A Survey of Grapheme-to-Phoneme Conversion Methods
Abstract
:1. Introduction
2. Grapheme-to-Phoneme Methods
2.1. Traditional Methods
2.1.1. Rule-Based and Dictionary-Based Methods
2.1.2. Statistical Machine Learning-Based Methods
2.2. Methods Based on Deep Learning
2.2.1. LSTM
2.2.2. CNN
2.2.3. Transformer
3. Strategies of G2P Conversion
3.1. Pre-Traning for G2P Conversion
3.2. Multi-Task Learning for G2P Conversion
3.3. Multimodal Learning for G2P Conversion
3.4. Transfer Learning for G2P Conversion
4. Multilingual G2P Conversion
5. Dataset and Evaluation Metrics
5.1. Dataset
5.1.1. Monolingual Dataset
5.1.2. Multilingual Dataset
5.2. Evaluation Metrics
5.3. Comparison of Different G2P Models
6. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Elovitz, H.; Johnson, R.; McHugh, A.; Shore, J. To-sound rules for automatic translation of English text to phonetics. IEEE Trans. Acoust. Speech Signal Process. 1976, 24, 446–459. [Google Scholar] [CrossRef]
- Kaplan, R.M.; Kay, M. Regular models of phonological rule systems. Comput. Linguist. 1994, 20, 331–378. [Google Scholar]
- Black, A.W.; Lenzo, K.; Pagel, V. Issues in building general letter to sound rules. In Proceedings of the The Third ESCA/COCOSDA Workshop (ETRW) on Speech Synthesis, Blue Mountains, Australia, 26–29 November 1998. [Google Scholar]
- Kominek, J.; Black, A.W. Learning pronunciation dictionaries: Language complexity and word selection strategies. In Proceedings of the Human Language Technology Conference of the NAACL, Main Conference, New York, NY, USA, 4–9 June 2006; pp. 232–239. [Google Scholar]
- Galescu, L.; Allen, J.F. Bi-directional conversion between graphemes and phonemes using a joint n-gram model. In Proceedings of the 4th ISCA Tutorial and Research Workshop (ITRW) on Speech Synthesis, Perthshire, Scotland, 29 August–1 September 2001. [Google Scholar]
- Hahn, S.; Vozila, P.; Bisani, M. Comparison of grapheme-to-phoneme methods on large pronunciation dictionaries and LVCSR tasks. In Proceedings of the Thirteenth Annual Conference of the International Speech Communication Association, Portland, OR, USA, 9–13 September 2012. [Google Scholar]
- Kubo, Yotaro, T.H.; Nakamura, A. A method for structure estimation of weighted finite-state transducers and its application to grapheme-to-phoneme conversion. In Proceedings of the INTERSPEECH, Lyon, France, 25–29 August 2013; pp. 647–651. [Google Scholar]
- Bisani, M.; Ney, H. Joint-sequence models for grapheme-to-phoneme conversion. Speech Commun. 2008, 50, 434–451. [Google Scholar] [CrossRef]
- Novak, J.R.; Minematsu, N.; Hirose, K. WFST-based grapheme-to-phoneme conversion: Open source tools for alignment, model-building and decoding. In Proceedings of the 10th International Workshop on Finite State Methods and Natural Language Processing, Donostia–San Sebastián, Spain, 23–25 July 2012; pp. 45–49. [Google Scholar]
- Novak, J.R.; Minematsu, N.; Hirose, K.; Hori, C.; Kashioka, H.; Dixon, P.R. Improving WFST-based G2P Conversion with Alignment Constraints and RNNLM N-best Rescoring. In Proceedings of the Interspeech, Portland, OR, USA, 9–13 September 2012; pp. 2526–2529. [Google Scholar]
- Novak, J.R.; Minematsu, N.; Hirose, K. Failure transitions for joint n-gram models and G2p conversion. In Proceedings of the Interspeech, Lyon, France, 25–29 August 2013; pp. 1821–1825. [Google Scholar]
- Taylor, P. Hidden Markov models for grapheme to phoneme conversion. In Proceedings of the Ninth European Conference on Speech Communication and Technology, Lisboa, Portugal, 4–8 September 2005; pp. 1973–1976. [Google Scholar]
