Improved Remote Photoplethysmography Using Machine Learning-Based Filter Bank
Abstract
:1. Introduction
- Proposed a novel machine learning approach to isolate pulse signal components with dominant cardiac activity to refine pulse signal;
- Evaluated the importance of features demonstrating their effectiveness in improving pulse signal detection accuracy.
2. Materials and Methods
2.1. Facial Video Dataset
2.2. Extraction of RGB Signal on Facial Regions
2.3. Machine Learning-Based Filter Bank (MLFB) Algorithm
2.3.1. Feature Extraction from Sub-Band Pulse Signal
2.3.2. Generation of Refined Pulse Signal
2.3.3. Evaluation of the Performance of MLFB Algorithm
3. Results
3.1. Evaluating Pulse Signal Extraction
3.2. Evaluating the Results of Applying MLFB Algorithm
3.3. Evaluating MAE by Window Size
3.4. Machine Learning Evaluation Result
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- McDuff, D.; Gontarek, S.; Picard, R. Remote measurement of cognitive stress via heart rate variability. In Proceedings of the 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; pp. 2957–2960. [Google Scholar] [CrossRef]
- Fye, W.B. A history of the origin, evolution, and impact of electrocardiography. Am. J. Cardiol. 1994, 73, 937–949. [Google Scholar] [CrossRef] [PubMed]
- Allen, J. Photoplethysmography and its application in clinical physiological measurement. Physiol. Meas. 2007, 28, R1–R39. [Google Scholar] [CrossRef] [PubMed]
- Verkruysse, W.; Svaasand, L.O.; Nelson, J.S. Remote plethysmographic imaging using ambient light. Opt. Express 2008, 16, 21434–21445. [Google Scholar] [CrossRef] [PubMed]
- Cobos-Torres, J.-C.; Abderrahim, M.; Martínez-Orgado, J. Non-contact, simple neonatal monitoring by photoplethysmography. Sensors 2018, 18, 4362. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.-F.; Chu, Y.-W.; Huang, P.-W.; Chung, M.-L.; Lin, T.-M. A motion robust remote-PPG approach to driver’s health state monitoring. In Computer Vision–ACCV Workshops: ACCV International Workshops; Taipei, Taiwan, Revised Selected Papers; Springer: Cham, Switzerland, 2017; Part I13; pp. 463–476. [Google Scholar] [CrossRef]
- Wu, J.; Zhu, Y.; Jiang, X.; Liu, Y.; Lin, J. Local attention and long-distance interaction of rPPG for deepfake detection. Vis. Comput. 2024, 40, 1083–1094. [Google Scholar] [CrossRef]
- Yu, Z.; Li, X.; Zhao, G. Facial-video-based physiological signal measurement: Recent advances and affective applications. IEEE Signal Process. Mag. 2021, 38, 50–58. [Google Scholar] [CrossRef]
- Xiao, H.; Liu, T.; Sun, Y.; Li, Y.; Zhao, S.; Avolio, A. Remote photoplethysmography for heart rate measurement: A review. Biomed. Signal Process. Control 2024, 88, 105608. [Google Scholar] [CrossRef]
- Wedekind, D.; Malberg, H.; Zaunseder, S.; Gaetjen, F.; Matschke, K.; Rasche, S. Automated identification of cardiac signals after blind source separation for camera-based photoplethysmography. In Proceedings of the 35th International Conference on Electronics and Nanotechnology (ELNANO), Kyiv, Ukraine, 21–24 April 2015. [Google Scholar] [CrossRef]
- De Haan, G.; Van Leest, A. Improved motion robustness of remote-PPG by using the blood volume pulse signature. Physiol. Meas. 2014, 35, 1913–1926. [Google Scholar] [CrossRef]
- De Haan, G.; Jeanne, V. Robust pulse rate from chrominance-based rPPG. IEEE Trans. Biomed. Eng. 2013, 60, 2878–2886. [Google Scholar] [CrossRef]
