Integrating BIM and GIS for an Existing Infrastructure
Abstract
:1. Introduction
2. Current State of BIM and GIS
2.1. BIM
2.1.1. Regulations and Standardization of BIM
2.1.2. BIM Formats
2.1.3. BIM Level of Development
2.2. GIS
2.2.1. Regulations and Standardization of GIS
2.2.2. GIS Formats
2.2.3. GIS Levels of Detail
3. Interoperability Issues
3.1. The Data Integration Problem
3.2. Scale-Level of Detail Problem
3.3. Georeferencing
3.4. BIM-GIS Incompatibilities
4. Interoperability Opportunities
4.1. Interoperation: GIS to BIM
4.2. Interoperation: BIM to GIS
4.3. BIM–GIS Interoperability with External Databases
4.4. Applications of BIM–GIS
5. Case Study: Madrid, Calle 30
5.1. BIM Model from GIS Data
5.2. GIS Scene with BIM Models
5.3. Calle 30 Management System
6. Discussion
7. Conclusions and Future Developments
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AECO | Architecture, Engineering, Construction, and Operation |
AI | Artificial Intelligence |
BEP | BIM Execution Plan |
BIM | Building Information Modelling |
B-Rep | Boundary Representation |
CDE | Common Data Environment |
CityGML | City Geography Markup Language (format) |
COBie | Construction Operation Building information exchange |
CSG | Construction Solid Geometry |
CRS | Coordinated Reference System |
DB | Database |
DT | Digital Twin |
EIR | Exchange of Information Requirements |
ETRS89 | 1989 European Terrestrial Reference System |
FM | Facility Management |
GIS | Geographic Information System |
GPS | Global Positioning System |
I3S | Indexed 3D Scene Layers |
ICT | Information and Communications Technology |
IFC | Industry Foundation Classes |
INSPIRE | Infrastructure for Spatial Information in Europe |
IoT | Internet of Things |
ISO | International Organization for Standardization |
LCA | Life Cycle of an Asset |
LoD | Level of Detail |
LOD | Levels Of Development |
OGC | Open Geospatial Consortium |
O&M | Operation and Maintenance |
SHP | Shapefile (format) |
SLPK | Scene Layer Package (format) |
SQL | Structured Query Language |
WMS | Web Map Service |
WFS | Web Feature Service |
References
- Zhu, J.; Wu, P. BIM/GIS data integration from the perspective of information flow. Autom. Constr. 2022, 136, 104166. [Google Scholar] [CrossRef]
- Karimi, S.; Iordanova, I. Integration of BIM and GIS for Construction Automation, a Systematic Literature Review (SLR) Combining Bibliometric and Qualitative Analysis. Arch. Comput. Methods Eng. 2021, 28, 4573–4594. [Google Scholar] [CrossRef]
- Malinverni, E.S.; Naticchia, B.; Garcia, J.L.L.; Gorreja, A.; Uriarte, J.L.; Di Stefano, F. A semantic graph database for the interoperability of 3D GIS data. Appl. Geomat. 2022, 14, 53–66. [Google Scholar] [CrossRef]
- Barazzetti, L.; Banfi, F. BIM and GIS: When parametric modeling meets geospatial data. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, IV-5-W1, 1–8. [Google Scholar] [CrossRef]
- Pan, Y.; Zhang, L. Integrating BIM and AI for Smart Construction Management: Current Status and Future Directions. Arch. Comput. Methods Eng. 2022, 30, 1081–1110. [Google Scholar] [CrossRef]
- Tang, L.; Chen, C.; Li, H.; Yat, D.; Mak, Y. Developing a BIM GIS–Integrated Method for Urban Underground Piping Management in China: A Case Study. J. Constr. Eng. Manag. 2022, 148, 05022004. [Google Scholar] [CrossRef]
- Shi, J.; Pan, Z.; Jiang, L.; Zhai, X. An ontology-based methodology to establish city information model of digital twin city by merging BIM, GIS and IoT. Adv. Eng. Inform. 2023, 57, 102114. [Google Scholar] [CrossRef]