- Ogbureke, K.U.; Cahill, P.; Carson-Berndsen, J. Hidden markov models with context-sensitive observations for grapheme-to-phoneme conversion. In Proceedings of the Eleventh Annual Conference of the International Speech Communication Association, Makuhari, Chiba, Japan, 26–30 September 2010; pp. 1105–1108. [Google Scholar]
- Jiampojamarn, S.; Kondrak, G.; Sherif, T. Applying many-to-many alignments and hidden markov models to letter-to-phoneme conversion. In Proceedings of the Human Language Technologies 2007: The Conference of the North American Chapter of the Association for Computational Linguistics; Proceedings of the Main Conference, Rochester, NY, USA, 22–27 April 2007; pp. 372–379. [Google Scholar]
- Lehnen, P.; Hahn, S.; Guta, A.; Ney, H. Incorporating alignments into Conditional Random Fields for grapheme to phoneme conversion. In Proceedings of the 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague, Czech Republic, 22–27 May 2011; pp. 4916–4919. [Google Scholar]
- Lehnen, P.; Hahn, S.; Guta, V.A.; Ney, H. Hidden conditional random fields with m-to-n alignments for grapheme-to-phoneme conversion. In Proceedings of the Thirteenth Annual Conference of the International Speech Communication Association, Portland, OR, USA, 9–13 September 2012; pp. 2554–2557. [Google Scholar]
- Lehnen, P.; Allauzen, A.; Lavergne, T.; Yvon, F.; Hahn, S.; Ney, H. Structure learning in hidden conditional random fields for grapheme-to-phoneme conversion. In Proceedings of the Annual Conference of the International Speech Communication Association, Lyon, France, 25–29 August 2013; pp. 2326–2330. [Google Scholar]
- Wu, K.; Allauzen, C.; Hall, K.; Riley, M.; Roark, B. Encoding linear models as weighted finite-state transducers. In Proceedings of the INTERSPEECH, Singapore, 14–18 September 2014; pp. 1258–1262. [Google Scholar]
- Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to sequence learning with neural networks. In Proceedings of the 27th International Conference on Neural Information Processing Systems, Cambridge, MA, USA, 8–13 December 2014; pp. 3104–3112. [Google Scholar]
- Rao, K.; Peng, F.; Sak, H.; Beaufays, F. Grapheme-to-phoneme conversion using long short-term memory recurrent neural networks. In Proceedings of the 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brisbane, Australia, 19–24 April 2015; pp. 4225–4229. [Google Scholar]
- Yao, K.; Zweig, G. Sequence-to-sequence neural net models for grapheme-to-phoneme conversion. arXiv 2015, arXiv:1506.00196. [Google Scholar]
- Mousa, A.E.D.; Schuller, B. Deep bidirectional long short-term memory recurrent neural networks for grapheme-to-phoneme conversion utilizing complex many-to-many alignments. In Proceedings of the Interspeech 2016, San Francisco, CA, USA, 8–12 September 2016; pp. 2836–2840. [Google Scholar]
- Arık, S.Ö.; Chrzanowski, M.; Coates, A.; Diamos, G.; Gibiansky, A.; Kang, Y.; Li, X.; Miller, J.; Ng, A.; Raiman, J.; et al. Deep voice: Real-time neural text-to-speech. In Proceedings of the International Conference on Machine Learning, Amsterdam, The Netherlands, 7–10 July 2017; pp. 195–204. [Google Scholar]
- Juzová, M.; Tihelka, D.; Vít, J. Unified Language-Independent DNN-Based G2P Converter. In Proceedings of the INTERSPEECH, Graz, Austria, 15–19 September 2019; pp. 2085–2089. [Google Scholar]
- Wang, C.; Huang, P.; Zou, Y.; Zhang, H.; Liu, S.; Yin, X.; Ma, Z. LiteG2P: A fast, light and high accuracy model for grapheme-to-phoneme conversion. In Proceedings of the ICASSP 2023–2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece, 4–10 June 2023; pp. 1–5. [Google Scholar]
