Functional Yogurt: Types and Health Benefits
Abstract
:1. Introduction
2. Functional Yogurt Types
2.1. Probiotic
2.2. Prebiotic
2.3. Synbiotic
2.4. Fortified/Added Functional Ingredient
2.5. Others
2.5.1. High Protein
2.5.2. Lactose Free
2.5.3. Easy to Digest
3. Health Benefits Associated
3.1. Digestive Health
3.2. Cardiovascular Health
3.3. Metabolic Health
3.4. Immune Health
3.5. Oral Health
3.6. Other Effects
3.6.1. Antioxidant Activity
3.6.2. Anti-Diabetic Activity
3.6.3. Anticancer Activity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Delgado-Fernández, P.; Moreno, F.J.; Corzo, N.; Nöbel, S. Physical Properties of Synbiotic Yogurts as Affected by the Acidification Rate. Int. Dairy J. 2020, 105, 104665. [Google Scholar] [CrossRef]
- Ghaderi-Ghahfarokhi, M.; Yousefvand, A.; Ahmadi Gavlighi, H.; Zarei, M.; Farhangnia, P. Developing Novel Synbiotic Low-fat Yogurt with Fucoxylogalacturonan from Tragacanth Gum: Investigation of Quality Parameters and Lactobacillus casei Survival. Food Sci. Nutr. 2020, 8, 4491–4504. [Google Scholar] [CrossRef]
- Sarıtaş, S.; Duman, H.; Karav, S. Nutritional and Functional Aspects of Fermented Algae. Int. J. Food Sci. Technol. 2024, 59, 5270–5284. [Google Scholar] [CrossRef]
- Hoxha, R.; Evstatieva, Y.; Nikolova, D. Physicochemical, Rheological, and Sensory Characteristics of Yogurt Fermented by Lactic Acid Bacteria with Probiotic Potential and Bioprotective Properties. Foods 2023, 12, 2552. [Google Scholar] [CrossRef] [PubMed]
- Sarıtaş, S.; Duman, H.; Pekdemir, B.; Rocha, J.M.; Oz, F.; Karav, S. Functional Chocolate: Exploring Advances in Production and Health Benefits. Int. J. Food Sci. Technol. 2024, 59, 5303–5325. [Google Scholar] [CrossRef]
- Aleman, R.S.; Page, R.; Cedillos, R.; Montero-Fernández, I.; Fuentes, J.A.M.; Olson, D.W.; Aryana, K. Influences of Yogurt with Functional Ingredients from Various Sources That Help Treat Leaky Gut on Intestinal Barrier Dysfunction in Caco-2 Cells. Pharmaceuticals 2023, 16, 1511. [Google Scholar] [CrossRef]
- Luo, H.; Bao, Y.; Zhu, P. Development of a Novel Functional Yogurt Rich in Lycopene by Bacillus Subtilis. Food Chem. 2023, 407, 135142. [Google Scholar] [CrossRef]
- Bolat, E.; Eker, F.; Yılmaz, S.; Karav, S.; Oz, E.; Brennan, C.; Proestos, C.; Zeng, M.; Oz, F. BCM-7: Opioid-like Peptide with Potential Role in Disease Mechanisms. Molecules 2024, 29, 2161. [Google Scholar] [CrossRef]
- Parc, A.L.; Karav, S.; Rouquié, C.; Maga, E.A.; Bunyatratchata, A.; Barile, D. Characterization of Recombinant Human Lactoferrin N-Glycans Expressed in the Milk of Transgenic Cows. PLoS ONE 2017, 12, e0171477. [Google Scholar] [CrossRef]
- Kaplan, M.; Şahutoğlu, A.S.; Sarıtaş, S.; Duman, H.; Arslan, A.; Pekdemir, B.; Karav, S. Role of Milk Glycome in Prevention, Treatment, and Recovery of COVID-19. Front. Nutr. 2022, 9, 1033779. [Google Scholar] [CrossRef]
- Azizkhani, M.; Saris, P.E.J.; Baniasadi, M. An In-Vitro Assessment of Antifungal and Antibacterial Activity of Cow, Camel, Ewe, and Goat Milk Kefir and Probiotic Yogurt. Food Meas. 2021, 15, 406–415. [Google Scholar] [CrossRef]
- Bolat, E.; Eker, F.; Kaplan, M.; Duman, H.; Arslan, A.; Saritaş, S.; Şahutoğlu, A.S.; Karav, S. Lactoferrin for COVID-19 Prevention, Treatment, and Recovery. Front. Nutr. 2022, 9, 992733. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, M.; Arslan, A.; Duman, H.; Karyelioğlu, M.; Baydemir, B.; Günar, B.B.; Alkan, M.; Bayraktar, A.; Tosun, H.İ.; Ertürk, M.; et al. Production of Bovine Colostrum for Human Consumption to Improve Health. Front. Pharmacol. 2022, 12, 796824. [Google Scholar] [CrossRef]
- Pekdemir, B.; Karav, S. Exploring the Diverse Biological Significance and Roles of Fucosylated Oligosaccharides. Front. Mol. Biosci. 2024, 11, 1403727. [Google Scholar] [CrossRef] [PubMed]
- Rathe, M.; De Pietri, S.; Wehner, P.S.; Frandsen, T.L.; Grell, K.; Schmiegelow, K.; Sangild, P.T.; Husby, S.; Müller, K. Bovine Colostrum Against Chemotherapy-Induced Gastrointestinal Toxicity in Children with Acute Lymphoblastic Leukemia: A Randomized, Double-Blind, Placebo-Controlled Trial. J. Parenter. Enter. Nutr. 2020, 44, 337–347. [Google Scholar] [CrossRef]
- Bunyatratchata, A.; Parc, A.L.; De Moura Bell, J.M.L.N.; Cohen, J.L.; Duman, H.; Arslan, A.; Kaplan, M.; Barile, D.; Karav, S. Release of Bifidogenic N-Glycans from Native Bovine Colostrum Proteins by an Endo-β-N-Acetylglucosaminidase. Enzym. Microb. Technol. 2023, 162, 110138. [Google Scholar] [CrossRef] [PubMed]
- Eker, F.; Akdaşçi, E.; Duman, H.; Yalçıntaş, Y.M.; Canbolat, A.A.; Kalkan, A.E.; Karav, S.; Šamec, D. Antimicrobial Properties of Colostrum and Milk. Antibiotics 2024, 13, 251. [Google Scholar] [CrossRef]
- Eker, F.; Bolat, E.; Pekdemir, B.; Duman, H.; Karav, S. Lactoferrin: Neuroprotection against Parkinson’s Disease and Secondary Molecule for Potential Treatment. Front. Aging Neurosci. 2023, 15, 1204149. [Google Scholar] [CrossRef]
- Frese, S.A.; Karav, S.; Casaburi, G.; Arsalan, A.; Kaplan, M.; Sucu, B. N-Glycans from Human Milk Glycoproteins Are Selectively Released by B. Infantis EVC001 in Vivo. Pediatrics 2020, 146, 140. [Google Scholar] [CrossRef]
- Rahman, M.S.; Das Emon, D.; Nupur, A.H.; Mazumder, M.A.R.; Iqbal, A.; Alim, M.A. Isolation and Characterization of Probiotic Lactic Acid Bacteria from Local Yogurt and Development of Inulin-Based Synbiotic Yogurt with the Isolated Bacteria. Appl. Food Res. 2024, 4, 100457. [Google Scholar] [CrossRef]
- Jany, J.F.; Nupur, A.H.; Akash, S.I.; Karmoker, P.; Mazumder, M.A.R.; Alim, M.A. Fortification of Functional Yogurt by the Phytochemicals Extracted from Pomegranate Peel. Appl. Food Res. 2024, 4, 100479. [Google Scholar] [CrossRef]
- Pinto, G.; Picariello, G.; Addeo, F.; Chianese, L.; Scaloni, A.; Caira, S. Proteolysis and Process-Induced Modifications in Synbiotic Yogurt Investigated by Peptidomics and Phosphopeptidomics. J. Agric. Food Chem. 2020, 68, 8744–8754. [Google Scholar] [CrossRef] [PubMed]
- Matos, J.; Afonso, C.; Cardoso, C.; Serralheiro, M.L.; Bandarra, N.M. Yogurt Enriched with Isochrysis Galbana: An Innovative Functional Food. Foods 2021, 10, 1458. [Google Scholar] [CrossRef] [PubMed]
- Sarıtaş, S.; Portocarrero, A.C.M.; Miranda López, J.M.; Lombardo, M.; Koch, W.; Raposo, A.; El-Seedi, H.R.; De Brito Alves, J.L.; Esatbeyoglu, T.; Karav, S.; et al. The Impact of Fermentation on the Antioxidant Activity of Food Products. Molecules 2024, 29, 3941. [Google Scholar] [CrossRef]
- Falah, F.; Vasiee, A.; Yazdi, F.T.; Behbahani, B.A. Preparation and Functional Properties of Synbiotic Yogurt Fermented with Lactobacillus brevis PML1 Derived from a Fermented Cereal-Dairy Product. BioMed Res. Int. 2021, 2021, 1057531. [Google Scholar] [CrossRef] [PubMed]
- Akan, E. The Effect of Fermentation Time and Yogurt Bacteria on the Physicochemical, Microbiological and Antioxidant Properties of Probiotic Goat Yogurts. An. Acad. Bras. Ciênc. 2022, 94, e20210875. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.J.; Lucey, J.A. Formation and Physical Properties of Yogurt. Asian Australas. J. Anim. Sci. 2010, 23, 1127–1136. [Google Scholar] [CrossRef]
- Pourrajab, B.; Naderi, N.; Janani, L.; Hajahmadi, M.; Mofid, V.; Dehnad, A.; Sohouli, M.H.; Hosseini, S.; Shidfar, F. The Impact of Probiotic Yogurt versus Ordinary Yogurt on Serum sTWEAK, sCD163, ADMA, LCAT and BUN in Patients with Chronic Heart Failure: A Randomized, Triple-blind, Controlled Trial. J. Sci. Food Agric. 2022, 102, 6024–6035. [Google Scholar] [CrossRef]
- Tayyebymoghadam, S.; Ehsani, M. Comparison of the effect of extracted inulin from native chicory root with commercial inulin on the viability of probiotics and physicochemical, rheological and sensory properties of synbiotic yogurt. FSCT 2020, 17, 91–109. [Google Scholar] [CrossRef]
- Aly Essawy, M.; Arafa Badr, E.; Mohamed Abohadida, R. Effect of Mothers’ Application of Yogurt Probiotic Bacteria on Relieving Their Young Children’s Acute Gastroenteritis. Egypt. J. Health Care 2024, 15, 1153–1169. [Google Scholar] [CrossRef]
- Casaburi, G.; Karav, S.; Frese, S.; Henrick, B. Gut Barrier Function Is Improved in Infants Colonized by Bifidobacterium Longum Subsp. Infantis EVC001 (FS04-05-19). Curr. Dev. Nutr. 2019, 3, nzz048.FS04-05-19. [Google Scholar] [CrossRef]
