Effect of PEF Treatment on Chosen Properties of Raw and Hot Air- and Freeze-Dried Poultry Meat
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Material
2.2. Technological Processing
2.2.1. Pulsed Electric Field (PEF) Treatment
2.2.2. Drying Process
Hot Air (HA)-Drying
Freeze-Drying (FD)
2.3. Properties of Fresh and Dried Poultry Meat
2.3.1. Dry Matter Content
2.3.2. Water Activity
2.3.3. Rehydration Rate
2.3.4. Hygroscopic Properties
2.3.5. Color
2.3.6. Scanning Electron Microscopy (SEM) and Macroscopic Photographs
2.4. Statistical Analysis
3. Results and Discussion
3.1. The Influence of Pretreatment on the Kinetics of the Hot Air- and Freeze-Drying Processes of Poultry Meat
3.2. The Influence of PEF Pretreatment on the Structure of the Hot Air- and Freeze-Dried Poultry Meat
3.3. The Influence of PEF Pretreatment on the Physical Properties of the Hot Air- and Freeze-Dried Poultry Meat
3.3.1. Dry Matter Content and Water Activity
3.3.2. Rehydration Rate
3.3.3. Hygroscopic Properties
3.3.4. Color
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Geiker, N.R.W.; Bertram, H.C.; Mejborn, H.; Dragsted, L.O.; Kristensen, L.; Carrascal, J.R.; Bügel, S.; Astrup, A. Meat and Human Health—Current Knowledge and Research Gaps. Foods 2021, 10, 1556. [Google Scholar] [CrossRef]
- OECD/FAO. OECD-FAO Agricultural Outlook 2023–2032; OECD Publishing: Paris, France, 2023. [Google Scholar]
- Chmiel, M.; Roszko, M.; Adamczak, L.; Florowski, T.; Pietrzak, D. Influence of Storage and Packaging Method on Chicken Breast Meat Chemical Composition and Fat Oxidation. Poult. Sci. 2019, 98, 2679–2690. [Google Scholar] [CrossRef]
- Lapan, C.; Greenwood, J.; Kline, C. Eating Sustainably: Protein Consumption at Home, at Restaurants, and While Traveling. J. Gastron. Tour. 2020, 4, 193–208. [Google Scholar] [CrossRef]
- di Corcia, M.; Tartaglia, N.; Polito, R.; Ambrosi, A.; Messina, G.; Francavilla, V.C.; Cincione, R.I.; della Malva, A.; Ciliberti, M.G.; Sevi, A.; et al. Functional Properties of Meat in Athletes’ Performance and Recovery. Int. J. Environ. Res. Public Health 2022, 19, 5145. [Google Scholar] [CrossRef]
- Combat Feeding Directorate. Warfighter’s Guide to Performance Nutrition and Operational Rations; Combat Feeding Directorate: Natick, MA, USA, 2017. [Google Scholar]
- Rahman, M.; Hashem, M.; Azad, M.; Choudhury, M.; Bhuiyan, M. Techniques of Meat Preservation—A Review. Meat Res. 2023, 3, 55. [Google Scholar] [CrossRef]
- Mishra, B.; Mishra, J.; Pati, P.; Rath, P. Dehydrated Meat Products: A Review. Int. J. Livest. Res. 2017, 7, 10–22. [Google Scholar] [CrossRef]
- Mediani, A.; Hamezah, H.S.; Jam, F.A.; Mahadi, N.F.; Chan, S.X.Y.; Rohani, E.R.; Che Lah, N.H.; Azlan, U.K.; Khairul Annuar, N.A.; Azman, N.A.F.; et al. A Comprehensive Review of Drying Meat Products and the Associated Effects and Changes. Front. Nutr. 2022, 9, 1057366. [Google Scholar] [CrossRef] [PubMed]
