Is Running Technique Important to Mitigate Hamstring Injuries in Football Players?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Procedure
2.3. Experimental Setup
2.4. Intervention Protocol
2.5. Data Analysis
2.6. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cross, K.M.; Saliba, S.A.; Conaway, M.; Gurka, K.K.; Hertel, J. Days to Return to Participation After a Hamstrings Strain Among American Collegiate Soccer Players. J. Athl. Train. 2015, 50, 733–741. [Google Scholar] [CrossRef]
- Montassar, T.; Cristiano, E.; Gurcharan, S.; Abdulaziz, A.-K.; Jan, E.; Hakim, C.; Roald, B.; Karim, C. Injury and illness epidemiology in professional Asian football: Lower general incidence and burden but higher ACL and hamstring injury burden compared with Europe. Br. J. Sports Med. 2022, 56, 18. [Google Scholar]
- Ekstrand; Håkan, B.; Markus, W.; Michael, D.; Karim, M.K.; Martin, H. Hamstring injury rates have increased during recent seasons and now constitute 24% of all injuries in men’s professional football: The UEFA Elite Club Injury Study from 2001/02 to 2021/22. Br. J. Sports Med. 2023, 57, 292. [Google Scholar] [CrossRef]
- Afonso, J.; Olivares-Jabalera, J.; Fernandes, R.J.; Clemente, F.M.; Rocha-Rodrigues, S.; Claudino, J.G.; Ramirez-Campillo, R.; Valente, C.; Andrade, R.; Espregueira-Mendes, J. Effectiveness of Conservative Interventions After Acute Hamstrings Injuries in Athletes: A Living Systematic Review. Sports Med. 2023, 53, 615–635. [Google Scholar] [CrossRef]
- Eliakim, E.; Morgulev, E.; Lidor, R.; Meckel, Y. Estimation of injury costs: Financial damage of English Premier League teams’ underachievement due to injuries. BMJ Open Sport Exerc. Med. 2020, 6, e000675. [Google Scholar] [CrossRef]
- Diemer, W.M.; Winters, M.; Tol, J.L.; Pas, H.; Moen, M.H. Incidence of Acute Hamstring Injuries in Soccer: A Systematic Review of 13 Studies Involving More Than 3800 Athletes With 2 Million Sport Exposure Hours. J. Orthop. Sports Phys. Ther. 2021, 51, 27–36. [Google Scholar] [CrossRef]
- Malliaropoulos, N.; Mendiguchia, J.; Pehlivanidis, H.; Papadopoulou, S.; Valle, X.; Malliaras, P.; Maffulli, N. Hamstring exercises for track and field athletes: Injury and exercise biomechanics, and possible implications for exercise selection and primary prevention. Br. J. Sports Med. 2012, 46, 846–851. [Google Scholar] [CrossRef] [PubMed]
- Ertelt, T.; Gronwald, T. Hamstring injury risk factors in elite sports: The role of muscle geometry and function. Acta. Physiol. 2019, 227, e13253. [Google Scholar] [CrossRef] [PubMed]
- Cavanagh, P.R.; Pollock, M.L.; Landa, J. A biomechanical comparison of elite and good distance runners. Ann. N. Y. Acad. Sci. 1977, 301, 328–345. [Google Scholar] [CrossRef] [PubMed]
- Folland, J.P.; Allen, S.J.; Black, M.I.; Handsaker, J.C.; Forrester, S.E. Running Technique is an Important Component of Running Economy and Performance. Med. Sci. Sports Exerc. 2017, 49, 1412–1423. [Google Scholar] [CrossRef]
- Hanley, B. The Biomechanics of Distance Running. In The Science and Practice of Middle and Long Distance Running; Blagrove, R., Hayes, P., Eds.; Routledge: London, UK, 2021; pp. 17–27. [Google Scholar]
- Mendiguchia, J.; Jimenez-Reyes, P.; Morin, J.-B.; Conceicao, F. Can we modify maximal speed running posture? Implications for performance and hamstring injuries management. Int. J. Sports Physiol. Perform. 2021, 17, 374–383. [Google Scholar] [CrossRef]