- Wang, W.; den Brinker, A.C.; Stuijk, S.; de Haan, G. Algorithmic principles of remote ppg. IEEE Trans. Biomed. Eng. 2017, 64, 1479–1491. [Google Scholar] [CrossRef]
- Poh, M.-Z.; McDuff, D.J.; Picard, R.W. Advancements in noncontact, multiparameter physiological measurements using a webcam. IEEE Trans. Biomed. Eng. 2011, 58, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Lewandowska, M.; Rumiński, J.; Kocejko, T.; Nowak, J. Measuring Pulse Rate With a Webcam—A Noncontact Method for Evaluating Cardiac Activity. In Proceedings of the Federated Conference on Computer Science and Information Systems, Szczecin, Poland, 18–21 September 2011. [Google Scholar]
- Wang, W.; Stuijk, S.; De Haan, G. A novel algorithm for remote photoplethysmography: Spatial subspace rotation. IEEE Trans. Biomed. Eng. 2016, 63, 1974–1984. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; McDuff, D. Deepphys: Video-based physiological measurement using convolutional attention networks. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018. [Google Scholar]
- Abdulrahaman, L.Q. Two-stage motion artifact reduction algorithm for rPPG signals obtained from facial video recordings. Arab. J. Sci. Eng. 2024, 49, 2925–2933. [Google Scholar] [CrossRef]
- Wang, W.; den Brinker, A.C.; Stuijk, S.; de Haan, G. Amplitude-selective filtering for remote-ppg. Biomed. Opt. Express 2017, 8, 1965–1980. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; den Brinker, A.C.; Stuijk, S.; de Haan, G. Color-distortion filtering for remote photoplethysmography. In Proceedings of the 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017), Washington, DC, USA, 30 May–3 June 2017; Volume 2017. [Google Scholar] [CrossRef]
- Wang, W.; Stuijk, S.; De Haan, G. Exploiting spatial redundancy of image sensor for motion robust rPPG. IEEE Trans. Biomed. Eng. 2014, 62, 415–425. [Google Scholar] [CrossRef]
- Gudi, A.; Bittner, M.; Van Gemert, J. Real-time webcam heart-rate and variability estimation with clean ground truth for evaluation. Appl. Sci. 2020, 10, 8630. [Google Scholar] [CrossRef]
- Kim, D.-Y.; Lee, K.; Sohn, C.-B. Assessment of ROI selection for facial video-based rPPG. Sensors 2021, 21, 7923. [Google Scholar] [CrossRef] [PubMed]
- Kartynnik, Y.; Ablavatski, A.; Grishchenko, I.; Grundmann, M. Real-time facial surface geometry from monocular video on mobile GPUs. arXiv 2019, arXiv:1907.06724. [Google Scholar]
- Dimmock, S.; O’donnell, C.; Houghton, C. Bayesian analysis of phase data in EEG and MEG. eLife 2023, 12, e84602. [Google Scholar] [CrossRef] [PubMed]
- Johansson, M. The Hilbert Transform. Master’s Thesis, Växjö University, Växjö, Sweden, 1999. [Google Scholar]
- Kohavi, R. A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection. In Proceedings of the 14th International Joint Conference on Artificial Intelligence, Montreal, QC, Canada, 20–25 August 1995; Morgan Kaufman Publishing: San Francisco, CA, USA, 1995. [Google Scholar]
- Hülsbusch, M.; Rembold, B. Ein Bildgestütztes, Funktionelles Verfahren zur Optoelektronischen Erfassung der Hautperfusion. Ph.D. Thesis, Lehrstuhl und Institut für Hochfrequenztechnik, Aachen, Germany, 2008. [Google Scholar]
- Lundberg, S. A unified approach to interpreting model predictions. arXiv 2017, arXiv:1705.07874. [Google Scholar] [CrossRef]
- Li, J.; Yu, Z.; Shi, J. Learning motion-robust remote photoplethysmography through arbitrary resolution videos. In Proceedings of the 37th AAAI Conference on Artificial Intelligence, Washington DC, USA, 7–14 February 2023; Volume 37, pp. 1334–1342. [Google Scholar] [CrossRef]