- Guiné, R.P.F. The Drying of Foods and Its Effect on the Physical-Chemical, Sensorial and Nutritional Properties. ETP Int. J. Food Eng. 2018, 4, 93–100. [Google Scholar] [CrossRef]
- Aykın-Dinçer, E.; Kılıç-Büyükkurt, Ö.; Erbaş, M. Influence of Drying Techniques and Temperatures on Drying Kinetics and Quality Characteristics of Beef Slices. Heat Mass Transf. 2020, 56, 315–320. [Google Scholar] [CrossRef]
- Sanztchurn, S.J.; Arnaud, E.; Zakhia-Rozis, N.; Collignan, A. Drying: Principles and Applications. In Handbook of Meat and Meat Processing, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2012; pp. 469–478. ISBN 9781439836842. [Google Scholar]
- Kulwinder, K.; Singh, A.K. Drying Kinetics and Quality Characteristics of Beetroot Slices under Hot Air Followed by Microwave Finish Drying. Afr. J. Agric. Res. 2014, 9, 1036–1044. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Z.; Hu, L. High Efficient Freeze-Drying Technology in Food Industry. Crit. Rev. Food Sci. Nutr. 2022, 62, 3370–3388. [Google Scholar] [CrossRef]
- Shi, S.; Zhao, M.; Li, Y.; Kong, B.; Liu, Q.; Sun, F.; Yu, W.; Xia, X. Effect of Hot Air Gradient Drying on Quality and Appearance of Beef Jerky. LWT 2021, 150, 111974. [Google Scholar] [CrossRef]
- Demiray, E.; Ergezer, H.; Özünlü, O.; Gökçe, R. Influence of Hot-Air Drying on Drying Kinetics and Some Quality Parameters of Sliced Chicken Breast Meat. Res. Sq. 2022, preprint. [CrossRef]
- Aksoy, A.; Karasu, S.; Akcicek, A.; Kayacan, S. Effects of Different Drying Methods on Drying Kinetics, Microstructure, Color, and the Rehydration Ratio of Minced Meat. Foods 2019, 8, 216. [Google Scholar] [CrossRef] [PubMed]
- Faustman, C.; Sun, Q.; Mancini, R.; Suman, S.P. Myoglobin and Lipid Oxidation Interactions: Mechanistic Bases and Control. Meat Sci. 2010, 86, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Domínguez-Niño, A.; Lucho-Gómez, A.M.; Pilatowsky-Figueroa, I.; López-Vidaña, E.C.; Castillo-Téllez, B.; García-Valladares, O. Experimental Study of the Dehydration Kinetics of Chicken Breast Meat and Its Influence on the Physicochemical Properties. CyTA—J. Food 2020, 18, 508–517. [Google Scholar] [CrossRef]
- Babić, J.; Cantalejo, M.J.; Arroqui, C. The Effects of Freeze-Drying Process Parameters on Broiler Chicken Breast Meat. LWT—Food Sci. Technol. 2009, 42, 1325–1334. [Google Scholar] [CrossRef]
- Elmas, F.; Bodruk, A.; Köprüalan, Ö.; Arıkaya, Ş.; Koca, N.; Serdaroğlu, F.M.; Kaymak-Ertekin, F.; Koç, M. The Effect of Pre-Drying Methods on Physicochemical, Textural and Sensory Characteristics on Puff Dried Turkey Breast Meat. LWT 2021, 145, 111350. [Google Scholar] [CrossRef]
- Si, X.; Chen, Q.; Bi, J.; Wu, X.; Yi, J.; Zhou, L.; Li, Z. Comparison of Different Drying Methods on the Physical Properties, Bioactive Compounds and Antioxidant Activity of Raspberry Powders. J. Sci. Food Agric. 2016, 96, 2055–2062. [Google Scholar] [CrossRef]