- Romero, V.; Lahti, J.; Castaño Zambudio, A.; Mendiguchia, J.; Jiménez Reyes, P.; Morin, J.B. Effects of Fatigue Induced by Repeated Sprints on Sprint Biomechanics in Football Players: Should We Look at the Group or the Individual? Int. J. Environ. Res. Public Health 2022, 19, 14643. [Google Scholar] [CrossRef]
- Schache, A.G.; Kim, H.-J.; Morgan, D.L.; Pandy, M.G. Hamstring muscle forces prior to and immediately following an acute sprinting-related muscle strain injury. Gait Posture 2010, 32, 136–140. [Google Scholar] [CrossRef]
- Stanton, P.; Purdam, C. Hamstring Injuries in Sprinting—The Role of Eccentric Exercise. J. Orthop. Sports Phys. Ther. 1989, 10, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Lieberman, D.E.; Warrener, A.G.; Wang, J.; Castillo, E.R. Effects of stride frequency and foot position at landing on braking force, hip torque, impact peak force and the metabolic cost of running in humans. J. Exp. Biol. 2015, 218, 3406–3414. [Google Scholar] [CrossRef]
- Bramah, C.; Mendiguchia, J.; Dos’Santos, T.; Morin, J.-B. Exploring the Role of Sprint Biomechanics in Hamstring Strain Injuries: A Current Opinion on Existing Concepts and Evidence. Sports Med. 2023, 54, 783–793. [Google Scholar] [CrossRef] [PubMed]
- Schuermans, J.; Van Tiggelen, D.; Palmans, T.; Danneels, L.; Witvrouw, E. Deviating running kinematics and hamstring injury susceptibility in male soccer players: Cause or consequence? Gait Posture 2017, 57, 270–277. [Google Scholar] [CrossRef] [PubMed]
- Heiderscheit, B.C.; Chumanov, E.S.; Michalski, M.P.; Wille, C.M.; Ryan, M.B. Effects of step rate manipulation on joint mechanics during running. Med. Sci. Sports Exerc. 2011, 43, 296–302. [Google Scholar] [CrossRef] [PubMed]
- Opar, D.A.; Williams, M.D.; Shield, A.J. Hamstring Strain Injuries. Sports Med. 2012, 42, 209–226. [Google Scholar] [CrossRef]
- Higashihara, A.; Nagano, Y.; Takahashi, K.; Fukubayashi, T. Effects of forward trunk lean on hamstring muscle kinematics during sprinting. J. Sports Sci. 2015, 33, 1366–1375. [Google Scholar] [CrossRef]
- Boggess, G.; Morgan, K.; Johnson, D.; Ireland, M.L.; Reinbolt, J.A.; Noehren, B. Neuromuscular compensatory strategies at the trunk and lower limb are not resolved following an ACL reconstruction. Gait Posture 2018, 60, 81–87. [Google Scholar] [CrossRef]
- Mendiguchia, J.; Gonzalez De la Flor, A.; Mendez-Villanueva, A.; Morin, J.B.; Edouard, P.; Garrues, M.A. Training-induced changes in anterior pelvic tilt: Potential implications for hamstring strain injuries management. J. Sports Sci. 2021, 39, 760–767. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh, S.; Mattes, K. How anterior pelvic tilt affects the lower extremity kinematics during the late swing phase in soccer players while running: A time series analysis. Hum. Mov. Sci. 2019, 66, 459–466. [Google Scholar] [CrossRef]
- Leong, C.H.; Forsythe, C.; Bohling, Z. Posterior chain and core training improves pelvic posture, hamstrings-to-quadriceps ratio, and vertical jump performance. J. Sports Med. Phys. Fit. 2024, 64, 7–15. [Google Scholar] [CrossRef]
- Ludwig, O.; Fröhlich, M.; Schmitt, E. Therapy of poor posture in adolescents: Sensorimotor training increases the effectiveness of strength training to reduce increased anterior pelvic tilt. Cogent Med. 2016, 3, 1262094. [Google Scholar] [CrossRef]
