0.93 | 79.84 | 0.13 | 9.65 | 221.17 | 0.0022 |
2970.07 | 77.84 | 224.33 | 1.68 | 3.37 | 0.20 | 0.86 | 54.97 | 0.17 | 8.89 | 227.77 | 0.0024 |
2972.2 | 81.67 | 164.00 | 1.54 | 3.04 | 0.17 | 0.95 | 85.76 | 0.16 | 11.03 | 226.43 | 0.0019 |
2972.45 | 81.85 | 178.75 | 1.73 | 2.94 | 0.19 | 0.78 | 69.12 | 0.18 | 11.28 | 230.63 | 0.0019 |
2972.5 | 79.68 | 175.25 | 1.69 | 2.78 | 0.21 | 0.72 | 45.00 | 0.19 | 10.61 | 218.91 | 0.0019 |
2978.23 | 81.64 | 113.00 | 1.75 | 2.64 | 0.18 | 0.77 | 33.51 | 0.19 | 11.68 | 222.24 | 0.0018 |
2980.07 | 75.49 | 95.00 | 1.75 | 2.73 | 0.18 | 0.72 | 41.89 | 0.27 | 10.98 | 247.93 | 0.0021 |
2982.09 | 61.84 | 54.90 | 1.91 | 2.82 | 0.16 | 0.90 | 13.35 | 0.32 | 8.31 | 167.39 | 0.0019 |
2983.9 | 81.34 | 69.70 | 1.75 | 2.80 | 0.18 | 0.55 | 24.40 | 0.17 | 10.55 | 201.01 | 0.0018 |
2985.04 | 79.59 | 80.67 | 1.73 | 2.61 | 0.18 | 0.60 | 23.36 | 0.22 | 9.87 | 199.38 | 0.0019 |
2986.3 | 67.06 | 138.80 | 1.60 | 3.04 | 0.18 | 0.71 | 34.07 | 0.24 | 8.73 | 204.03 | 0.0022 |
2988.6 | 78.47 | 93.33 | 1.60 | 2.88 | 0.16 | 0.54 | 18.97 | 0.22 | 9.75 | 212.16 | 0.0021 |
2991.95 | 74.73 | 32.26 | 1.38 | 2.64 | 0.18 | 0.58 | 17.20 | 0.29 | 9.04 | 220.34 | 0.0023 |
2995.1 | 74.53 | 17.67 | 1.36 | 2.73 | 0.18 | 0.48 | 64.07 | 0.42 | 5.26 | 82.48 | 0.0015 |
3000.1 | 71.41 | 90.50 | 1.49 | 2.57 | 0.18 | 1.27 | 7.31 | 0.26 | 10.46 | 207.20 | 0.0019 |
3000.3 | 82.38 | 128.75 | 1.64 | 3.36 | 0.16 | 0.81 | 21.51 | 0.19 | 12.79 | 209.67 | 0.0015 |
3004.11 | 78.92 | 86.00 | 1.80 | 2.55 | 0.16 | 1.37 | 30.11 | 0.25 | 9.83 | 199.61 | 0.0019 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, Y.; Fu, Y.; Chen, S.; Wang, E. Sedimentary Environment Reconstruction and Organic Matter Enrichment Mechanisms in Various Lithofacies of the Lacustrine Shale: A Case Study of the Da’anzhai Member, Central Sichuan Basin, China. Appl. Sci. 2024, 14, 10192. https://doi.org/10.3390/app142210192
Peng Y, Fu Y, Chen S, Wang E. Sedimentary Environment Reconstruction and Organic Matter Enrichment Mechanisms in Various Lithofacies of the Lacustrine Shale: A Case Study of the Da’anzhai Member, Central Sichuan Basin, China. Applied Sciences. 2024; 14(22):10192. https://doi.org/10.3390/app142210192
Chicago/Turabian StylePeng, Yuting, Yingxiao Fu, Senran Chen, and Enze Wang. 2024. "Sedimentary Environment Reconstruction and Organic Matter Enrichment Mechanisms in Various Lithofacies of the Lacustrine Shale: A Case Study of the Da’anzhai Member, Central Sichuan Basin, China" Applied Sciences 14, no. 22: 10192. https://doi.org/10.3390/app142210192
APA StylePeng, Y., Fu, Y., Chen, S., & Wang, E. (2024). Sedimentary Environment Reconstruction and Organic Matter Enrichment Mechanisms in Various Lithofacies of the Lacustrine Shale: A Case Study of the Da’anzhai Member, Central Sichuan Basin, China. Applied Sciences, 14(22), 10192. https://doi.org/10.3390/app142210192