- Nayak, S.K.; Pradhan, B.; Mohanty, B.; Sivaraman, J.; Ray, S.S.; Wawrzyniak, J.; Jarzębski, M.; Pal, K. A review of methods and applications for a heart rate variability analysis. Algorithms 2023, 16, 433. [Google Scholar] [CrossRef]
- Lie, W.-N.; Le, D.-Q.; Lai, C.-Y.; Fang, Y.-S. Heart rate estimation from facial image sequences of a dual-modality RGB-NIR camera. Sensors 2023, 23, 6079. [Google Scholar] [CrossRef] [PubMed]
Feature Types | Feature | Description |
---|---|---|
Spatial redundancy | Phase coherence [25] | Coherence in the phase of a narrow-banded pulse signal across 9 ROIs |
Frequency variability | Variability in the number of peaks within a specific frequency band across 9 ROIs | |
Relative pulsatile amplitude | R, G, B standard deviation | The standard deviation of amplitude in each red (R), green (G), and blue (B) signal across 9 ROIs |
POS standard deviation | The standard deviation of amplitude of extracted pulse signals across 9 ROIs | |
R, G, B amplitude | Averaged amplitude in each red (R), green (G), and blue (B) signal | |
POS amplitude | Averaged amplitude of extracted pulse signals across 9 ROIs | |
POS [13] | The amplitude of the pulse signal extracted from 9 ROIs |
Mean Absolute Error of Heart Rate | ||||||
---|---|---|---|---|---|---|
Noise Reduction Algorithm | Pulse Extraction Algorithm | |||||
G | G-R | PCA | ICA | CHROM | POS | |
None | 14.80 *** | 10.15 * | 15.12 *** | 10.86 ** | 4.61 ** | 3.92 ** |
BPF | 10.60 * | 8.14 | 11.62 | 7.82 | 4.43 ** | 3.53 * |
ASF | 14.73 *** | 10.13 * | 7.97 | 8.48 | 4.27 * | 3.75 |
MLFB | 8.32 | 9.83 | 9.41 | 7.19 | 2.68 | 2.53 |
Signal-to-Noise Ratio | ||||||
---|---|---|---|---|---|---|
Noise Reduction Algorithm | Pulse Extraction Algorithm | |||||
G | G-R | PCA | ICA | CHROM | POS | |
None | 1.70 *** | 3.44 *** | 2.24 | 3.06 * | 6.00 *** | 6.31 *** |
BPF | 2.33 ** | 4.08 ** | 2.79 | 3.60 | 6.30 *** | 6.61 *** |
ASF | 1.81 *** | 3.65 ** | 4.63 * | 3.97 | 6.03 *** | 6.35 *** |
MLFB | 4.42 | 5.98 | 2.52 | 4.60 | 9.85 | 10.00 |
Metric (%) | Combination of Model Features | |||
---|---|---|---|---|
F1 | F2 | F3 | Fall | |
Accuracy | 97.97 | 97.84 | 97.81 | 97.91 |
F1-score | 91.67 | 91.40 | 91.26 | 91.57 |
Sensitivity | 89.94 | 91.20 | 90.95 | 91.19 |
Specificity | 99.11 | 98.79 | 98.79 | 98.86 |
Evaluation | Combination of Model Features | |||
---|---|---|---|---|
F1 | F2 | Fall | ||
MAE (bpm) | 2.54 | 2.60 | 2.56 | 2.53 |
Computational time (s) | 48.38 *** | 48.71 *** | 52.82 *** | 108.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Joo, H.; Woo, J. Improved Remote Photoplethysmography Using Machine Learning-Based Filter Bank. Appl. Sci. 2024, 14, 11107. https://doi.org/10.3390/app142311107
Lee J, Joo H, Woo J. Improved Remote Photoplethysmography Using Machine Learning-Based Filter Bank. Applied Sciences. 2024; 14(23):11107. https://doi.org/10.3390/app142311107
Chicago/Turabian StyleLee, Jukyung, Hyosung Joo, and Jihwan Woo. 2024. "Improved Remote Photoplethysmography Using Machine Learning-Based Filter Bank" Applied Sciences 14, no. 23: 11107. https://doi.org/10.3390/app142311107
APA StyleLee, J., Joo, H., & Woo, J. (2024). Improved Remote Photoplethysmography Using Machine Learning-Based Filter Bank. Applied Sciences, 14(23), 11107. https://doi.org/10.3390/app142311107