- Avers, D. Chapter 8—Exercise and Physical Activity for Older Adults. In Guccione’s Geriatric Physical Therapy, 4th ed.; Avers, D., Wong, R.A., Eds.; Mosby: Saint Louis, MO, USA, 2020; pp. 166–200. [Google Scholar]
- Jeong, J.; Choi, D.H.; Shin, C.S. Core Strength Training Can Alter Neuromuscular and Biomechanical Risk Factors for Anterior Cruciate Ligament Injury. Am. J. Sports Med. 2021, 49, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Preece, S.J.; Mason, D.; Bramah, C. The coordinated movement of the spine and pelvis during running. Hum. Mov. Sci. 2016, 45, 110–118. [Google Scholar] [CrossRef]
- Sherry, M.A.; Best, T.M. A Comparison of 2 Rehabilitation Programs in the Treatment of Acute Hamstring Strains. J. Orthop. Sports Phys. Ther. 2004, 34, 116–125. [Google Scholar] [CrossRef] [PubMed]
- Kibler, W.B.; Press, J.; Sciascia, A. The role of core stability in athletic function. Sports Med. 2006, 36, 189–198. [Google Scholar] [CrossRef]
- Morin, J.-B.; Edouard, P.; Samozino, P. Technical Ability of Force Application as a Determinant Factor of Sprint Performance. Med. Sci. Sports Exerc. 2011, 43, 1680–1688. [Google Scholar] [CrossRef]
- Iwasaki, R.; Takahashi, N.; Shinkai, H. Acute effects of sprint training for hamstrings injury prevention on male college soccer players. Sci. J. Sport Perform. 2023, 3, 1–9. [Google Scholar] [CrossRef]
- Haugen, T.; Danielsen, J.; Alnes, L.; McGhie, D.; Sandbakk, O.; Ettema, G. On the Importance of “Front-Side Mechanics” in Athletics Sprinting. Int. J. Sports Physiol. Perform. 2017, 13, 420–427. [Google Scholar] [CrossRef] [PubMed]
- Haralabidis, N.; Colyer, S.L.; Serrancolí, G.; Salo, A.I.T.; Cazzola, D. Modifications to the net knee moments lead to the greatest improvements in accelerative sprinting performance: A predictive simulation study. Sci. Rep. 2022, 12, 15908. [Google Scholar] [CrossRef] [PubMed]
- Mann, R. The Mechanics of Sprinting and Hurdling; CreateSpace Independent Publishing Platform: Charleston, SC, USA, 2011. [Google Scholar]
- Andrade, D.; Fonseca, P.; Sousa, F.; Gutierres, M. Does Anterior Cruciate Ligament Reconstruction with a Hamstring Tendon Autograft Predispose to a Knee Valgus Alignment on Initial Contact during Landing? A Drop Vertical Jump Movement Analysis. Appl. Sci. 2023, 13, 7363. [Google Scholar] [CrossRef]
- Strutzenberger, G.; Kanko, R.; Selbie, S.; Schwameder, H.; Deluzio, K. Assessment of kinematic CMJ data using a deep learning algorithm-based markerless motion capture system. In Proceedings of the 39th International Society of Biomechanics in Sport Conference, Canberra, Australia, 3–6 September 2021. [Google Scholar]
- Kanko, R.M.; Laende, E.; Selbie, W.S.; Deluzio, K.J. Inter-session repeatability of markerless motion capture gait kinematics. J. Biomech. 2021, 121, 110422. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, R.; Rios, M.; Cardoso, F.; Fonseca, P.; Ferreira, F.A.; Abraldes, J.A.; Gomes, B.B.; Vilas-Boas, J.P.; Fernandes, R.J. Physiological and Biomechanical Characteristics of Olympic and World-Class Rowers—Case Study. Appl. Sci. 2024, 14, 4273. [Google Scholar] [CrossRef]
- Rios, M.; Cardoso, R.; Fonseca, P.; Vilas-Boas, J.P.; Reis, V.M.; Moreira-Gonçalves, D.; Fernandes, R.J. Biomechanical Characterization of the CrossFit® Isabel Workout: A Cross-Sectional Study. Appl. Sci. 2024, 14, 6895. [Google Scholar] [CrossRef]