- Buniowska-Olejnik, M.; Urbański, J.; Mykhalevych, A.; Bieganowski, P.; Znamirowska-Piotrowska, A.; Kačániová, M.; Banach, M. The Influence of Curcumin Additives on the Viability of Probiotic Bacteria, Antibacterial Activity against Pathogenic Microorganisms, and Quality Indicators of Low-Fat Yogurt. Front. Nutr. 2023, 10, 1118752. [Google Scholar] [CrossRef]
- Silva, F.A.; Queiroga, R.D.C.R.D.E.; De Souza, E.L.; Voss, G.B.; Pintado, M.M.E.; Da Silva Vasconcelos, M.A. Ingredients from Integral Valorization of Isabel Grape to Formulate Goat Yogurt with Stimulatory Effects on Probiotics and Beneficial Impacts on Human Colonic Microbiota in Vitro. Food Sci. Hum. Wellness 2023, 12, 1331–1342. [Google Scholar] [CrossRef]
- Chai, W.; Maskarinec, G.; Lim, U.; Boushey, C.J.; Wilkens, L.R.; Setiawan, V.W.; Le Marchand, L.; Randolph, T.W.; Jenkins, I.C.; Lampe, J.W.; et al. Association of Habitual Intake of Probiotic Supplements and Yogurt with Characteristics of the Gut Microbiome in the Multiethnic Cohort Adiposity Phenotype Study. Gut. Microb. 2023, 4, e14. [Google Scholar] [CrossRef]
- Bolat, E.; Sarıtaş, S.; Duman, H.; Eker, F.; Akdaşçi, E.; Karav, S.; Witkowska, A.M. Polyphenols: Secondary Metabolites with a Biological Impression. Nutrients 2024, 16, 2550. [Google Scholar] [CrossRef]
- Rashidi, S.; Ariaii, P.; Esmaeili, M.; Bagheri, R. Evaluating the Properties of the Hydrolyzed Clover Sprout Protein Obtained by Enzymatic Hydrolysis and Its Effect in Free and Micro-Encapsulated Form on the Properties of Probiotic Yogurt. Food Meas. 2024, 18, 2700–2714. [Google Scholar] [CrossRef]
- Dantas, A.; Verruck, S.; Canella, M.H.M.; Hernandez, E.; Prudencio, E.S. Encapsulated Bifidobacterium BB-12 Addition in a Concentrated Lactose-Free Yogurt: Its Survival during Storage and Effects on the Product’s Properties. Food Res. Int. 2021, 150, 110742. [Google Scholar] [CrossRef] [PubMed]
- Daniloski, D.; Vasiljevic, T.; Freitas, D.; Comunian, T.A.; Brodkorb, A.; McCarthy, N.A. Physicochemical and Simulated Gastric Digestion Properties of A1/A1, A1/A2 and A2/A2 Yoghurts. Food Hydrocoll. 2024, 157, 110430. [Google Scholar] [CrossRef]
- Luo, X.; Sui, J.; Birmann, B.M.; Ivey, K.L.; Tabung, F.K.; Wu, Y.; Yang, W.; Wu, K.; Ogino, S.; Liu, H.; et al. Association between Yogurt Consumption and Plasma Soluble CD14 in Two Prospective Cohorts of US Adults. Eur. J. Nutr. 2021, 60, 929–938. [Google Scholar] [CrossRef] [PubMed]
- Yapa, D.; Rasika, D.M.D.; Weerathilake, W.A.D.V.; Siriwardhana, J.; Priyashantha, H. Effects of Fermenting with Lacticaseibacillus rhamnosus GG on Quality Attributes and Storage Stability of Buffalo Milk Yogurt Incorporated with Bael (Aegle marmelos) Fruit Pulp. NFS J. 2023, 31, 102–109. [Google Scholar] [CrossRef]
- Söküt, C.; BaşyïĞïT Kiliç, G.; Barin, S.; Albayrak, A. Aloe Vera Jel İçeceği Ile Zenginleştilmiş Probiyotik Yoğurt Üretimi. Mehmet Akif Ersoy Üniv. Fen Bilim. Enst. Derg. 2021, 12, 287–296. [Google Scholar] [CrossRef]
- Razmpoosh, E.; Zare, S.; Fallahzadeh, H.; Safi, S.; Nadjarzadeh, A. Effect of a Low Energy Diet, Containing a High Protein, Probiotic Condensed Yogurt, on Biochemical and Anthropometric Measurements among Women with Overweight/Obesity: A Randomised Controlled Trial. Clin. Nutr. ESPEN 2020, 35, 194–200. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Feng, P.; Hu, X.; Cao, W.; Liu, P.; Han, H.; Jin, W.; Li, X. Probiotic Limosilactobacillus fermentum GR-3 Ameliorates Human Hyperuricemia via Degrading and Promoting Excretion of Uric Acid. iScience 2022, 25, 105198. [Google Scholar] [CrossRef]
- Mashayekh, F.; Pourahmad, R.; Eshaghi, M.R.; Akbari-Adergani, B. Improving Effect of Soy Whey-derived Peptide on the Quality Characteristics of Functional Yogurt. Food Sci. Nutr. 2023, 11, 3287–3296. [Google Scholar] [CrossRef] [PubMed]
- Antonopoulou, S.; Detopoulou, M.; Fragopoulou, E.; Nomikos, T.; Mikellidi, A.; Yannakoulia, M.; Kyriacou, A.; Mitsou, E.; Panagiotakos, D.; Anastasiou, C. Consumption of Yogurt Enriched with Polar Lipids from Olive Oil By-Products Reduces Platelet Sensitivity against Platelet Activating Factor and Inflammatory Indices: A Randomized, Double-Blind Clinical Trial. Hum. Nutr. Metab. 2022, 28, 200145. [Google Scholar] [CrossRef]
- Inocente Camones, M.A.; Arias Arroyo, G.C.; Flores López, Ó.B.; Capcha Siccha, M.F.; Bravo Araujo, G.T.; Zavaleta Ayala, J.J. Preclinical Safety Evaluation of a Probiotic Yogurt Made with Tumbo Pulp (Passiflora Tripartita Kunth). Braz. J. Food Technol. 2024, 27, e2022137. [Google Scholar] [CrossRef]
- Safdari, Y.; Vazifedoost, M.; Didar, Z.; Hajirostamloo, B. The Effect of Banana Fiber and Banana Peel Fiber on the Chemical and Rheological Properties of Symbiotic Yogurt Made from Camel Milk. Int. J. Food Sci. 2021, 2021, 5230882. [Google Scholar] [CrossRef] [PubMed]
- Xue, R.; Liu, J.; Zhang, M.; Aziz, T.; Felemban, S.; Khowdiary, M.M.; Yang, Z. Physicochemical, Microbiological and Metabolomics Changes in Yogurt Supplemented with Lactosucrose. Food Res. Int. 2024, 178, 114000. [Google Scholar] [CrossRef]
- Lee, S.; You, H.; Lee, M.; Kim, D.; Jung, S.; Park, Y.; Hyun, S. Different Reactions in Each Enterotype Depending on the Intake of Probiotic Yogurt Powder. Microorganisms 2021, 9, 1277. [Google Scholar] [CrossRef]
- Borah, S.; Kakoty, T.; Borah, P.K.; Mahnot, N.K.; Seth, D.; Patra, F.; Duary, R.K. Optimization of Water Chestnut (Trapa bispinosa) Starch, Fructo-Oligosaccharide and Inulin Concentrations for Low-Fat Flavoured Yogurt Consisting of a Probiotic Lacticaseibacillus rhamnosus Strain. Sustain. Food Technol. 2024, 2, 837–848. [Google Scholar] [CrossRef]
- Yalçıntaş, Y.M.; Duman, H.; López, J.M.M.; Portocarrero, A.C.M.; Lombardo, M.; Khallouki, F.; Koch, W.; Bordiga, M.; El-Seedi, H.; Raposo, A.; et al. Revealing the Potency of Growth Factors in Bovine Colostrum. Nutrients 2024, 16, 2359. [Google Scholar] [CrossRef]
- Bolat, E.; Karagöz, Z.; Alves, J.L.D.B.; Neto, J.P.R.C.; Witkowska, A.M.; El-Seedi, H.; Lombardo, M.; Karav, S. The Potential Applications of Natural Colostrum in Skin Health. Cosmetics 2024, 11, 197. [Google Scholar] [CrossRef]
- Yalçıntaş, Y.M.; Baydemir, B.; Duman, H.; Eker, F.; Bayraktar Biçen, A.; Ertürk, M.; Karav, S. Exploring the Impact of Colostrum Supplementation on Athletes: A Comprehensive Analysis of Clinical Trials and Diverse Properties. Front. Immunol. 2024, 15, 1395437. [Google Scholar] [CrossRef] [PubMed]
- Masoumi, S.J.; Mehrabani, D.; Saberifiroozi, M.; Fattahi, M.R.; Moradi, F.; Najafi, M. The Effect of Yogurt Fortified with Lactobacillus acidophilus and Bifidobacterium sp. Probiotic in Patients with Lactose Intolerance. Food Sci. Nutr. 2021, 9, 1704–1711. [Google Scholar] [CrossRef]
- Gkitsaki, I.; Potsaki, P.; Dimou, I.; Laskari, Z.; Koutelidakis, A.; Giaouris, E. Development of a Functional Greek Sheep Yogurt Incorporating a Probiotic Lacticaseibacillus rhamnosus Wild-Type Strain as Adjunct Starter Culture. Heliyon 2024, 10, e24446. [Google Scholar] [CrossRef]
- Soni, R.; Jain, N.K.; Shah, V.; Soni, J.; Suthar, D.; Gohel, P. Development of Probiotic Yogurt: Effect of Strain Combination on Nutritional, Rheological, Organoleptic and Probiotic Properties. J. Food Sci. Technol. 2020, 57, 2038–2050. [Google Scholar] [CrossRef]
- González-Orozco, B.D.; McGovern, C.J.; Barringer, S.A.; Simons, C.; Jiménez-Flores, R.; Alvarez, V.B. Development of Probiotic Yogurt Products Incorporated with Lactobacillus Kefiranofaciens OSU-BSGOA1 in Mono- and Co-Culture with Kluyveromyces Marxianus. J. Dairy Sci. 2024, 107, 7718–7733. [Google Scholar] [CrossRef] [PubMed]
- Frakolaki, G.; Kekes, T.; Lympaki, F.; Giannou, V.; Tzia, C. Use of Encapsulated Bifidobacterium animalis Subsp. Lactis through Extrusion or Emulsification for the Production of Probiotic Yogurt. J. Food Process Eng. 2022, 45, e13792. [Google Scholar] [CrossRef]
- Lang, F.; Wen, J.; Wu, Z.; Pan, D.; Wang, L. Evaluation of Probiotic Yoghurt by the Mixed Culture with Lactobacillus plantarum A3. Food Sci. Hum. Wellness 2022, 11, 323–331. [Google Scholar] [CrossRef]
- Heydari, S.; Hosseini, S.E.; Mortazavian, A.M.; Taheri, S. Biochemical, Microbiological, and Sensory Properties of Probiotic Yogurt Made from Iranian Native Strains Compared to Commercial Strains. J. Food Process. Preserv. 2021, 45, e15021. [Google Scholar] [CrossRef]