- Chae, M.J.; Park, K.; Bang, J.; Suh, S.; Park, J.; Kim, N.; Park, L. Convolutional sequence to sequence model with non-sequential greedy decoding for grapheme to phoneme conversion. In Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB, Canada, 15–20 April 2018; pp. 2486–2490. [Google Scholar]
- Yolchuyeva, S.; Németh, G.; Gyires-Tóth, B. Grapheme-to-phoneme conversion with convolutional neural networks. Appl. Sci. 2019, 9, 1143. [Google Scholar] [CrossRef]
- Toshniwal, S.; Livescu, K. Jointly learning to align and convert graphemes to phonemes with neural attention models. In Proceedings of the 2016 IEEE Spoken Language Technology Workshop (SLT), San Diego, CA, USA, 13–16 December 2016; pp. 76–82. [Google Scholar]
- Luong, T.; Pham, H.; Manning, C.D. Effective Approaches to Attention-based Neural Machine Translation. arXiv 2015, arXiv:abs/1508.04025. [Google Scholar]
- Sun, H.; Tan, X.; Gan, J.W.; Liu, H.; Zhao, S.; Qin, T.; Liu, T.Y. Token-level ensemble distillation for grapheme-to-phoneme conversion. arXiv 2019, arXiv:1904.03446. [Google Scholar]
- Yolchuyeva, S.; Németh, G.; Gyires-Tóth, B. Transformer based grapheme-to-phoneme conversion. arXiv 2020, arXiv:2004.06338. [Google Scholar]
- Kim, H.Y.; Kim, J.H.; Kim, J.M. Nn-kog2p: A novel grapheme-to-phoneme model for korean language. In Proceedings of the ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, ON, Canada, 6–11 June 2021; pp. 7783–7787. [Google Scholar]
- Řezáčková, M.; Švec, J.; Tihelka, D. T5g2p: Using text-to-text transfer transformer for grapheme-to-phoneme conversion. In Proceedings of the INTERSPEECH, Brno, Czechia, 30 August–3 September 2021; pp. 6–10. [Google Scholar]
- Řezáčková, M.; Frémund, A.; Švec, J.; Matoušek, J. T5G2P: Multilingual Grapheme-to-Phoneme Conversion with Text-to-Text Transfer Transformer. In Proceedings of the Asian Conference on Pattern Recognition, Springer, Kitakyushu, Japan, 5–8 November 2023; pp. 336–345. [Google Scholar]
- Řezáčková, M.; Tihelka, D.; Matoušek, J. T5g2p: Text-to-text transfer transformer based grapheme-to-phoneme conversion. IEEE/ACM Trans. Audio, Speech Lang. Process. 2024, 32, 3466–3476. [Google Scholar] [CrossRef]
- Dong, L.; Guo, Z.Q.; Tan, C.H.; Hu, Y.J.; Jiang, Y.; Ling, Z.H. Neural grapheme-to-phoneme conversion with pre-trained grapheme models. In Proceedings of the ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Singapore, 22–27 May 2022; pp. 6202–6206. [Google Scholar]
- Tsvetkov, Y.; Sitaram, S.; Faruqui, M.; Lample, G.; Littell, P.; Mortensen, D.; Black, A.W.; Levin, L.; Dyer, C. Polyglot neural language models: A case study in cross-lingual phonetic representation learning. arXiv 2016, arXiv:1605.03832. [Google Scholar]
- Milde, B.; Schmidt, C.; Köhler, J. Multitask Sequence-to-Sequence Models for Grapheme-to-Phoneme Conversion. In Proceedings of the INTERSPEECH, Stockholm, Sweden, 20–24 August 2017; pp. 2536–2540. [Google Scholar]
- Pritzen, J.; Gref, M.; Zühlke, D.; Schmidt, C. Multitask learning for grapheme-to-phoneme conversion of anglicisms in German speech recognition. arXiv 2021, arXiv:2105.12708. [Google Scholar]
- Route, J.; Hillis, S.; Etinger, I.C.; Zhang, H.; Black, A.W. Multimodal, multilingual grapheme-to-phoneme conversion for low-resource languages. In Proceedings of the 2nd Workshop on Deep Learning Approaches for Low-Resource NLP (DeepLo 2019), Hong Kong, China, 3 November 2019; pp. 192–201. [Google Scholar]
- Vesik, K.; Abdul-Mageed, M.; Silfverberg, M. One model to pronounce them all: Multilingual grapheme-to-phoneme conversion with a transformer ensemble. arXiv 2020, arXiv:2006.13343. [Google Scholar]