- Cepa, J.J.; Pavón, R.M.; Alberti, M.G.; Ciccone, A.; Asprone, D. A Review on the Implementation of the BIM Methodology in the Operation Maintenance and Transport Infrastructure. Appl. Sci. 2023, 13, 3176. [Google Scholar] [CrossRef]
- Bassir, D.; Lodge, H.; Chang, H.; Majak, J.; Chen, G. Application of artificial intelligence and machine learning for BIM. Int. J. Simul. Multidiscip. Des. Optim. 2023, 14, 5. [Google Scholar] [CrossRef]
- Wen, Z.; Zhou, W.; Zhao, Y.; Zhao, L. An Intelligent Algorithm of Operation and Maintenance Cost Based on BIM of the Utility Tunnel. IOP Conf. Ser. Earth Environ. Sci. 2021, 719, 032097. [Google Scholar] [CrossRef]
- Valinejadshoubi, M.; Moselhi, O.; Bagchi, A.; Salem, A. Development of an IoT and BIM-based automated alert system for thermal comfort monitoring in buildings. Sustain. Cities Soc. 2021, 66, 102602. [Google Scholar] [CrossRef]
- Carneiro, J.; Rossetti, R.J.F.; Silva, D.C.; Oliveira, E.C. BIM, GIS, IoT, and AR/VR Integration for Smart Maintenance and Management of Road Networks: A Review. In Proceedings of the 2018 IEEE International Smart Cities Conference, ISC2 2018, Kansas City, MO, USA, 16–19 September 2018. [Google Scholar] [CrossRef]
- El-Din, M.N.; Pereira, P.F.; Martins, J.P.; Ramos, N.M.M. Digital Twins for Construction Assets Using BIM Standard Specifications. Buildings 2022, 12, 2155. [Google Scholar] [CrossRef]
- Naderi, H.; Shojaei, A. Digital twinning of civil infrastructures: Current state of model architectures, interoperability solutions, and future prospects. Autom. Constr. 2023, 149, 104785. [Google Scholar] [CrossRef]
- Shirowzhan, S.; Tan, W.; Sepasgozar, S.M.E. Digital Twin and CyberGIS for Improving Connectivity and Measuring the Impact of Infrastructure Construction Planning in Smart Cities. ISPRS Int. J. Geo-Inf. 2020, 9, 240. [Google Scholar] [CrossRef]
- Deng, M.; Menassa, C.C.; Kamat, V.R. From BIM to digital twins: A systematic review of the evolution of intelligent building representations in the AEC-FM industry. J. Inf. Technol. Constr. 2021, 26, 58–83. [Google Scholar] [CrossRef]
- Meschini, S.; Pellegrini, L.; Locatelli, M.; Accardo, D.; Tagliabue, L.C.; Di Giuda, G.M.; Avena, M. Toward cognitive digital twins using a BIM-GIS asset management system for a diffused university. Front. Built Environ. 2022, 8, 959475. [Google Scholar] [CrossRef]
- Deng, H.; Ou, Z.; Zhang, G.; Deng, Y.; Tian, M. BIM and Computer Vision-Based Framework for Fire Emergency Evacuation Considering Local Safety Performance. Sensors 2021, 21, 3851. [Google Scholar] [CrossRef]
- Pavón, R.M.; Alvarez, A.A.A.; Alberti, M.G. BIM-Based Educational and Facility Management of Large University Venues. Appl. Sci. 2020, 10, 7976. [Google Scholar] [CrossRef]
- Yin, X.; Liu, H.; Chen, Y.; Wang, Y.; Al-Hussein, M. A BIM-based framework for operation and maintenance of utility tunnels. Tunn. Undergr. Space Technol. 2020, 97, 103252. [Google Scholar] [CrossRef]
- Eastman, C.M. BIM Handbook: A Guide to Building Information Modeling for Owners, Managers, Designers, Engineers and Contractors, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2011; Available online: https://books.google.es/books?hl=es&lr=&id=-GjrBgAAQBAJ&oi=fnd&pg=PP7&dq=Khemlani,+in+Eastman+et+al.,+2011&ots=PgrDaY8onm&sig=Jy3mZBNsu-mwXhRUmmN_bTuO_nc#v=onepage&q&f=false (accessed on 21 July 2023).