- Lestari, L.A.; Nuriannisa, F.; Yuliani, K.; Ratnasari, D.; Farida, I.N.; Azizah, E.F. Sensory and Microbiological Evaluation of Probiotic Yoghurt Made with Differenttypes of Probiotic Cultures Starter Lactobacillus acidophilus LA-5® and Bifidobacterium animalis Subsp. Lactis BB-12®. Food Res. 2022, 6, 64–69. [Google Scholar] [CrossRef]
- Mohajeri, N.; Shotorbani, P.M.; Basti, A.A.; Khoshkhoo, Z.; Khanjari, A. An Evaluation of Stress Impacts on Survival of Probiotic Bacteria in Yogurt. Food Health 2021, 4, 1–6. [Google Scholar]
- Delgado, K.; Vieira, C.; Dammak, I.; Frasão, B.; Brígida, A.; Costa, M.; Conte-Junior, C. Different Ultrasound Exposure Times Influence the Physicochemical and Microbial Quality Properties in Probiotic Goat Milk Yogurt. Molecules 2020, 25, 4638. [Google Scholar] [CrossRef] [PubMed]
- Yalçin, H.; Polat, Z. Lactobacillus acidophilus LA-5 Ile Üretilen Probiyotik Yoğurdun Fonksiyonel Özelliği ve Bakteri Canlılığının Uzun Süreli (12 Hafta) Depolamada İncelenmesi. Van Vet. J. 2023, 34, 1178127. [Google Scholar] [CrossRef]
- Yang, S.-Y.; Yoon, K.-S. Effect of Probiotic Lactic Acid Bacteria (LAB) on the Quality and Safety of Greek Yogurt. Foods 2022, 11, 3799. [Google Scholar] [CrossRef]
- Mahmoodi Pour, H.; Marhamatizadeh, M.H.; Fattahi, H. Encapsulation of Different Types of Probiotic Bacteria within Conventional/Multilayer Emulsion and Its Effect on the Properties of Probiotic Yogurt. J. Food Qual. 2022, 2022, 7923899. [Google Scholar] [CrossRef]
- Tenea, G.N.; Suárez, J. Probiotic Potential and Technological Properties of Bacteriocinogenic Lactococcus Lactis Subsp. Lactis UTNGt28 from a Native Amazonian Fruit as a Yogurt Starter Culture. Microorganisms 2020, 8, 733. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhao, W.; Guo, S.; Sun, Y.; Yao, K.; Liu, Z.; Sun, Z.; Kwok, L.-Y.; Peng, C. Different Growth Behaviors and Metabolomic Profiles in Yogurts Induced by Multistrain Probiotics of Lactobacillus casei Zhang and Bifidobacterium lactis V9 under Different Fermentation Temperatures. J. Dairy Sci. 2021, 104, 10528–10539. [Google Scholar] [CrossRef]
- Mirković, M.; Mirković, N.; Miočinović, J.; Radulović, A.; Paunović, D.; Ilić, M.; Radulović, Z. Probiotic Yogurt and Cheese from Ultrafiltered Milk: Sensory Quality and Viability of Free-living and Spray Dried Lactiplantibacillus plantarum 564 and Lactiplantibacillus plantarum 299v. J. Food Process. Preserv. 2021, 45, e15713. [Google Scholar] [CrossRef]
- Hui, C.Y.; Lee, K.C.; Chang, Y.P. Cellulase-Xylanase-Treated Guava Purée by-Products as Prebiotics Ingredients in Yogurt. Plant Foods Hum. Nutr. 2022, 77, 299–306. [Google Scholar] [CrossRef]
- Dias, S.S.; De Souza Vergílio, D.; Pereira, A.M.; Klososki, S.J.; Marcolino, V.A.; Da Cruz, R.M.S.; Costa, G.N.; Barão, C.E.; Pimentel, T.C. Probiotic Greek Yogurt: Effect of the Addition of Prebiotic Fat Substitutes on the Physicochemical Characteristics, Probiotic Survival, and Sensory Acceptance. J. Dairy Res. 2021, 88, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Wang, Y.; Liu, Y.; Shi, H.; Chen, X.; Zhao, Y.; Wu, J. Effect of Adding Different Prebiotics on Free Amino Acids and Flavor of Yogurt. Shipin Kexue/Food Sci. 2020, 41, 83–89. [Google Scholar] [CrossRef]
- Yu, D.; Kwon, G.; An, J.; Lim, Y.-S.; Jhoo, J.-W.; Chung, D. Influence of Prebiotic Biopolymers on Physicochemical and Sensory Characteristics of Yoghurt. Int. Dairy J. 2021, 115, 104915. [Google Scholar] [CrossRef]
- Ismail, S.A.; El-Sayed, H.S.; Fayed, B. Production of Prebiotic Chitooligosaccharide and Its Nano/Microencapsulation for the Production of Functional Yoghurt. Carbohydr. Polym. 2020, 234, 115941. [Google Scholar] [CrossRef] [PubMed]
- Żbikowska, A.; Szymańska, I.; Kowalska, M. Impact of Inulin Addition on Properties of Natural Yogurt. Appl. Sci. 2020, 10, 4317. [Google Scholar] [CrossRef]
- Abdolmaleki, F.; Rezaei Mokarram, R.; Daneshniya, M.; Maleki, M.H. Iranian Grape Syrup Used as a Prebiotic and Its Effect on the Physicochemical, Microbiological, and Sensory Properties of Probiotic Yogurt. Foods Raw Mater. 2024, 13, 202–210. [Google Scholar] [CrossRef]
- El-Kholy, W.M.; Bisar, G.H.; Aamer, R.A. Impact of Inulin Extracted, Purified from (Chicory and Globe Artichoke) Roots and the Combination with Maltodextrin as Prebiotic Dietary Fiber on the Functional Properties of Stirred Bio-Yogurt. FNS 2023, 14, 70–89. [Google Scholar] [CrossRef]
- Jooyandeh, H.; Momenzadeh, S.; Alizadeh Behbahani, B.; Barzegar, H. Effect of Malva Neglecta and Lactulose on Survival of Lactobacillus Fermentum and Textural Properties of Synbiotic Stirred Yogurt. J. Food Sci. Technol. 2023, 60, 1136–1143. [Google Scholar] [CrossRef]
- Li, H.; Liu, T.; Song, W.; Zhang, S.; Xu, S.; Zhang, Y.; Liu, D.; Li, H.; Yu, J. Developing Novel Synbiotic Yogurt with Lacticaseibacillus paracasei and Lactitol: Investigation of the Microbiology, Microstructure, Textural and Rheological Propertie. Int. Dairy J. 2022, 135, 105475. [Google Scholar] [CrossRef]
- Kycia, K.; Chlebowska-Śmigiel, A.; Szydłowska, A.; Sokół, E.; Ziarno, M.; Gniewosz, M. Pullulan as a Potential Enhancer of Lactobacillus and Bifidobacterium Viability in Synbiotic Low Fat Yoghurt and Its Sensory Quality. LWT 2020, 128, 109414. [Google Scholar] [CrossRef]
- Jaman, S.; Islam, M.; Sojib, M.; Hasan, M.; Khandakar, M.; Bari, M.; Sarker, M.; Habib, R.; Siddiki, M.; Islam, M.; et al. Physicochemical Characteristics, Sensory Profile, Probiotic, and Starter Culture Viability of Synbiotic Yogurt. J. Adv. Vet. Anim. Res. 2022, 9, 694. [Google Scholar] [CrossRef]
- Da Costa, G.M.; De Paula, M.M.; Costa, G.N.; Esmerino, E.A.; Silva, R.; De Freitas, M.Q.; Barão, C.E.; Cruz, A.G.; Pimentel, T.C. Preferred Attribute Elicitation Methodology Compared to Conventional Descriptive Analysis: A Study Using Probiotic Yogurt Sweetened with Xylitol and Added with Prebiotic Components. J. Sens. Stud. 2020, 35, e12602. [Google Scholar] [CrossRef]
- Li, T.; Yan, Q.; Wen, Y.; Liu, J.; Sun, J.; Jiang, Z. Synbiotic Yogurt Containing Konjac Mannan Oligosaccharides and Bifidobacterium animalis ssp. Lactis BB12 Alleviates Constipation in Mice by Modulating the Stem Cell Factor (SCF)/c-Kit Pathway and Gut Microbiota. J. Dairy Sci. 2021, 104, 5239–5255. [Google Scholar] [CrossRef]
- Ismail, S.A.; Hassan, A.A.; Nour, S.A.; El-Sayed, H.S. The Production of Stirred Yogurt Fortified with Prebiotic Xylooligosaccharide, Probiotic and Synbiotic Microcapsules. Biocatal. Agric. Biotechnol. 2023, 50, 102729. [Google Scholar] [CrossRef]
- Hussien, H.; Abd-Rabou, H.S.; Saad, M.A. The Impact of Incorporating Lactobacillus acidophilus Bacteriocin with Inulin and FOS on Yogurt Quality. Sci. Rep. 2022, 12, 13401. [Google Scholar] [CrossRef]
- Khalid, N.; Ramzan, R.; Zahoor, T.; Muhammad, Z.; Tehseen, S.; Aziz, M.; Batool, R. Exploring the Prebiotic Potential of Xanthan Gum and Its Modified Forms for the Production of Synbiotic Yogurt. Food Process. Preserv. 2022, 46, e17053. [Google Scholar] [CrossRef]
- Zahed, O.; Khosravi-Darani, K.; Mortazavian, A.M.; Mohammadi, A. Effects of Cultivation Conditions on Biofortification of Yogurt with Natural Folate by Propionibacterium freudenreichii. Biocatal. Agric. Biotechnol. 2022, 39, 102267. [Google Scholar] [CrossRef]
- Kamel, D.G.; Hammam, A.R.A.; Alsaleem, K.A.; Osman, D.M. Addition of Inulin to Probiotic Yogurt: Viability of Probiotic Bacteria (Bifidobacterium bifidum) and Sensory Characteristics. Food Sci. Nutr. 2021, 9, 1743–1749. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhang, T.; Li, C.; Zheng, S.; Li, H.; Yu, J. Development of a Microencapsulated Synbiotic Product and Its Application in Yoghurt. LWT 2020, 122, 109033. [Google Scholar] [CrossRef]
- Kariyawasam, K.M.G.M.M.; Lee, N.-K.; Paik, H.-D. Synbiotic Yoghurt Supplemented with Novel Probiotic Lactobacillus brevis KU200019 and Fructooligosaccharides. Food Biosci. 2021, 39, 100835. [Google Scholar] [CrossRef]
- Zahed, O.; Khosravi-Darani, K.; Mortazavian Farsani, S.A.; Mohammadi, A. Bacterial Conjugated Linoleic Acid Bio-Fortification of Synbiotic Yogurts Using Propionibacterium freudenreichii as Adjunct Culture. Ital. J. Food Sci. 2021, 33, 1–11. [Google Scholar] [CrossRef]