- Sokolov, A.; Rohlin, T.; Rastrow, A. Neural machine translation for multilingual grapheme-to-phoneme conversion. arXiv 2020, arXiv:2006.14194. [Google Scholar]
- Engelhart, E.; Elyasi, M.; Bharaj, G. Grapheme-to-phoneme transformer model for transfer learning dialects. arXiv 2021, arXiv:2104.04091. [Google Scholar]
- Ni, J.; Shiga, Y.; Kawai, H. Multilingual Grapheme-to-Phoneme Conversion with Global Character Vectors. In Proceedings of the Interspeech, Hyderabad, India, 2–6 September 2018; pp. 2823–2827. [Google Scholar]
- Deri, A.; Knight, K. Grapheme-to-phoneme models for (almost) any language. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, Berlin, Germany, 7–12 August 2016; pp. 399–408. [Google Scholar]
- Peters, B.; Dehdari, J.; van Genabith, J. Massively multilingual neural grapheme-to-phoneme conversion. arXiv 2017, arXiv:1708.01464. [Google Scholar]
- Lee, J.L.; Ashby, L.F.; Garza, M.E.; Lee-Sikka, Y.; Miller, S.; Wong, A.; McCarthy, A.D.; Gorman, K. Massively multilingual pronunciation modeling with WikiPron. In Proceedings of the Twelfth Language Resources and Evaluation Conference, Marseille, France, 11–16 May 2020; pp. 4223–4228. [Google Scholar]
- Gorman, K.; Ashby, L.F.; Goyzueta, A.; McCarthy, A.D.; Wu, S.; You, D. The SIGMORPHON 2020 shared task on multilingual grapheme-to-phoneme conversion. In Proceedings of the 17th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology, Online, 10 July 2020; pp. 40–50. [Google Scholar]
- Mortensen, D.R.; Dalmia, S.; Littell, P. Epitran: Precision G2P for many languages. In Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018), Miyazaki, Japan, 7–12 May 2018; pp. 2710–2714. [Google Scholar]
- Yu, M.; Nguyen, H.D.; Sokolov, A.; Lepird, J.; Sathyendra, K.M.; Choudhary, S.; Mouchtaris, A.; Kunzmann, S. Multilingual grapheme-to-phoneme conversion with byte representation. In Proceedings of the ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Online, 4–8 May 2020; pp. 8234–8238. [Google Scholar]
- Kim, H.Y.; Kim, J.H.; Kim, J.M. Fast Bilingual Grapheme-To-Phoneme Conversion. In Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Industry Track, Seattle, DC, USA, 10–15 July 2022; pp. 289–296. [Google Scholar]
- Zhu, J.; Zhang, C.; Jurgens, D. ByT5 model for massively multilingual grapheme-to-phoneme conversion. arXiv 2022, arXiv:2204.03067. [Google Scholar]
- Glocker, K.; Herygers, A.; Georges, M. Allophant: Cross-lingual Phoneme Recognition with Articulatory Attributes. arXiv 2023, arXiv:2306.04306. [Google Scholar]
- Sejnowski, T.; Rosenberg, C. Connectionist Bench (Nettalk Corpus). Uci Mach. Learn. Repos. 1988. [Google Scholar] [CrossRef]
- Park, K.; Lee, S. g2pm: A neural grapheme-to-phoneme conversion package for mandarin chinese based on a new open benchmark dataset. arXiv 2020, arXiv:2004.03136. [Google Scholar]
- Veisi, H.; MohammadAmini, M.; Hosseini, H. Toward Kurdish language processing: Experiments in collecting and processing the AsoSoft text corpus. Digit. Scholarsh. Humanit. 2020, 35, 176–193. [Google Scholar] [CrossRef]
- Rahmati, E.; Sameti, H. GE2PE: Persian End-to-End Grapheme-to-Phoneme Conversion. In Proceedings of the Findings of the Association for Computational Linguistics: EMNLP 2024, Miami, Florida, 12–16 November 2024; pp. 3426–3436. [Google Scholar]
- Alghmadi, M. KACST arabic phonetic database. In Proceedings of the the Fifteenth International Congress of Phonetics Science, Barcelona, Spain, 3–9 August 2003; pp. 3109–3112. [Google Scholar]
- Halpern, J. THE ROLE OF PHONETICS AND PHONETIC DATABASES IN JAPANESE SPEECH TECHNOLOGY. 2008. Available online: https://api.semanticscholar.org/CorpusID:43967749 (accessed on 9 November 2024).