- Charef, R.; Emmitt, S.; Alaka, H.; Fouchal, F. Building Information Modelling adoption in the European Union: An overview. J. Build. Eng. 2019, 25, 100777. [Google Scholar] [CrossRef]
- Parliament European and Council. Directive 2014/24/EU of the European Parliament and of the Council of 26 February 2014 on Public Procurement and Repealing Directive 2004/18/EC. Off. J. Eur. Union 2014, L94, 65–242. Available online: https://www.boe.es/buscar/doc.php?id=DOUE-L-2014-80598 (accessed on 24 July 2023).
- European Construction Sector Observatory. Analytical Report—Digitalisation in the Construction Sector—April 2021. Available online: https://ec.europa.eu/docsroom/documents/45547 (accessed on 19 November 2024).
- Fiamma, P.; Biagi, S. Critical Approaches on the Changes Taking Place after 24/2014/EU in BIM Adoption Process. Buildings 2023, 13, 850. [Google Scholar] [CrossRef]
- ISO/TC 59/SC 13; Organization and Digitization of Information About Buildings and Civil Engineering Works, Including Building Information Modelling (BIM). International Organization for Standardization: Geneva, Switzerland, 1987. Available online: https://www.iso.org/committee/49180.html (accessed on 24 July 2023).
- ISO 19650; Organization and Digitization of Information about Buildings and Civil Engineering Works, Including Building Information Modelling (BIM)—Information Management Using Building Information Modelling—Part 1: Concepts and Principles. ISO: Geneva, Switzerland, 2018.
- ISO 16739; Industry Foundation Classes (IFC) for Data Sharing in the Construction and Facility Management Industries—Part 1: Data Schema. ISO: Geneva, Switzerland, 2024.
- Pan, X.; Khan, A.M.; Eldin, S.M.; Aslam, F.; Rehman, S.K.U.; Jameel, M. BIM adoption in sustainability, energy modelling and implementing using ISO 19650: A review. Ain Shams Eng. J. 2024, 15, 102252. [Google Scholar] [CrossRef]
- Kumar, V.; Teo, E.A.L. Perceived benefits and issues associated with COBie datasheet handling in the construction industry. Facilities 2021, 39, 321–349. [Google Scholar] [CrossRef]
- Shin, S.; Moon, H.; Shin, J. BIM-Based Maintenance Data Processing Mechanism through COBie Standard Development for Port Facility. Appl. Sci. 2022, 12, 1304. [Google Scholar] [CrossRef]
- Xu, S.; Wang, J.; Wang, X.; Wu, P.; Shou, W.; Liu, C. A Parameter-Driven Method for Modeling Bridge Defects through IFC. J. Comput. Civ. Eng. 2022, 36, 04022015. [Google Scholar] [CrossRef]
- Zhao, Q.; Li, Y.; Hei, X.; Yang, M. A Graph-Based Method for IFC Data Merging. Adv. Civ. Eng. 2020, 2020, 8782740. [Google Scholar] [CrossRef]
- De Gaetani, C.I.; Mert, M.; Migliaccio, F. Interoperability Analyses of BIM Platforms for Construction Management. Appl. Sci. 2020, 10, 4437. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, J. New Automated BIM Object Classification Method to Support BIM Interoperability. J. Comput. Civ. Eng. 2019, 33, 04019033. [Google Scholar] [CrossRef]
- Gui, N.; Wang, C.; Qiu, Z.; Gui, W.; Deconinck, G. IFC-Based Partial Data Model Retrieval for Distributed Collaborative Design. J. Comput. Civ. Eng. 2019, 33, 04019016. [Google Scholar] [CrossRef]
- Bedrick, J.; Ikerd, W.; Reinhardt, J. Level of Development (LOD) Specification for Building Information Models Part I, Guide, & Commentary. 2021. Available online: www.bimforum.org/lod (accessed on 24 July 2023).