- Alsaleem, K.A.; Hamouda, M.E.A. Enhancing Low-Fat Probiotic Yogurt: The Role of Xanthan Gum in Functionality and Microbiological Quality. Processes 2024, 12, 990. [Google Scholar] [CrossRef]
- Jooyandeh, H.; Alizadeh Behbahani, B. Development of a Probiotic Low-fat Set Yogurt Containing Concentrated Sweet Pepper Extract. Food Sci. Nutr. 2024, 12, 4656–4666. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Xiang, H.; Cheng, J.; Ban, Q.; Sun, X.; Guo, M. Effects of Panax Notoginseng Saponins Encapsulated by Polymerized Whey Protein on the Rheological, Textural and Bitterness Characteristics of Yogurt. Foods 2024, 13, 486. [Google Scholar] [CrossRef]
- Costa, R.S.; Oliveira, R.F.; Henry, F.C.; Mello, W.A.O.; Gaspar, C.R. Development of Prebiotic Yogurt with Addition of Green-Banana Biomass (Musa spp.). An. Acad. Bras. Ciênc. 2023, 95, e20220532. [Google Scholar] [CrossRef] [PubMed]
- Shojaeimeher, S.; Babashahi, M.; Shokri, S.; Mirlohi, M.; Zeinali, T. Optimizing the Production of Probiotic Yogurt as a New Functional Food for Diabetics with Favorable Sensory Properties Using the Response Surface Methodology. Probiotics Antimicrob. Prot. 2024, 16, 413–425. [Google Scholar] [CrossRef] [PubMed]
- Gomaa, M.A.E.; Allam, M.G.; Mokhtar, E.; Ayad, E.H.E.; Darwish, S.M.; Darwish, A.M.G. Nano Casein–Pectin Complex: Exploring Physicochemical, Organoleptic Properties, and LAB Viability in Skimmed Milk and Low-Fat Yoghurt. Front. Nutr. 2024, 10, 1288202. [Google Scholar] [CrossRef]
- Elkazaz, A.; Allam, M.; Ayad, E.; Darwish, S.; Gomaa, M. Viability of Probiotic Strains in Moringa Aqueous Extract-Fortified Low-Fat Yogurt. J. Adv. Agric. Res. 2024, 29, 49–63. [Google Scholar] [CrossRef]
- Vahdat, F.; Mehdizadeh, T.; Kazemeini, H.; Reale, A.; Kaboudari, A. Physicochemical, Microbial, and Sensory Characteristics of Yogurt with Persian Shallot (Allium hirtifolium Boiss) and Probiotic Bacteria. Food Sci. Nutr. 2024, 12, 3653–3662. [Google Scholar] [CrossRef]
- Abdelazez, A.; Mohamed, D.M.; Refaey, M.M.; Niu, J. Intervention Effect of Freeze-Dried Probiotic and Unripe Banana Pulp Combination on Set-Type Bio-Yogurt Production during Storage. Food Meas. 2024, 18, 2461–2478. [Google Scholar] [CrossRef]
- Nami, B.; Tofighi, M.; Molaveisi, M.; Mahmoodan, A.; Dehnad, D. Gelatin-Maltodextrin Microcapsules as Carriers of Vitamin D3 Improve Textural Properties of Synbiotic Yogurt and Extend Its Probiotics Survival. Food Biosci. 2023, 53, 102524. [Google Scholar] [CrossRef]
- Kumar, V.; Amrutha, R.; Ahire, J.J.; Taneja, N.K. Techno-Functional Assessment of Riboflavin-Enriched Yogurt-Based Fermented Milk Prepared by Supplementing Riboflavin-Producing Probiotic Strains of Lactiplantibacillus plantarum. Probiotics Antimicrob. Prot. 2024, 16, 152–162. [Google Scholar] [CrossRef]
- Akdeniz, V. The Quality Characteristics of Probiotic Yogurts Enriched with Carob Flour: Ultrasonication Effects at Different Production Stages. J. Food Sci. Technol. 2023, 60, 272–282. [Google Scholar] [CrossRef] [PubMed]
- Raftani Amiri, Z.; Rezaei Erami, S.; Jafari, S.M.; Ahmadian, S. Physicochemical Properties of Yogurt Enriched with Nanoliposomes Containing Bitter Melon Extract. LWT 2024, 198, 116091. [Google Scholar] [CrossRef]
- Wang, R.; Deng, L.; Jin, W.; Meng, Q.; Han, J.; Liu, W. Curcumin-loaded Nanoparticles Developed from Sodium Caseinate and OSA Starch and the in Vitro Semi-dynamic Elderly Digestion Behaviour of Fortified Yogurt. Int. J. Food Sci. Technol. 2024, 59, 7464–7477. [Google Scholar] [CrossRef]
- Nemati, V.; Mozafarpour, R. Exopolysaccharides Isolated from Fermented Milk-Associated Lactic Acid Bacteria and Applied to Produce Functional Value-Added Probiotic Yogurt. LWT 2024, 199, 116116. [Google Scholar] [CrossRef]
- Çiftçi, M.; Öncül, N. The Viability of Microorganism of Probiotic Yogurt Enriched with Bee Pollen. CyTA-J. Food 2024, 22, 2319834. [Google Scholar] [CrossRef]
- Andriani, R.D.; Sawitri, M.E.; Widayanti, V.T.; Manab, A.; Rahayu, P.P.; Fadilah, R.N. Synbiotic Yogurt Fortified with Bawang Dayak (Eleutherine palmifolia) Extract. AFSJ 2023, 22, 9–18. [Google Scholar] [CrossRef]
- Arief, I.I.; Abidin, Z.; Wulandari, Z.; Budiman, C.; Adiyoga, R.; Kamila, E.A. Physicochemical Profile, Amino Acid, and Flavors of Probiotic Yogurt with the Addition of Nano ZnO Food Grade. Food Sci. Technol. 2023, 43, 13123. [Google Scholar] [CrossRef]
- Ahmed, S.; Noor, A.; Tariq, M.; Zaidi, A. Functional Improvement of Synbiotic Yogurt Enriched with Lacticaseibacillus rhamnosus and Aloe Vera Gel Using the Response Surface Method. Food Prod. Process. Nutr. 2023, 5, 38. [Google Scholar] [CrossRef]
- Sharifi, Z.; Jebelli Javan, A.; Hesarinejad, M.A.; Parsaeimehr, M. Application of Carrot Waste Extract and Lactobacillus plantarum in Alyssum homalocarpum Seed Gum-Alginate Beads to Create a Functional Synbiotic Yogurt. Chem. Biol. Technol. Agric. 2023, 10, 3. [Google Scholar] [CrossRef]
- Giacometti Cavalheiro, F.; Parra Baptista, D.; Domingues Galli, B.; Negrão, F.; Nogueira Eberlin, M.; Lúcia Gigante, M. High Protein Yogurt with Addition of Lactobacillus helveticus: Peptide Profile and Angiotensin-Converting Enzyme ACE-Inhibitory Activity. Food Chem. 2020, 333, 127482. [Google Scholar] [CrossRef]
- Farzaneh, M.; Fadaei, V.; Gandomi, H. Antioxidant, Syneresis, and Sensory Characteristics of Probiotic Yogurt Incorporated With Agave Tequilana Aqueous Extract. IJVM 2023, 17, 243–252. [Google Scholar] [CrossRef]
- Akdeniz, V.; Öcal, G.K.; Armağan, G.; Akalın, A.S. High-Energy Ultrasound Improves Culture Activity, Polyunsaturated Fatty Acids and in-Vitro Protein Digestibility in Probiotic Yogurt. Innov. Food Sci. Emerg. Technol. 2024, 92, 103573. [Google Scholar] [CrossRef]
- Sekhavatizadeh, S.S.; Pourakbar, N.; Ganje, M.; Shekarfroush, S.S.; Hosseinzadeh, S. Physicochemical and Sensory Properties of Probiotic Yogurt Containing Lactobacillus plantarum ATCC 10241 Microencapsulated with Okra (Abelmoschus esculentus) Mucilage and Sodium Alginate. Bioact. Carbohydr. Diet. Fibre 2023, 30, 100364. [Google Scholar] [CrossRef]
- Jańczuk, A.; Brodziak, A.; Król, J.; Czernecki, T. Properties of Yoghurt Fortified in Lactoferrin with Effect of Storage Time. Animals 2023, 13, 1610. [Google Scholar] [CrossRef]
- Turgut, T.; Diler, A. The Effect of Addition Eriobotrya japonica L. Marmalade on Physicochemical, Microbiological, and Sensory Properties of Probiotic Yogurts. Front. Nutr. 2023, 10, 1151037. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, I.K.R.; Magied, S.S.A.; Abd El-Kader, Y.; Bakry, N.I. A Comparative Study the Effect of Mango (Mangifera india L.) and Pomegranate (Punica granatum L.) Juices on Probiotic Yogurt. Egypt. J. Nutr. 2023, 38, 63–101. [Google Scholar] [CrossRef]
- Al-Suwidi, M.Q.J.; Al-Saadi, J.M.S.; Al-Musawi, S. Design and Synthesis of Whey Protein-Based Nanoformulation of Fe Ion and Data Extract-Loaded Agents and Functionalized with Folic Acid for Studying Its Effect on Yogurt Properties. NANO 2024, 2450114. [Google Scholar] [CrossRef]
- Miao, M.; Li, S.; Yang, S.; Yan, Q.; Xiang, Z.; Jiang, Z. Engineering the β-Galactosidase from Aspergillus Oryzae for Making Lactose-Free and No-Sugar-Added Yogurt. J. Dairy Sci. 2024, 107, 6602–6613. [Google Scholar] [CrossRef]
- Popescu, L.; Bulgaru, V.; Siminiuc, R. Effects of lactose hydrolysis and milk type on the quality of lactose-free yoghurt. JES 2023, 29, 164–175. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, A.T.; De Lima, J.J.; Reis, P.; Passos, M.; Baumgartner, C.G.; Sereno, A.B.; Krüger, C.C.H.; Cândido, L.M.B. Application of Lactose-Free Whey Protein to Greek Yogurts: Potential Health Benefits and Impact on Rheological Aspects and Sensory Attributes. Foods 2022, 11, 3861. [Google Scholar] [CrossRef] [PubMed]
- Capcanari, T.; Chirsanova, A.; Covaliov, E.; Siminiuc, R. Development of Lactose Free Yogurt Technology for Personalized Nutrition. FNS 2021, 12, 1116–1135. [Google Scholar] [CrossRef]
- Pachekrepapol, U.; Somboonchai, N.; Krimjai, W. Physicochemical, Rheological, and Microbiological Properties of Lactose-free Functional Yogurt Supplemented with Fructooligosaccharides. J. Food Process. Preserv. 2021, 45, e15017. [Google Scholar] [CrossRef]