- Cardoso, F.; Monteiro, A.S.; Vilas-Boas, J.P.; Pinho, J.C.; Pyne, D.B.; Fernandes, R.J. Effects of Wearing a 50% Lower Jaw Advancement Splint on Biophysical and Perceptual Responses at Low to Severe Running Intensities. Life 2022, 12, 253. [Google Scholar] [CrossRef]
- Walker, J.; Bissas, A.; Paradisis, G.P.; Hanley, B.; Tucker, C.B.; Jongerius, N.; Thomas, A.; von Lieres und Wilkau, H.C.; Brazil, A.; Wood, M.A.; et al. Kinematic factors associated with start performance in World-class male sprinters. J. Biomech. 2021, 124, 110554. [Google Scholar] [CrossRef] [PubMed]
- Afonso, J.; Rocha-Rodrigues, S.; Clemente, F.M.; Aquino, M.; Nikolaidis, P.T.; Sarmento, H.; Fílter, A.; Olivares-Jabalera, J.; Ramirez-Campillo, R. The Hamstrings: Anatomic and Physiologic Variations and Their Potential Relationships With Injury Risk. Front. Physiol. 2021, 12, 694604. [Google Scholar] [CrossRef]
- Kenneally-Dabrowski, C.J.B.; Brown, N.A.T.; Lai, A.K.M.; Perriman, D.; Spratford, W.; Serpell, B.G. Late swing or early stance? A narrative review of hamstring injury mechanisms during high-speed running. Scand. J. Med. Sci. Sports 2019, 29, 1083–1091. [Google Scholar] [CrossRef]
- Novacheck, T.F. The biomechanics of running. Gait Posture 1998, 7, 77–95. [Google Scholar] [CrossRef] [PubMed]
- Ito, N.; Sigurðsson, H.B.; Seymore, K.D.; Arhos, E.K.; Buchanan, T.S.; Snyder-Mackler, L.; Silbernagel, K.G. Markerless motion capture: What clinician-scientists need to know right now. JSAMS Plus 2022, 1, 100001. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis. Curr. Dir. Psychol. Sci. 1992, 1, 98–101. [Google Scholar] [CrossRef]
- Clark, K.P.; Meng, C.R.; Stearne, D.J. ‘Whip from the hip’: Thigh angular motion, ground contact mechanics, and running speed. Biol. Open 2020, 9, bio053546. [Google Scholar] [CrossRef] [PubMed]
- Higashihara, A.; Nagano, Y.; Ono, T.; Fukubayashi, T. Differences in activation properties of the hamstring muscles during overground sprinting. Gait Posture 2015, 42, 360–364. [Google Scholar] [CrossRef]
- Schache, A.G.; Dorn, T.W.; Blanch, P.D.; Brown, N.A.; Pandy, M.G. Mechanics of the human hamstring muscles during sprinting. Med. Sci. Sports Exerc. 2012, 44, 647–658. [Google Scholar] [CrossRef] [PubMed]
- Macdonald, B. An investigation into the immediate effects of pelvic taping on hamstring eccentric force in an elite male sprinter—A case report. Phys. Ther. Sport 2017, 28, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Mechó, S.; Balius, R.; Bossy, M.; Valle, X.; Pedret, C.; Ruiz-Cotorro, Á.; Rodas, G. Isolated Adductor Magnus Injuries in Athletes: A Case Series. Orthop. J. Sports Med. 2023, 11, 23259671221138806. [Google Scholar] [CrossRef]
- Moharrami, A.; Mirghaderi, P.; Hoseini Zare, N.; Moazen-Jamshidi, M.M.; Ebrahimian, M.; Mortazavi, S.M.J. Slight pelvic obliquity is normal in a healthy population: A cross-sectional study. J. Exp. Orthop. 2023, 10, 57. [Google Scholar] [CrossRef]
- Vleeming, A.; Schuenke, M.D.; Masi, A.T.; Carreiro, J.E.; Danneels, L.; Willard, F.H. The sacroiliac joint: An overview of its anatomy, function and potential clinical implications. J. Anat. 2012, 221, 537–567. [Google Scholar] [CrossRef] [PubMed]