- Kurian, C. Speech database and text corpora for Malayalam language automatic speech recognition technology. In Proceedings of the IEEE 2016 Conference of The Oriental Chapter of International Committee for Coordination and Standardization of Speech Databases and Assessment Techniques (O-COCOSDA), Bali, Indonesia, 26–28 October 2016; pp. 7–11. [Google Scholar]
- Ipa-Dict. Monolingual Wordlists with Pronunciation Information in IPA. Available online: https://github.com/open-dict-data/ipa-dict (accessed on 20 September 2016).
- Chen, S.F. Conditional and joint models for grapheme-to-phoneme conversion. In Proceedings of the INTERSPEECH, Geneva, Switzerland, 1–4 September 2003; pp. 2033–2036. [Google Scholar]
- Galescu, L.; Allen, J.F. Pronunciation of proper names with a joint n-gram model for bi-directional grapheme-to-phoneme conversion. In Proceedings of the Seventh International Conference on Spoken Language Processing, Denver, CO, USA, 16–20 September 2002; pp. 109–112. [Google Scholar]
- Zhao, C.; Wang, J.; Qu, X.; Wang, H.; Xiao, J. r-g2p: Evaluating and enhancing robustness of grapheme to phoneme conversion by controlled noise introducing and contextual information incorporation. In Proceedings of the 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Singapore, 23–27 May 2022; pp. 6197–6201. [Google Scholar]
- Wang, Y.; Bao, F.; Zhang, H.; Gao, G. Joint alignment learning-attention based model for grapheme-to-phoneme conversion. In Proceedings of the ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, ON, Canada, 6–11 June 2021; pp. 7788–7792. [Google Scholar]
- Cao, D.; Zhao, Y.; Wu, L. Near-Optimal Active Learning for Multilingual Grapheme-to-Phoneme Conversion. Appl. Sci. 2023, 13, 9408. [Google Scholar] [CrossRef]
- Qharabagh, M.F.; Dehghanian, Z.; Rabiee, H.R. LLM-Powered Grapheme-to-Phoneme Conversion: Benchmark and Case Study. arXiv 2024, arXiv:2409.08554. [Google Scholar]
- Han, D.; Cui, M.; Kang, J.; Wu, X.; Liu, X.; Meng, H. Improving Grapheme-to-Phoneme Conversion through In-Context Knowledge Retrieval with Large Language Models. arXiv 2024, arXiv:2411.07563. [Google Scholar]
CMUdict Dataset | NetTalk Dataset | |||
---|---|---|---|---|
Method | PER (%) | WER (%) | PER (%) | WER (%) |
Joint sequence model [8] | 5.88 | 24.53 | 8.26 | 33.67 |
Joint maximum entropy (ME) n-gram model [62] | 5.9 | 24.7 | ||
Bi-LSTM + Alignment [21] | 5.45 | 23.55 | 7.38 | 30.77 |
Uni-directional LSTM [21] | 8.22 | 32.64 | ||
Encoder–decoder LSTM (2 layers) [21] | 7.63 | 28.61 | ||
Many-to-many alignments with deep BLSTM RNNs [22] | 5.37 | 23.23 | ||
Failure transitions for joint n-gram models and g2p conversion [11] | 8.24 | 33.55 | 5.85 | 24.42 |
Joint n-gram model [63] | 7.0 | 28.5 | ||
End-to-end CNN (with res. connections) (model4) [27] | 5.84 | 29.74 | ||