- Le Roy, C.I.; Kurilshikov, A.; Leeming, E.R.; Visconti, A.; Bowyer, R.C.E.; Menni, C.; Falchi, M.; Koutnikova, H.; Veiga, P.; Zhernakova, A.; et al. Yoghurt Consumption Is Associated with Changes in the Composition of the Human Gut Microbiome and Metabolome. BMC Microbiol. 2022, 22, 39. [Google Scholar] [CrossRef]
- Popović, N.; Brdarić, E.; Đokić, J.; Dinić, M.; Veljović, K.; Golić, N.; Terzić-Vidojević, A. Yogurt Produced by Novel Natural Starter Cultures Improves Gut Epithelial Barrier In Vitro. Microorganisms 2020, 8, 1586. [Google Scholar] [CrossRef] [PubMed]
- Bai, M.; Huang, T.; Guo, S.; Wang, Y.; Wang, J.; Kwok, L.-Y.; Dan, T.; Zhang, H.; Bilige, M. Probiotic Lactobacillus casei Zhang Improved the Properties of Stirred Yogurt. Food Biosci. 2020, 37, 100718. [Google Scholar] [CrossRef]
- Reque, P.M.; Brandelli, A. Encapsulation of Probiotics and Nutraceuticals: Applications in Functional Food Industry. Trends Food Sci. Technol. 2021, 114, 1–10. [Google Scholar] [CrossRef]
- Coşkun, N.; Sarıtaş, S.; Jaouhari, Y.; Bordiga, M.; Karav, S. The Impact of Freeze Drying on Bioactivity and Physical Properties of Food Products. Appl. Sci. 2024, 14, 9183. [Google Scholar] [CrossRef]
- Li, D.; Lai, M.; Wang, P.; Ma, H.; Li, H.; Wang, R.; Wu, X. Effects of Different Prebiotics on the Gel Properties of Milk Protein and the Structural Features of Yogurt. Gels 2023, 9, 863. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Liu, T.; Yang, J.; Wang, R.; Li, Y.; Feng, Y.; Liu, D.; Li, H.; Yu, J. Effect of a Microencapsulated Synbiotic Product on Microbiology, Microstructure, Textural and Rheological Properties of Stirred Yogurt. LWT 2021, 152, 112302. [Google Scholar] [CrossRef]
- Aleman, R.S.; Cedillos, R.; Page, R.; Olson, D.; Aryana, K. Physico-Chemical, Microbiological, and Sensory Characteristics of Yogurt as Affected by Various Ingredients. J. Dairy Sci. 2023, 106, 3868–3883. [Google Scholar] [CrossRef] [PubMed]
- Arslan, A.; Duman, H.; Kaplan, M.; Uzkuç, H.; Bayraktar, A.; Ertürk, M.; Alkan, M.; Frese, S.A.; Duar, R.M.; Henrick, B.M.; et al. Determining Total Protein and Bioactive Protein Concentrations in Bovine Colostrum. JoVE 2021, 178, e63001. [Google Scholar] [CrossRef]
- Arslan, A.; Kaplan, M.; Duman, H.; Bayraktar, A.; Ertürk, M.; Henrick, B.M.; Frese, S.A.; Karav, S. Bovine Colostrum and Its Potential for Human Health and Nutrition. Front. Nutr. 2021, 8, 651721. [Google Scholar] [CrossRef] [PubMed]
- Yalçıntaş, Y.M.; Duman, H.; Rocha, J.M.; Bartkiene, E.; Karav, S.; Ozogul, F. Role of Bovine Colostrum against Various Diseases. Food Biosci. 2024, 61, 104818. [Google Scholar] [CrossRef]
- Silva, E.G.D.S.O.; Anaya, K.; Bezerra, M.D.F.; Macêdo, C.S.; Urbano, S.A.; Borba, L.H.F.; Barbosa, I.D.M.; Ramalho, H.M.M.; Cipolat-Gotet, C.; Galdino, A.B.D.S.; et al. Physicochemical and Sensory Evaluation of Greek Style Yoghurt with Bovine Colostrum. Food Sci. Technol. 2022, 42, e22121. [Google Scholar] [CrossRef]
- Karav, S.; German, J.; Rouquié, C.; Le Parc, A.; Barile, D. Studying Lactoferrin N-Glycosylation. Int. J. Mol. Sci. 2017, 18, 870. [Google Scholar] [CrossRef] [PubMed]
- Karav, S. Selective Deglycosylation of Lactoferrin to Understand Glycans’ Contribution to Antimicrobial Activity of Lactoferrin. Cell. Mol. Biol. 2018, 64, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Tsukahara, T.; Fujimori, A.; Misawa, Y.; Oda, H.; Yamauchi, K.; Abe, F.; Nomiyama, T. The Preventive Effect of Lactoferrin-Containing Yogurt on Gastroenteritis in Nursery School Children—Intervention Study for 15 Weeks. Int. J. Environ. Res. Public Health 2020, 17, 2534. [Google Scholar] [CrossRef] [PubMed]
- Asghar, A.; Afzaal, M.; Nosheen, F.; Saeed, F.; Nayik, G.A.; AL-Farga, A.; Alansari, W.S.; Eskandrani, A.A.; Shamlan, G. Isolation and Molecular Characterization of Processed Soybean Waste for the Development of Synbiotic Yogurt. Fermentation 2022, 8, 622. [Google Scholar] [CrossRef]
- Eker, F.; Duman, H.; Akdaşçi, E.; Bolat, E.; Sarıtaş, S.; Karav, S.; Witkowska, A.M. A Comprehensive Review of Nanoparticles: From Classification to Application and Toxicity. Molecules 2024, 29, 3482. [Google Scholar] [CrossRef] [PubMed]
- Juan, B.; Codina, I.; Trujillo, A. Effect of Genetic Polymorphism of Bovine Β-Casein Variants (A1 and A2) on Yoghurt Characteristics. SSRN 2023, 4674561. [Google Scholar] [CrossRef]
- Fernández-Rico, S.; Mondragón, A.D.C.; López-Santamarina, A.; Cardelle-Cobas, A.; Regal, P.; Lamas, A.; Ibarra, I.S.; Cepeda, A.; Miranda, J.M. A2 Milk: New Perspectives for Food Technology and Human Health. Foods 2022, 11, 2387. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.; Park, Y.-S.; Yoon, S.-S. A2 Milk Consumption and Its Health Benefits: An Update. Food Sci. Biotechnol. 2024, 33, 491–503. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, M.; Baydemir, B.; Günar, B.B.; Arslan, A.; Duman, H.; Karav, S. Benefits of A2 Milk for Sports Nutrition, Health and Performance. Front. Nutr. 2022, 9, 935344. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishnan, M.; Eaton, T.K.; Sermet, O.M.; Savaiano, D.A. Milk Containing A2 β-Casein ONLY, as a Single Meal, Causes Fewer Symptoms of Lactose Intolerance than Milk Containing A1 and A2 β-Caseins in Subjects with Lactose Maldigestion and Intolerance: A Randomized, Double-Blind, Crossover Trial. Nutrients 2020, 12, 3855. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Fang, T.; Shi, L.; Wang, Y.; Deng, X.; Wang, J.; Zhou, Y. The Synbiotic Combination of Probiotics and Inulin Improves NAFLD Though Modulating Gut Microbiota. J. Nutr. Biochem. 2024, 125, 109546. [Google Scholar] [CrossRef] [PubMed]
- Almada-Érix, C.N.; Almada, C.N.; Cabral, L.; Barros De Medeiros, V.P.; Roquetto, A.R.; Santos-Junior, V.A.; Fontes, M.; Gonçalves, A.E.S.S.; Dos Santos, A.; Lollo, P.C.; et al. Orange Juice and Yogurt Carrying Probiotic Bacillus Coagulans GBI-30 6086: Impact of Intake on Wistar Male Rats Health Parameters and Gut Bacterial Diversity. Front. Microbiol. 2021, 12, 623951. [Google Scholar] [CrossRef] [PubMed]
- Mary, M.; Patrick, M.; Peter, C. The Potential Health Benefits of a Novel Symbiotic Yogurt Fortified with Purple-Leaf Tea in Modulation of Gut Microbiota. BCHD 2024, 7, 174–184. [Google Scholar] [CrossRef]
- Yan, S.; Zhang, X.; Jia, X.; Zhang, J.; Han, X.; Su, C.; Zhao, J.; Gou, W.; Xu, J.; Zhang, B. Characterization of the Composition Variation of Healthy Human Gut Microbiome in Correlation with Antibiotic Usage and Yogurt Consumption. Antibiotics 2022, 11, 1827. [Google Scholar] [CrossRef]
- Khalifa, A.; Sheikh, A.; Ibrahim, H.I.M. Bacillus Amyloliquefaciens Enriched Camel Milk Attenuated Colitis Symptoms in Mice Model. Nutrients 2022, 14, 1967. [Google Scholar] [CrossRef]
- Odintsova, V.; Klimenko, N.; Tyakht, A.; Volokh, O.; Popov, V.; Alexeev, D.; Berezhnaya, Y. Yogurt Fortified with Vitamins and Probiotics Impacts the Frequency of Upper Respiratory Tract Infections but Not Gut Microbiome: A Multicenter Double-Blind Placebo Controlled Randomized Study. J. Funct. Foods 2021, 83, 104572. [Google Scholar] [CrossRef]
- Dizman, N.; Hsu, J.; Bergerot, P.G.; Gillece, J.D.; Folkerts, M.; Reining, L.; Trent, J.; Highlander, S.K.; Pal, S.K. Randomized Trial Assessing Impact of Probiotic Supplementation on Gut Microbiome and Clinical Outcome from Targeted Therapy in Metastatic Renal Cell Carcinoma. Cancer Med. 2021, 10, 79–86. [Google Scholar] [CrossRef]
- Mahmoud Ahmed, S.; Samir Ahmed El-husseiny, H.; Mohammed Ali, H. Effect of Probiotic Yogurt Compared to Traditional Yogurt on Management of Antibiotic Associated Diarrhea among Children. Egypt. J. Health Care 2023, 14, 663–672. [Google Scholar] [CrossRef]
- Zahir, I.; Naz, R. Comparison of Traditional and Probiotic Yogurt in Relation to Their Impact on Pediatric Acute Diarrhea Patients. Food Process. Preserv. 2022, 46, e17138. [Google Scholar] [CrossRef]
- Li, Y.; Yu, Y.; Wu, X.; Liu, B.; Ma, H.; Zhao, X.; Cao, S.; Ding, S.; Li, T.; Wang, X.; et al. Specially Designed Yogurt Supplemented with Combination of Pro- and Prebiotics Relieved Constipation in Mice and Humans. Nutrition 2022, 103, 111802. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-R.; Liu, C.-J.; Tang, X.-D.; Zhang, H.-M.; Luo, Y.-Y.; Zhang, L.; Yang, E. Gut Microbiota Alterations from Three-Strain Yogurt Formulation Treatments in Slow-Transit Constipation. Can. J. Infect. Dis. Med. Microbiol. 2020, 2020, 4583973. [Google Scholar] [CrossRef] [PubMed]