- Kalema, R.N.; Duhig, S.J.; Williams, M.D.; Donaldson, A.; Shield, A.J. Sprinting technique and hamstring strain injuries: A concept mapping study. J. Sci. Med. Sport 2022, 25, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Dallaway, A.; Duncan, M.; Griffen, C.; Tallis, J.; Renshaw, D.; Hattersley, J. Age-Related Differences in Trunk Kinematics and Interplanar Decoupling with the Pelvis during Gait in Healthy Older versus Younger Men. J. Clin. Med. 2023, 12, 2951. [Google Scholar] [CrossRef] [PubMed]
- Lang, C.; Schleichardt, A.; Warschun, F.; Walter, N.; Fleckenstein, D.; Berkel, F.; Ueberschär, O. Relationship between Longitudinal Upper Body Rotation and Energy Cost of Running in Junior Elite Long-Distance Runners. Sports 2023, 11, 204. [Google Scholar] [CrossRef]
- Kunz, H.; Kaufmann, D.A. Biomechanical analysis of sprinting: Decathletes versus champions. Br. J. Sports Med. 1981, 15, 177–181. [Google Scholar] [CrossRef]
- Teng, H.-L.; Powers, C.M. Sagittal Plane Trunk Posture Influences Patellofemoral Joint Stress During Running. J. Orthop. Sports Phys. Ther. 2014, 44, 785–792. [Google Scholar] [CrossRef]
- Warrener, A.; Tamai, R.; Lieberman, D.E. The effect of trunk flexion angle on lower limb mechanics during running. Hum. Mov. Sci. 2021, 78, 102817. [Google Scholar] [CrossRef] [PubMed]
Week | Day 1—Acceleration | Day 2—Maximal Velocity | Day 3—Maximal Velocity | |||
---|---|---|---|---|---|---|
Running Drill Exercises | Wicket Sprints with Higher Step Frequency | Running Drill Exercises | Wicket Sprints with a Longer Step Length | Running Drill Exercises | Wicket Sprints with Optimal Step Length and Frequency | |
1–2 | 10 min | 2 × 30 m (a) 2 × 25 m | 5 min | 3 × 35 m | 5 min | 3 × 40 m |
3–4 | 5 min | 4 × 45 m | 5 min | 4 × 45 m | 5 min | 4 × 45 m |
5–6 | 5 min | 4 × 45 m (b) | 5 min | 4 × 45 m (b) | 5 min | 4 × 45 m (b) |
Week | Days | Drill Exercises |
---|---|---|
1–2 | 1 | Ankle drill, high skipping, glute skipping, front lower limb extension marching, and straight lower limb running |
2 | High skipping, 3/3 high skipping, and straight lower limb running | |
3 | High skipping, front lower limb extension marching, and straight lower limb running | |
3–4 | 1 | High skipping (with a bar over the head), 3/3 high skipping, and straight lower limb running |
2 | High skipping (front/back), front lower limb extension marching, and bounding | |
3 | 3/3 high skipping, bounding, and straight lower limb running | |
5–6 | 1 | High skipping (with upper limbs above the head), straight lower limb running, and pelvic step progression for running |
2 | 3/3 high skipping, front lower limb extension marching, and bounding | |
3 | High skipping (with upper limbs above the head), straight lower limb running, and pelvic step progression for running |
Variables | Group | Pre | 95% Confidence Interval | Post | 95% Confidence Interval | ∆% | Effect Size | p Value | ||
---|---|---|---|---|---|---|---|---|---|---|
Lower | Upper | Lower | Upper | |||||||
Stride length (m) | Exp | 3.75 ± 0.30 | 3.58 | 3.92 | 3.81 ± 0.29 | 3.64 | 3.98 | 1.63% | 0.21 | 0.035 |
Ctrl | 3.90 ± 0.37 | 3.61 | 4.20 | 3.98 ± 0.22 | 3.80 | 4.17 | 2.08% | 0.27 | 0.263 | |
Flight time (%) * | Exp | 24.42 ± 1.47 | 23.57 | 25.27 | 25.34 ± 1.52 | 24.46 | 26.21 | 3.77% | 0.62 | 0.002 |
Ctrl | 24.27 ± 1.00 | 23.44 | 25.10 | 24.00 ± 1.53 | 22.72 | 25.28 | −1.10% | 0.21 | 0.693 | |
Right ground contact time (%) * | Exp | 25.42 ± 1.50 | 24.56 | 26.28 | 24.46 ± 1.50 | 23.61 | 25.32 | −3.76% | 0.64 | 0.009 |
Ctrl | 26.09 ± 1.64 | 24.73 | 27.46 | 24.94 ± 1.60 | 23.62 | 26.26 | −4.42% | 0.72 | 0.050 | |