- Olbina, S.; Elliott, J.W. Contributing Project Characteristics and Realized Benefits of Successful BIM Implementation: A Comparison of Complex and Simple Buildings. Buildings 2019, 9, 175. [Google Scholar] [CrossRef]
- Jung, D.E.; Kim, S.; Han, S.; Yoo, S.; Jeong, H.; Lee, K.H.; Kim, J. Appropriate level of development of in-situ building information modeling for existing building energy modeling implementation. J. Build. Eng. 2023, 69, 106233. [Google Scholar] [CrossRef]
- Chen, S.H.; Xue, F. Automatic BIM detailing using deep features of 3D views. Autom. Constr. 2023, 148, 104780. [Google Scholar] [CrossRef]
- Johnson, A.I. Geographic Information Systems (GIS) and Mapping: Practices and Standards, Ilustrada. ASTM International. 1992. Available online: https://books.google.es/books?hl=es&lr=&id=50efwV36OeUC&oi=fnd&pg=PA11&dq=what+is+a+gis&ots=FcnexejhF4&sig=ZPCpd4CQVb5KGSh7H7Qv5hxOBVo#v=onepage&q=what%20is%20a%20gis&f=false (accessed on 21 July 2023).
- Brown, G.; Reed, P.; Raymond, C.M. Mapping place values: 10 lessons from two decades of public participation GIS empirical research. Appl. Geogr. 2020, 116, 102156. [Google Scholar] [CrossRef]
- Nowak, M.M.; Dziób, K.; Ludwisiak, Ł.; Chmiel, J. Mobile GIS applications for environmental field surveys: A state of the art. Glob. Ecol. Conserv. 2020, 23, e01089. [Google Scholar] [CrossRef]
- Marzouk, M.; Othman, A. Planning utility infrastructure requirements for smart cities using the integration between BIM and GIS. Sustain. Cities Soc. 2020, 57, 102120. [Google Scholar] [CrossRef]
- Li, W.; Batty, M.; Goodchild, M.F. Real-time GIS for smart cities. Int. J. Geogr. Inf. Sci. 2019, 34, 311–324. [Google Scholar] [CrossRef]
- Goyal, L.K.; Chauhan, R.; Kumar, R.; Rai, H.S. Use of BIM in Development of Smart Cities: A Review. IOP Conf. Ser. Mater. Sci. Eng. 2020, 955, 012010. [Google Scholar] [CrossRef]
- Parliament European and Council. Directive 2007/2/CE of the European Parliament and of the Council of 14 March 2007 Establishing an Infrastructure for Spatial Information in the European Community (INSPIRE). 2007. Available online: https://www.boe.es/buscar/doc.php?id=DOUE-L-2007-80587 (accessed on 24 July 2023).
- Sadoun, B.; Al-Bayari, O.; Al-Tawara, S. Open Source GIS Solution: An Overview of the Architecture of Free Open Source Web GIS. Jordan J. Earth Environ. Sci. 2022, 13, 74. [Google Scholar]
- ISO/TC 211; Geographic Information/Geomatics. International Organization for Standardization: Geneva, Switzerland, 1994. Available online: https://www.iso.org/committee/54904.html (accessed on 21 July 2023).
- ISO 19107; Geographic Information—Spatial Schema. ISO: Geneva, Switzerland, 2019.
- ISO 19111; Geographic Information—Referencing by Coordinates. ISO: Geneva, Switzerland, 2019.
- ISO 19115; Geographic Information—Metadata—Part 1: Fundamentals. ISO: Geneva, Switzerland, 2014.
- ISO 19125; Geographic Information—Simple Feature Access—Part 1: Common Architecture. ISO: Geneva, Switzerland, 2004.
- Padsala, R.; Banerjee, S.; Belayneh, T.; Santhanavanich, T.; Coors, V. Conceptualizing I3S encoding for OGC CityGML 3.0 Building Model. In Spain ACM Reference Format: Rushikesh Padsala; ACM: New York, NY, USA, 2023; pp. 1–11. [Google Scholar] [CrossRef]
- Open Geospatial Consortium. OGC Indexed 3D Scene Layer (I3S) and Scene Layer Package (*.slpk) Format Community Standard Version 1.2; Reed, C., Belayneh, T., Eds.; OGC® Community Standard: Arlington, TX, USA, 2021; Available online: http://www.opengis.net/doc/CS/i3s/1.2 (accessed on 11 July 2024).