- Khuropakhonphong, R.; Whanmek, K.; Purttiponthanee, S.; Chathiran, W.; Srichamnong, W.; Santivarangkna, C.; Trachootham, D. Bulgarian Yogurt Relieved Symptoms and Distress and Increased Fecal Short-Chain Fatty Acids in Healthy Constipated Women: A Randomized, Blinded Crossover Controlled Trial. NFS J. 2021, 22, 20–31. [Google Scholar] [CrossRef]
- Younas, S.; Murtaza, M.A.; Manzoor, M.S.; Arqam, U.; Ali, Z.; Hafiz, I.; Anees Ur Rehman, M.; Imran, M. Effect of Probiotic Incorporation on Physicochemical Attributes of Yogurt during Storage and Influence on Cholesterol Assimilation. J. Food Sci. 2024, 89, 1243–1251. [Google Scholar] [CrossRef] [PubMed]
- Uchida, K.; Shimamura, R.; Ikefuchi, R.; Morikawa, M.; Furihata, M.; Hanaoka, M.; Nose, H.; Masuki, S. Effects of Yogurt Intake on Cardiovascular Strain during Outdoor Interval Walking Training by Older People in Midsummer: A Randomized Controlled Study. Int. J. Environ. Res. Public Health 2022, 19, 4715. [Google Scholar] [CrossRef]
- Ahmad, N.; Shabbir, U.; Sameen, A.; Manzoor, M.F.; Ahmad, M.H.; Ismail, T.; Ahmed, S.; Siddique, R. Hypocholesterolemic Effect of Designer Yogurts Fortified with Omega Fatty Acids and Dietary Fibers in Hypercholesterolemic Subjects. Food Sci. Technol. 2021, 41, 1000–1008. [Google Scholar] [CrossRef]
- Kong, C.-Y.; Li, Z.-M.; Mao, Y.-Q.; Chen, H.-L.; Hu, W.; Han, B.; Wang, L.-S. Probiotic Yogurt Blunts the Increase of Blood Pressure in Spontaneously Hypertensive Rats via Remodeling of the Gut Microbiota. Food Funct. 2021, 12, 9773–9783. [Google Scholar] [CrossRef]
- Wade, A.T.; Guenther, B.A.; Ahmed, F.S.; Elias, M.F. Higher Yogurt Intake Is Associated with Lower Blood Pressure in Hypertensive Individuals: Cross-Sectional Findings from the Maine–Syracuse Longitudinal Study. Int. Dairy J. 2021, 122, 105159. [Google Scholar] [CrossRef]
- Ivey, K.L.; Nguyen, X.-M.T.; Tobias, D.K.; Song, R.; Rogers, G.B.; Ho, Y.-L.; Li, R.; Wilson, P.W.; Cho, K.; Gaziano, J.M.; et al. Dietary Yogurt Is Distinct from Other Dairy Foods in Its Association with Circulating Lipid Profile: Findings from the Million Veteran Program. Clin. Nutr. ESPEN 2021, 43, 456–463. [Google Scholar] [CrossRef]
- Hussin, F.S.; Chay, S.Y.; Zarei, M.; Meor Hussin, A.S.; Ibadullah, W.Z.W.; Zaharuddin, N.D.; Wazir, H.; Saari, N. Potentiality of Self-Cloned Lactobacillus plantarum Taj-Apis362 for Enhancing GABA Production in Yogurt under Glucose Induction: Optimization and Its Cardiovascular Effect on Spontaneous Hypertensive Rats. Foods 2020, 9, 1826. [Google Scholar] [CrossRef]
- Pourrajab, B.; Naderi, N.; Janani, L.; Mofid, V.; Hajahmadi, M.; Dehnad, A.; Shidfar, F. Comparison of Probiotic Yogurt and Ordinary Yogurt Consumption on Serum Pentraxin3, NT-proBNP, oxLDL, and ApoB100 in Patients with Chronic Heart Failure: A Randomized, Triple-Blind, Controlled Trial. Food Funct. 2020, 11, 10000–10010. [Google Scholar] [CrossRef]
- Negm El-Dein, A.; Ezzat, A.; Aly, H.F.; Younis, E.A.; Awad, G.A.; Farid, M.A.M. Hypouricemic, Anti-Inflammatory, and Antioxidant Activities of Lactobacillus-Based Functional Yogurt in Induced-Arthritic Male Wistar Rats: Therapeutic and Protective Potentials. Biocatal. Agric. Biotechnol. 2023, 47, 102597. [Google Scholar] [CrossRef]
- Zhu, L.; Ying, N.; Hao, L.; Fu, A.; Ding, Q.; Cao, F.; Ren, D.; Han, Q.; Li, S. Probiotic Yogurt Regulates Gut Microbiota Homeostasis and Alleviates Hepatic Steatosis and Liver Injury Induced by High-fat Diet in Golden Hamsters. Food Sci. Nutr. 2024, 12, 2488–2501. [Google Scholar] [CrossRef] [PubMed]
- Rezazadeh, L.; Alipour, B.; Jafarabadi, M.A.; Behrooz, M.; Gargari, B.P. Daily Consumption Effects of Probiotic Yogurt Containing Lactobacillus acidophilus La5 and Bifidobacterium lactis Bb12 on Oxidative Stress in Metabolic Syndrome Patients. Clin. Nutr. ESPEN 2021, 41, 136–142. [Google Scholar] [CrossRef]
- Hajipoor, S.; Hekmatdoost, A.; Pasdar, Y.; Mohammadi, R.; Alipour, M.; Rezaie, M.; Nachvak, S.M.; Balthazar, C.F.; Sobhiyeh, M.R.; Mortazavian, A.M.; et al. Consumption of Probiotic Yogurt and Vitamin D-fortified Yogurt Increases Fasting Level of GLP-1 in Obese Adults Undergoing Low-calorie Diet: A Double-blind Randomized Controlled Trial. Food Sci. Nutr. 2022, 10, 3259–3271. [Google Scholar] [CrossRef]
- De Abreu Ribeiro Pereira, J.; De Fátima Píccolo Barcelos, M.; Valério Villas Boas, E.; Hilsdorf Píccoli, R.; De Sales Guilarducci, J.; Corrêa Pereira, R.; Pauli, J.R.; Batista Ferreira, E.; Cardoso De Angelis-Pereira, M.; Esper Cintra, D. Combined Effects of Yacon Flour and Probiotic Yogurt on the Metabolic Parameters and Inflammatory and Insulin Signaling Proteins in High-fat-diet-induced Obese Mice. J. Sci. Food Agric. 2022, 102, 7293–7300. [Google Scholar] [CrossRef]
- Cai, Q.; Song, Y.; Wang, S.; Wang, W.; Sun, X.; Yu, J.; Wei, Y. Functional Yogurt Fermented by Two-probiotics Regulates Blood Lipid and Weight in a High-fat Diet Mouse Model. J. Food Biochem. 2022, 46, e14248. [Google Scholar] [CrossRef]
- Hajipoor, S.; Hekmatdoost, A.; Rezaei, M.; Nachvak, S.M.; Alipour, M.; Eskandari, S.; Mostafai, R.; Sobhiyeh, M.R.; Mohammadi, R.; Pasdar, Y. The Effect of Yogurt Co-fortified with Probiotic and Vitamin D on Lipid Profile, Anthropometric Indices and Serum 25-hydroxi Vitamin D in Obese Adult: A Double-Blind Randomized-Controlled Trial. Food Sci. Nutr. 2021, 9, 303–312. [Google Scholar] [CrossRef]
- Banach, K.; Glibowski, P.; Jedut, P. The Effect of Probiotic Yogurt Containing Lactobacillus acidophilus LA-5 and Bifidobacterium lactis BB-12 on Selected Anthropometric Parameters in Obese Individuals on an Energy-Restricted Diet: A Randomized, Controlled Trial. Appl. Sci. 2020, 10, 5830. [Google Scholar] [CrossRef]
- Andriani, R.D.; Rahayu, P.P.; Apriliyani, M.W.; Sawitri, M.E.; Manab, A.; Azkarahman, A.R. Anti-Obesity Effect of Yoghurt Synbiotic in High Fat Diet Induced Wistar Rats. IOP Conf. Ser. Earth Environ. Sci. 2020, 478, 012052. [Google Scholar] [CrossRef]
- Rivero-Pino, F.; Casquete, M.; Castro, M.J.; Redondo Del Rio, P.; Gutierrez, E.; Mayo-Iscar, A.; Nocito, M.; Corell, A. Prospective, Randomized, Double-Blind Parallel Group Nutritional Study to Evaluate the Effects of Routine Intake of Fresh vs. Pasteurized Yogurt on the Immune System in Healthy Adults. Nutrients 2024, 16, 1969. [Google Scholar] [CrossRef]
- Hasegawa, Y.; Noll, A.L.; Lang, D.J.; Akfaly, E.M.; Liu, Z.; Bolling, B.W. Low-Fat Yogurt Consumption Maintains Biomarkers of Immune Function Relative to Nondairy Control Food in Women with Elevated BMI: A Randomized Controlled Crossover Trial. Nutr. Res. 2024, 129, 1–13. [Google Scholar] [CrossRef]
- Wen, Y.P.; Tang, J.Q.; Han, D.; Sun, J.; Liu, J.; Jiang, Z.Q. Effects of Konjac Mannanoligosaccharide Fortification on Immunomodulatory Activity of Yogurt. Shipin Kexue/Food Sci. 2021, 42, 133–142. [Google Scholar] [CrossRef]
- Song, M.-W.; Park, J.-Y.; Lee, H.-S.; Kim, K.-T.; Paik, H.-D. Co-Fermentation by Lactobacillus brevis B7 Improves the Antioxidant and Immunomodulatory Activities of Hydroponic Ginseng-Fortified Yogurt. Antioxidants 2021, 10, 1447. [Google Scholar] [CrossRef]
- Bakr, N.M.; Mohamed, A.A.; Salem, G.A. Comparative Evaluation of the Remineralizing Potential of Salvadora Persica and Probiotic Yogurt on Incipient Enamel Lesions: An Ex-Vivo Study. Dent. Med. Probl. 2024, 61, 345–352. [Google Scholar] [CrossRef]
- Zare Javid, A.; Amerian, E.; Basir, L.; Ekrami, A.; Haghighizadeh, M.H.; Maghsoumi-Norouzabad, L. Effects of the Consumption of Probiotic Yogurt Containing Bifidobacterium lactis Bb12 on the Levels of Streptococcus mutans and Lactobacilli in Saliva of Students with Initial Stages of Dental Caries: A Double-Blind Randomized Controlled Trial. Caries Res. 2020, 54, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Wang, Y.; Wu, Z.; Deng, S. Salivary Microbial Community Alterations Due to Probiotic Yogurt in Preschool Children with Healthy Deciduous Teeth. Arch. Microbiol. 2021, 203, 3045–3053. [Google Scholar] [CrossRef]