Right swing time (%) * | Exp | 74.61 ± 1.44 | 73.78 | 75.45 | 75.52 ± 1.47 | 74.67 | 76.37 | 1.22% | 0.62 | 0.009 |
Ctrl | 73.88 ± 1.55 | 72.58 | 75.17 | 75.05 ± 1.57 | 73.74 | 76.36 | 1.59% | 0.75 | 0.050 | |
Right step length (m) | Exp | 1.90 ± 0.15 | 1.81 | 1.98 | 1.92 ± 0.13 | 1.84 | 1.99 | 1.27% | 0.17 | 0.225 |
Ctrl | 1.96 ± 0.19 | 1.81 | 2.12 | 2.02 ± 0.11 | 1.93 | 2.10 | 2.65% | 0.34 | 0.208 | |
Left ground contact time (%) * | Exp | 25.68 ± 1.48 | 24.83 | 26.53 | 24.65 ± 1.74 | 23.65 | 25.66 | −4.00% | 0.64 | 0.003 |
Ctrl | 25.76 ± 1.12 | 24.82 | 26.69 | 26.11 ± 1.80 | 24.61 | 27.62 | 1.38% | 0.24 | 0.634 | |
Left swing time (%) * | Exp | 74.30 ± 1.49 | 73.44 | 75.16 | 75.38 ± 1.75 | 74.37 | 76.39 | 1.45% | 0.66 | 0.012 |
Ctrl | 74.24 ± 1.13 | 73.30 | 75.19 | 73.86 ± 1.81 | 72.35 | 75.37 | −0.52% | 0.25 | 0.206 | |
Left step length (m) | Exp | 1.86 ± 0.15 | 1.77 | 1.94 | 1.89 ± 0.16 | 1.80 | 1.98 | 1.94% | 0.23 | 0.017 |
Ctrl | 1.94 ± 0.17 | 1.80 | 2.08 | 1.96 ± 0.12 | 1.86 | 2.06 | 1.03% | 0.14 | 0.591 | |
Hip flexion at touchdown (°) | Exp | 34.66 ± 2.71 | 33.10 | 36.23 | 32.27 ± 3.82 | 30.07 | 34.48 | −6.90% | 0.72 | 0.004 |
Ctrl | 35.41 ± 4.65 | 31.52 | 39.29 | 35.42 ± 2.51 | 33.32 | 37.51 | 0.03% | 0.00 | 0.995 | |
Pelvis elevation at touchdown (°) | Exp | 3.05 ± 0.72 | 2.63 | 3.45 | 0.82 ± 4.48 | −1.77 | 3.40 | −73.11% | 0.69 | 0.048 |
Ctrl | 1.87 ± 1.73 | 0.42 | 3.32 | 0.49 ± 4.04 | −2.88 | 3.87 | −73.80% | 0.44 | 0.674 | |
Pelvis external rotation at touchdown (°) | Exp | −4.25 ± 2.82 | −5.88 | −2.62 | −6.28 ± 4.01 | −8.60 | −3.96 | 47.75% | 0.59 | 0.041 |
Ctrl | −3.61 ± 3.88 | −6.85 | −0.37 | −1.56 ± 12.26 | −11.81 | 8.69 | 56.79% | 0.23 | 0.674 | |
Pelvis external rotation at toe-off (°) | Exp | −12.23 ± 4.12 | −14.61 | −9.85 | −9.01 ± 4.17 | −11.42 | −6.60 | −26.33% | 0.78 | <0.001 |
Ctrl | −13.84 ± 3.95 | −17.14 | −10.54 | −13.74 ± 12.92 | −24.54 | −2.94 | −0.72% | 0.01 | 0.263 | |
Thorax lateral flexion at touchdown (°) | Exp | −10.07 ± 2.13 | −11.30 | −8.83 | −8.67 ± 2.84 | −10.31 | −7.03 | −13.90% | 0.56 | 0.016 |
Ctrl | −10.30 ± 2.95 | −12.77 | −7.83 | −10.18 ± 3.66 | −13.23 | −7.12 | −1.17% | 0.04 | 1.000 | |
Thorax external rotation at touchdown (°) | Exp | −8.53 ± 2.51 | −9.98 | −7.08 | −6.51 ± 2.88 | −8.17 | −4.84 | −23.68% | 0.75 | 0.015 |
Ctrl | −8.96 ± 3.67 | −12.03 | −5.89 | −8.75 ± 3.54 | −11.71 | −5.79 | −2.34% | 0.06 | 0.912 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, M.P.; Fonseca, P.; Fernandes, R.J.; Conceição, F. Is Running Technique Important to Mitigate Hamstring Injuries in Football Players? Appl. Sci. 2024, 14, 11643. https://doi.org/10.3390/app142411643
Silva MP, Fonseca P, Fernandes RJ, Conceição F. Is Running Technique Important to Mitigate Hamstring Injuries in Football Players? Applied Sciences. 2024; 14(24):11643. https://doi.org/10.3390/app142411643
Chicago/Turabian StyleSilva, Marco P., Pedro Fonseca, Ricardo J. Fernandes, and Filipe Conceição. 2024. "Is Running Technique Important to Mitigate Hamstring Injuries in Football Players?" Applied Sciences 14, no. 24: 11643. https://doi.org/10.3390/app142411643
APA StyleSilva, M. P., Fonseca, P., Fernandes, R. J., & Conceição, F. (2024). Is Running Technique Important to Mitigate Hamstring Injuries in Football Players? Applied Sciences, 14(24), 11643. https://doi.org/10.3390/app142411643