Encoder CNN, decoder Bi-LSTM (model5) [27] | 4.81 | 25.13 | 5.69 | 30.1 |
Encoder–decoder LSTM with attention layer (model1) [27] | 5.23 | 28.36 | ||
LSTM with Full-delay [20] | 9.1 | 30.1 | ||
DBLSTM-CTC 512 Units [20] | 25.8 | |||
8-gram FST [20] | 26.5 | |||
DBLSTM-CTC 512 + 5-gram FST [20] | 21.3 | |||
Joint multi-gram + CRF [18] | 5.5 | 23.4 | ||
Combination of sequitur G2P and seq2seq-attention and multitask learning [38] | 5.76 | 24.88 | ||
Encoder–decoder with global attention [28] | 5.04 | 21.69 | 7.14 | 29.2 |
Encoder–Decoder GRU [23] | 5.8 | 28.7 | ||
Transformer 4x4 [31] | 5.23 | 22.1 | 6.87 | 29.82 |
CNN with NSGD [26] | 5.58 | 24.1 | 6.78 | 28.45 |
LiteG2P-medium [25] | 24.3 | |||
r-G2P (adv) [64] | 5.22 | 20.14 | 6.64 | 28.85 |
MTL (512 × 3, = 0.2) [65] | 5.26 | 22.96 |
Method | Dataset Description | PER (%) | WER (%) |
---|---|---|---|
Ensemble model [41] | 15 languages from Wikionary | 14.83 | 3.41 |
Encoder decoder multilingual model [66] | Chinese, Tibetan, English, and Korean, totaling 9620 words. | 6.02 | |
Multitask Sequence-to-Sequence Models [38] | German from Phonolex, English from CMUDICT dataset | 3.73 | 17.2 |
Multimodal and Multilingual model [40] | 20 languages from the CMU Wilderness dataset | 26 | 37.87 |
Multilingual neural G2P model [50] | English, French, Spanish, Japanese, Chinese, total 10 million pairs | 4.03 | 16.14 |
LangID-All [46] | Test set 507 languages, training set 311 languages | 37.85 | 7.41 |
DialectalTransformerG2P [43] | Different dialects of English, including American English, Indian English, and British English. | 1.457 | |
Unioned model [45] | Wiktionary pronunciation dictionaries for 531 languages | 14.70 | 44.14 |
NART-CRF based G2P model [51] | Korean and English, including 20,000 sentences for each language | 0.43 | |
ByT5-small [52] | The dataset includes 99 languages, each with over 3000 entries | 8.8 | 25.9 |
T5G2P [34] | The English dataset contains 128,532 unique sentences, and the Czech dataset contains 442,029 unique sentences. | 0.535 | 0.175 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, S.; Zhu, P.; Liu, J.; Wang, Z. A Survey of Grapheme-to-Phoneme Conversion Methods. Appl. Sci. 2024, 14, 11790. https://doi.org/10.3390/app142411790
Cheng S, Zhu P, Liu J, Wang Z. A Survey of Grapheme-to-Phoneme Conversion Methods. Applied Sciences. 2024; 14(24):11790. https://doi.org/10.3390/app142411790
Chicago/Turabian StyleCheng, Shiyang, Pengcheng Zhu, Jueting Liu, and Zehua Wang. 2024. "A Survey of Grapheme-to-Phoneme Conversion Methods" Applied Sciences 14, no. 24: 11790. https://doi.org/10.3390/app142411790
APA StyleCheng, S., Zhu, P., Liu, J., & Wang, Z. (2024). A Survey of Grapheme-to-Phoneme Conversion Methods. Applied Sciences, 14(24), 11790. https://doi.org/10.3390/app142411790