- Lim, S.-M.; Lee, N.-K.; Kim, K.-T.; Paik, H.-D. Probiotic Lactobacillus Fermentum KU200060 Isolated from Watery Kimchi and Its Application in Probiotic Yogurt for Oral Health. Microb. Pathog. 2020, 147, 104430. [Google Scholar] [CrossRef]
- Santos Pereira, E.D.; De Oliveira Raphaelli, C.; Massaut, K.B.; Camargo, T.M.; Radünz, M.; Hoffmann, J.F.; Vizzotto, M.; Pieniz, S.; Fiorentini, Â.M. Probiotic Yogurt Supplemented with Lactococcus Lactis R7 and Red Guava Extract: Bioaccessibility of Phenolic Compounds and Influence in Antioxidant Activity and Action of Alpha-Amylase and Alpha-Glucosidase Enzymes. Plant Foods Hum. Nutr. 2024, 79, 219–224. [Google Scholar] [CrossRef] [PubMed]
- Sarwar, A.; Al-Dalali, S.; Aziz, T.; Yang, Z.; Ud Din, J.; Khan, A.A.; Daudzai, Z.; Syed, Q.; Nelofer, R.; Qazi, N.U.; et al. Effect of Chilled Storage on Antioxidant Capacities and Volatile Flavors of Synbiotic Yogurt Made with Probiotic Yeast Saccharomyces Boulardii CNCM I-745 in Combination with Inulin. J. Fungi 2022, 8, 713. [Google Scholar] [CrossRef]
- Darwish, M.S.; Qiu, L.; Taher, M.A.; Zaki, A.A.; Abou-Zeid, N.A.; Dawood, D.H.; Shalabi, O.M.A.K.; Khojah, E.; Elawady, A.A. Health Benefits of Postbiotics Produced by E. Coli Nissle 1917 in Functional Yogurt Enriched with Cape Gooseberry (Physalis peruviana L.). Fermentation 2022, 8, 128. [Google Scholar] [CrossRef]
- Toshimitsu, T.; Gotou, A.; Sashihara, T.; Hojo, K.; Hachimura, S.; Shioya, N.; Iwama, Y.; Irie, J.; Ichihara, Y. Ingesting Probiotic Yogurt Containing Lactiplantibacillus plantarum OLL2712 Improves Glycaemic Control in Adults with Prediabetes in a Randomized, Double-blind, Placebo-controlled Trial. Diabetes Obes. Metab. 2024, 26, 2239–2247. [Google Scholar] [CrossRef]
- Shori, A.B.; Baba, A.S. The Effect of Refrigerated Storage on Anti-Diabetic and Antioxidant Potency of Probiotic Yogurt Treated with Some Medicinal Plants. Fermentation 2023, 9, 427. [Google Scholar] [CrossRef]
- Hameed, A.; Ashraf, F.; Anwar, M.J.; Amjad, A.; Hussain, M.; Imran, M.; Mujtaba, A.; Ahmad, I.; Aslam, M.S.; El-Ghorab, A.H.; et al. α-Amylase Enzyme Inhibition Relevant to Type II Diabetes by Using Functional Yogurt with Cinnamomum verum and Stevia rebaudiana. Food Agric. Immunol. 2024, 35, 2389091. [Google Scholar] [CrossRef]
- Papakonstantinou, E.; Manolopoulou, E.; Papamichalopoulos, A.; Kounenidaki, C.; Mitrogeorgou, T.; Georgalaki, M.; Tsakalidou, E. Short-Term Effects of Goat Milk Yogurt-Containing Angiotensin-Converting Enzyme Inhibitory Peptides and Two Raisin Varieties on Subjective Appetite, Blood Pressure and Glycaemic Responses in Healthy Adults. Results from a Randomised Clinical Trial. Br. J. Nutr. 2023, 130, 360–368. [Google Scholar] [CrossRef] [PubMed]
- Mirjalili, M.; Salari Sharif, A.; Sangouni, A.A.; Emtiazi, H.; Mozaffari-Khosravi, H. Effect of Probiotic Yogurt Consumption on Glycemic Control and Lipid Profile in Patients with Type 2 Diabetes Mellitus: A Randomized Controlled Trial. Clin. Nutr. ESPEN 2023, 54, 144–149. [Google Scholar] [CrossRef] [PubMed]
- Ban, Q.; Sun, X.; Jiang, Y.; Cheng, J.; Guo, M. Effect of Synbiotic Yogurt Fortified with Monk Fruit Extract on Hepatic Lipid Biomarkers and Metabolism in Rats with Type 2 Diabetes. J. Dairy Sci. 2022, 105, 3758–3769. [Google Scholar] [CrossRef]
- Li, X.; Yan, Y.; Du, X.; Zhang, H.; Li, H.; Chen, W. Yogurt Prevents Colitis-Associated Colorectal Cancer in Mice. Mol. Nutr. Food Res. 2023, 67, 2300444. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Leung, E.L.-H. Association of Dietary Fiber and Yogurt Consumption With Lung Cancer Risk. JAMA Oncol. 2020, 6, 788. [Google Scholar] [CrossRef] [PubMed]
- Michels, K.B.; Willett, W.C.; Vaidya, R.; Zhang, X.; Giovannucci, E. Yogurt Consumption and Colorectal Cancer Incidence and Mortality in the Nurses’ Health Study and the Health Professionals Follow-Up Study. Am. J. Clin. Nutr. 2020, 112, 1566–1575. [Google Scholar] [CrossRef]
- Rothschild-Rodriguez, D.; Hedges, M.; Kaplan, M.; Karav, S.; Nobrega, F.L. Phage-Encoded Carbohydrate-Interacting Proteins in the Human Gut. Front. Microbiol. 2023, 13, 1083208. [Google Scholar] [CrossRef]
- Karav, S.; Salcedo, J.; Frese, S.A.; Barile, D. Thoroughbred Mare’s Milk Exhibits a Unique and Diverse Free Oligosaccharide Profile. FEBS Open Bio 2018, 8, 1219–1229. [Google Scholar] [CrossRef]
- Karav, S.; Le Parc, A.; Leite Nobrega De Moura Bell, J.M.; Frese, S.A.; Kirmiz, N.; Block, D.E.; Barile, D.; Mills, D.A. Oligosaccharides Released from Milk Glycoproteins Are Selective Growth Substrates for Infant-Associated Bifidobacteria. Appl. Environ. Microbiol. 2016, 82, 3622–3630. [Google Scholar] [CrossRef] [PubMed]
- Bhola, J.; Bhadekar, R. Prebiotic Effect of Daily Dietary Polyphenols and Oligosaccharides on Lactobacillus Species. Bioact. Carbohydr. Diet. Fibre 2024, 31, 100407. [Google Scholar] [CrossRef]
- Negm El-Dein, A.; Ezzat, A.; Aly, H.F.; Awad, G.; Farid, M. Lactobacillus-Fermented Yogurt Exerts Hypoglycemic, Hypocholesterolemic, and Anti-Inflammatory Activities in STZ-Induced Diabetic Wistar Rats. Nutr. Res. 2022, 108, 22–32. [Google Scholar] [CrossRef]
Types of Functional Yogurt | Effects | Added Components | References |
---|---|---|---|
Probiotic yogurt |
| Lentilactobacillus kefiranofaciens Kluyveromyces marxianus Bifidobacterium animalis subsp. lactis Lactiplantibacillus plantarum Limosilactobacillus reuteri Lacticaseibacillus casei Limosilactobacillus acidophilus Lactobacillus delbrueckii subsp. bulgaricus | [56,57,58,59,60,61,62,63] |
| Lactobacillus delbrueckii subsp. bulgaricus Lactiplantibacillus plantarum Lactobacillus gasseri Limosilactobacillus acidophilus Bifidobacterium animalis subsp. lactis Lacticaseibacillus casei Lacticaseibacillus rhamnosus | [4,11,26,55,64,65] | |
| Lactiplantibacillus plantarum Lacticaseibacillus rhamnosus Lactococcus lactis subsp. lactis Limosilactobacillus acidophilus Lacticaseibacillus casei Bifidobacterium bifidum | [66,67] | |
| Bifidobacterium animalis subsp. lactis Lacticaseibacillus casei | [68] | |
| Lactiplantibacillus plantarum Lacticaseibacillus casei | [69] | |
Prebiotic |
| Lactosucrose | [48] |
| Prebiotic from guava puree byproducts Inulin Polydextrose Xylooligosaccharide Oligomeric isomaltose Galactooligosaccharide Tragacanth gum Chitooligosaccharide Fructooligosaccharide | [70,71,72,73,74,75] | |
Synbiotic |
| Lacticaseibacillus rhamnosus Bifidobacterium animalis subsp. lactis Streptococcus salivarius subsp. thermophilus Limosilactobacillus acidophilus Lactobacillus spp. Lactobacillus delbrueckii subsp. bulgaricus Limosilactobacillus fermentum Lacticaseibacillus paracasei Levilactobacillus brevis Lacticaseibacillus casei Lactobacillus gasseri Banana fiber Banana peel fiber Lactitol Inulin Maltodextrin Oligofructose or polydextrose β-glucan Hi-maize Iranian grape syrup Malva neglecta Lactulose | [1,2,20,25,29,47,76,77,78,79,80,81,82,83] |
| Limosilactobacillus acidophilus Xylooligosaccharide | [84] | |
| Limosilactobacillus acidophilus and their bacteriocins Lactobacillus delbrueckii subsp. bulgaricus Levilactobacillus brevis Bifidobacterium longum Bifidobacterium bifidum Propionibacterium freudenreichii Propionibacterium freudenreichii subsp. shermanii Xanthan gum Fructooligosaccharides Galactooligosaccharide Lactitol Inulin | [85,86,87,88,89,90] | |
| Lactobacillus delbrueckii subsp. bulgaricus Streptococcus salivarius subsp. thermophilus Propionibacterium freudenreichii spp. shermanii Limosilactobacillus acidophilus Bifidobacterium spp. Inulin | [22,91] | |
Fortified/functional ingredient added |
| Xanthan Gum Sweet pepper extract Panax notoginseng Saponins Green-banana biomass Cumin essential oil Vitamin C Vitamin D Nano casein–pectin complex | [92,93,94,95,96,97] |
| Water chestnut (Trapa bispinosa) starch Mango pulp Pomegranate peel Moringa aqueous extract Persian shallot (Allium hirtifolium Boiss) Banana pulp l-Glutamine Quercetin Slippery elm bark Marshmallow root N-acetyl-d-glucosamine Licorice root Maitake mushrooms Zinc orotate Aloe vera gel drink Vitamin D3 Riboflavin (vitamin B2) Carob flour Nanoliposomes containing bitter melon extract Curcumin-loaded nanoparticles | [6,21,41,50,98,99,100,101,102,103,104,105] | |