- Floros, G.S.; Ellul, C.; Dimopoulou, E. Investigating interoperability capabilities between IFC and CityGML LOD 4—Retaining semantic information. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, XLII-4-W10, 33–40. [Google Scholar] [CrossRef]
- Kutzner, T.; Chaturvedi, K.; Kolbe, T.H. CityGML 3.0: New Functions Open up New Applications. PFG—J. Photogramm. Remote Sens. Geoinf. Sci. 2020, 88, 43–61. [Google Scholar] [CrossRef]
- Kang, T.W.; Hong, C.H. IFC-CityGML LOD Mapping Automation based on Multi-Processing. In Proceedings of the 32nd ISARC, Oulu, Finland, 15–18 June 2015. [Google Scholar] [CrossRef]
- Tan, Y.; Liang, Y.; Zhu, J. CityGML in the Integration of BIM and the GIS: Challenges and Opportunities. Buildings 2023, 13, 1758. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, X.; Wang, P.; Wu, Z.; Kim, M.J. Integration of BIM and GIS: Geometry from IFC to shapefile using open-source technology. Autom. Constr. 2019, 102, 105–119. [Google Scholar] [CrossRef]
- Colucci, E.; de Ruvo, V.; Lingua, A.; Matrone, F.; Rizzo, G. HBIM-GIS Integration: From IFC to CityGML Standard for Damaged Cultural Heritage in a Multiscale 3D GIS. Appl. Sci. 2020, 10, 1356. [Google Scholar] [CrossRef]
- Zhu, J.; Wu, P.; Anumba, C. A Semantics-Based Approach for Simplifying IFC Building Models to Facilitate the Use of BIM Models in GIS. Remote Sens. 2021, 13, 4727. [Google Scholar] [CrossRef]
- Goodchild, M.F. Scale in GIS: An overview. Geomorphology 2011, 130, 5–9. [Google Scholar] [CrossRef]
- Han, C.; Tang, F.; Ma, T.; Gu, L.; Tong, Z. Construction quality evaluation of asphalt pavement based on BIM and GIS. Autom. Constr. 2022, 141, 104398. Available online: https://www.sciencedirect.com/science/article/pii/S0926580522002710 (accessed on 23 June 2022). [CrossRef]
- D’Amico, F.; Calvi, A.; Schiattarella, E.; Di Prete, M.; Veraldi, V. BIM and GIS Data Integration: A Novel Approach of Technical/Environmental Decision-Making Process in Transport Infrastructure Design. Transp. Res. Procedia 2020, 45, 803–810. [Google Scholar] [CrossRef]
- Zhou, D.; Pei, B.; Li, X.; Jiang, D.; Wen, L. Innovative BIM technology application in the construction management of highway. Sci. Rep. 2024, 14, 15298. Available online: https://www.nature.com/articles/s41598-024-66232-5 (accessed on 30 October 2024). [CrossRef]
- Cepa, J.J.; Pavón, R.M.; Alberti, M.G.; Caramés, P. Towards BIM-GIS integration for road intelligent management system. J. Civ. Eng. Manag. 2023, 29, 621–638. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cepa, J.J.; Alberti, M.G.; Pavón, R.M.; Calvo, J.A. Integrating BIM and GIS for an Existing Infrastructure. Appl. Sci. 2024, 14, 10962. https://doi.org/10.3390/app142310962
Cepa JJ, Alberti MG, Pavón RM, Calvo JA. Integrating BIM and GIS for an Existing Infrastructure. Applied Sciences. 2024; 14(23):10962. https://doi.org/10.3390/app142310962
Chicago/Turabian StyleCepa, J. J., M. G. Alberti, R. M. Pavón, and Juan A. Calvo. 2024. "Integrating BIM and GIS for an Existing Infrastructure" Applied Sciences 14, no. 23: 10962. https://doi.org/10.3390/app142310962
APA StyleCepa, J. J., Alberti, M. G., Pavón, R. M., & Calvo, J. A. (2024). Integrating BIM and GIS for an Existing Infrastructure. Applied Sciences, 14(23), 10962. https://doi.org/10.3390/app142310962