| Exopolysaccharides Bee pollen Bawang dayak (Eleutherine palmifolia) extract Clover sprout protein ZnO nanoparticles Aloe vera gel Curcumin Carrot waste extract | [32,36,106,107,108,109,110,111] | |
| Agave tequilana aqueous extract Whey protein Caseinate Okra (Abelmoschus esculentus) mucilage Lactoferrin Bael (Aegle marmelos) fruit pulp Loquat (Eriobotrya japonica L.) marmalade Mango (Mangifera India L.) juice Pomegranate (Punica granatum L.) juice Isochrysis galbana Whey protein-based nanoformulation | ||
High protein |
| Calcium caseinate | [23,40,112,113,114,115,116,117,118,119] |
Lactose-free |
| Whey β-galactosidase | [120] |
| β-galactosidase Inulin Oligofructose Whey | [37,121,122,123] | |
| β-galactosidase Fructooligosaccharides | [124] |
Function Related | Type of Functional Yogurt | Added Component | Outcomes | References |
---|---|---|---|---|
Digestive health | Probiotic yogurt | Tumbo fruit (Passiflora tripartita Kunth) |
| [46] |
Synbiotic yogurt | Purple-leaf tea (Camellia sinensis) |
| [149] | |
Probiotic yogurt | * |
| [30] | |
Synbiotic yogurt | Bifidobacterium Streptococcus salivarius subsp. thermophilus Inulin |
| [147] | |
Fortified yogurt | Maitake mushrooms Quercetin L-glutamine Slippery elm bark Licorice root N-acetyl-D-glucosamine Zinc orotate Marshmallow root |
| [6] | |
Probiotic yogurt | * |
| [34] (Chai et al., 2023) | |
Yogurt | * |
| [150] | |
Fortified yogurt | Isabel grape |
| [33] | |
Probiotic yogurt | Bacillus amyloliquefaciens |
| [151] | |
Yogurt | * |
| [125] | |
Probiotic yogurt | Streptococcus salivarius subsp. thermophilus Lactobacillus delbrueckii subsp. bulgaricus |
| [49] | |
Fortified yogurt | Vitamins Lacticaseibacillus casei Lacticaseibacillus rhamnosus |
| [152] | |
Fortified yogurt | Orange juice Bacillus coagulans |
| [148] | |
Probiotic yogurt | Bifidobacterium spp. |
| [153] | |
Probiotic yogurt | Streptococcus salivarius subsp. thermophilus Lactobacillus delbrueckii subsp. bulgaricus |
| [126] | |
Probiotic yogurt | * |
| [154] | |
Probiotic yogurt | Limosilactobacillus acidophilus Bifidobacterium bifidum |
| [155] | |
Synbiotic yogurt | Limosilactobacillus acidophilus Lactiplantibacillus plantarum Lacticaseibacillus paracasei Bifidobacterium animalis subsp. lactis Bifidobacterium longum Bifidobacterium breve Fructooligosaccharides Inulin Polydextrose Galactooligosaccharides Isomaltooligosaccharides Xylooligosaccharides |
| [156] | |
Synbiotic yogurt | Konjac mannan oligosaccharides Bifidobacterium animalis ssp. lactis |
| [83] | |
Probiotic yogurt | Lactiplantibacillus plantarum Lactobacillus casei subsp. casei Lactococcus lactis subsp. lactis |
| [157] | |
Probiotic yogurt | Bifidobacterium sp. Limosilactobacillus acidophilus |
| [54] | |
Yogurt | * |
| [158] | |
Yogurt | Lactoferrin |
| [139] | |
Cardiovascular health | Probiotic yogurt | Limosilactobacillus acidophilus |
| [159] |
Fortified yogurt | Streptococcus salivarius subsp. thermophilus Lactobacillus delbrueckii subsp. bulgaricus Bacillus subtilis Lycopene |
| [7] | |
Probiotic yogurt | * |
| [28] | |
Fortified yogurt | Olive oil byproducts |
| [45] | |
Yogurt | * |
| [160] | |
Fortified yogurt | Omega fatty acids Flaxseed powder |
| [161] | |
Probiotic yogurt | Streptococcus salivarius subsp. thermophilus Lactobacillus delbrueckii subsp. bulgaricus |
| [162] | |
Yogurt | * |
| [163] | |
Yogurt | * |
| [164] | |
Yogurt | Lactobacillus delbrueckii subsp. bulgaricus |
| [165] | |
Probiotic yogurt | * |
| [166] | |
Yogurt | * |
| [39] | |
Metabolic health | Probiotic yogurt | Lactiplantibacillus plantarum Lacticaseibacillus rhamnosus |
| [167] |
Probiotic yogurt | * |
| [168] | |
Probiotic yogurt | Limosilactobacillus fermentum |
| [43] | |
Probiotic yogurt | Limosilactobacillus acidophilus Bifidobacterium animalis subsp. lactis |
| [169] | |
Fortified yogurt | Streptococcus salivarius subsp. thermophilus Lactobacillus delbrueckii subsp. bulgaricus Bifidobacterium animalis subsp. lactis Limosilactobacillus acidophilus Vitamin D |
| [170] | |
Probiotic yogurt | Streptococcus salivarius subsp. thermophilus Lactobacillus delbrueckii subsp. bulgaricus Bifidobacterium animalis subsp. lactis Limosilactobacillus acidophilus Yacon flour |
| [171] | |
Probiotic yogurt | Lactiplantibacillus plantarum Bacillus subtilis variant natto Soybean flour |
| [172] | |
Fortified yogurt | Limosilactobacillus acidophilus Bifidobacterium animalis subsp. lactis Vitamin D |
| [173] | |
Probiotic yogurt | Limosilactobacillus acidophilus Bifidobacterium animalis subsp. lactis |
| [174] | |
Synbiotic yogurt | Streptococcus salivarius subsp. thermophilus Lactococcus lactis subsp. cremoris Yellow sweet potato |
| [175] | |
Probiotic yogurt | Limosilactobacillus acidophilus Bifidobacterium animalis subsp. lactis |
| [42] | |
Immune health | Yogurt | * |
| [176] |
Yogurt | Streptococcus salivarius subsp. thermophilus Lactobacillus delbrueckii subsp. bulgaricus Limosilactobacillus acidophilus |
| [177] | |
Synbiotic yogurt | Konjac mannanoligosaccharide |
| [178] | |
Fortified yogurt | Limosilactobacillus acidophilus Streptococcus salivarius subsp. thermophilus Bifidobacterium longum Ginseng |
| [179] | |
Oral health | Probiotic yogurt | Limosilactobacillus acidophilus Bifidobacterium animalis subsp. lactis Bifidobacterium longum Salvadora persica |
| [180] |
Probiotic yogurt | Bifidobacterium animalis subsp. lactis Streptococcus mutans |
| [181] | |
Probiotic yogurt | Streptococcus salivarius subsp. thermophilus Lactobacillus delbrueckii subsp. bulgaricus Limosilactobacillus acidophilus Lacticaseibacillus casei |
| [182] | |
Probiotic yogurt | Limosilactobacillus fermentum |
| [183] | |
Antioxidant activity | Fortified yogurt | Streptococcus salivarius subsp. thermophilus Lactobacillus delbrueckii subsp. bulgaricus Lactococcus lactis subsp. lactis Psidium cattleianum |
| [184] |
Fortified yogurt | Streptococcus salivarius subsp. thermophilus Lactobacillus delbrueckii subsp. bulgaricus Soy whey-derived peptide |
| [44] | |
Synbiotic yogurt | Streptococcus salivarius subsp. thermophilus Lactobacillus delbrueckii subsp. bulgaricus Lacticaseibacillus rhamnosus Soybean waste |
| [140] | |
Synbiotic yogurt | Streptococcus salivarius subsp. thermophilus Lactobacillus delbrueckii subsp. bulgaricus Saccharomyces boulardii Inulin |
| [185] | |
Fortified yogurt | Escherichia coli Nissle Physalis peruviana |
| [186] | |
Anti-diabetic activity | Probiotic yogurt | Lactiplantibacillus plantarum |
| [187] |
Fortified yogurt | Streptococcus salivarius subsp. thermophilus Limosilactobacillus acidophilus Lacticaseibacillus casei Bifidobacterium bifidum Lactobacillus delbrueckii subsp. bulgaricus Lacticaseibacillus rhamnosus Bifidobacterium longum subsp. infantis Bifidobacterium longum Illicium verum Psidium guajava Codonopsis pilosula Lycium barbarum Cinnamomum verum and Stevia rebaudiana Corinthian and Sultana raisins Red guava extract |
| [188,189,190] | |
Probiotic yogurt | Limosilactobacillus acidophilus Bifidobacterium animalis subsp. lactis |
| [191] | |
Synbiotic yogurt | Streptococcus salivarius subsp. thermophilus Lactobacillus delbrueckii subsp. bulgaricus Limosilactobacillus acidophilus Monk fruit extract |
| [192] | |
Anticancer activity | Yogurt | Streptococcus salivarius subsp. thermophilus Lactobacillus delbrueckii subsp. bulgaricus |
| [193] |
Yogurt | * |
| [194] | |
Yogurt | * |
| [195] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarıtaş, S.; Mondragon Portocarrero, A.d.C.; Miranda, J.M.; Witkowska, A.M.; Karav, S. Functional Yogurt: Types and Health Benefits. Appl. Sci. 2024, 14, 11798. https://doi.org/10.3390/app142411798
Sarıtaş S, Mondragon Portocarrero AdC, Miranda JM, Witkowska AM, Karav S. Functional Yogurt: Types and Health Benefits. Applied Sciences. 2024; 14(24):11798. https://doi.org/10.3390/app142411798
Chicago/Turabian StyleSarıtaş, Sümeyye, Alicia del Carmen Mondragon Portocarrero, Jose M. Miranda, Anna Maria Witkowska, and Sercan Karav. 2024. "Functional Yogurt: Types and Health Benefits" Applied Sciences 14, no. 24: 11798. https://doi.org/10.3390/app142411798
APA StyleSarıtaş, S., Mondragon Portocarrero, A. d. C., Miranda, J. M., Witkowska, A. M., & Karav, S. (2024). Functional Yogurt: Types and Health Benefits. Applied Sciences, 14(24), 11798. https://doi.org/10.3390/app142411798