- Dziki, D. Recent Trends in Pretreatment of Food before Freeze-Drying. Processes 2020, 8, 1661. [Google Scholar] [CrossRef]
- Afifah, N.; Ratnawati, L.; Indrianti, N.; Sarifudin, A. The Effect of Pre-Drying Treatments on the Quality of Dehydrated Ground Beef. IOP Conf. Ser. Earth Environ. Sci. 2021, 924, 012006. [Google Scholar] [CrossRef]
- Ciurzyńska, A.; Janowicz, M.; Karwacka, M.; Galus, S.; Kowalska, J.; Gańko, K. The Effect of Hybrid Drying Methods on the Quality of Dried Carrot. Appl. Sci. 2022, 12, 10588. [Google Scholar] [CrossRef]
- Llavata, B.; García-Pérez, J.V.; Simal, S.; Cárcel, J.A. Innovative Pre-Treatments to Enhance Food Drying: A Current Review. Curr. Opin. Food Sci. 2020, 35, 20–26. [Google Scholar] [CrossRef]
- Jadhav, H.B.; Annapure, U.S.; Deshmukh, R.R. Non-Thermal Technologies for Food Processing. Front. Nutr. 2021, 8, 657090. [Google Scholar] [CrossRef]
- Bhat, Z.F.; Morton, J.D.; Mason, S.L.; Bekhit, A.E.-D.A. Current and Future Prospects for the Use of Pulsed Electric Field in the Meat Industry. Crit. Rev. Food Sci. Nutr. 2019, 59, 1660–1674. [Google Scholar] [CrossRef] [PubMed]
- Gómez, B.; Munekata, P.E.S.; Gavahian, M.; Barba, F.J.; Martí-Quijal, F.J.; Bolumar, T.; Campagnol, P.C.B.; Tomasevic, I.; Lorenzo, J.M. Application of Pulsed Electric Fields in Meat and Fish Processing Industries: An Overview. Food Res. Int. 2019, 123, 95–105. [Google Scholar] [CrossRef]
- Nowosad, K.; Sujka, M.; Pankiewicz, U.; Kowalski, R. The Application of PEF Technology in Food Processing and Human Nutrition. J. Food Sci. Technol. 2021, 58, 397–411. [Google Scholar] [CrossRef]
- Tomasevic, I.; Heinz, V.; Djekic, I.; Terjung, N. Pulsed Electric Fields and Meat Processing: Latest Updates. Ital. J. Anim. Sci. 2023, 22, 857–866. [Google Scholar] [CrossRef]
- Zhang, C.; Lyu, X.; Arshad, R.N.; Aadil, R.M.; Tong, Y.; Zhao, W.; Yang, R. Pulsed Electric Field as a Promising Technology for Solid Foods Processing: A Review. Food Chem. 2023, 403, 134367. [Google Scholar] [CrossRef]
- Beňo, F.; Škorpilová, T.; Pohůnek, V.; Podskalská, T.; Mrlík, M.; Tobolková, A.; Ševčík, R. Effect of Pulsed Electric Field Treatment on Beef Cuts Properties: Tenderness, Colour, Drip Loss, PH, Electrical Conductivity, Water Activity, Cooking Losses, Drying. Innov. Food Sci. Emerg. Technol. 2023, 89, 103482. [Google Scholar] [CrossRef]
- Baldi, G.; D’Elia, F.; Soglia, F.; Tappi, S.; Petracci, M.; Rocculi, P. Exploring the Effect of Pulsed Electric Fields on the Technological Properties of Chicken Meat. Foods 2021, 10, 241. [Google Scholar] [CrossRef]
- Zhang, R.; Lebovka, N.; Marchal, L.; Vorobiev, E.; Grimi, N. Comparison of Aqueous Extraction Assisted by Pulsed Electric Energy and Ultrasonication: Efficiencies for Different Microalgal Species. Algal Res. 2020, 47, 101857. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Z.-L.; Vidyarthi, S.K.; Wang, Q.-H.; Gao, L.; Li, B.-R.; Wei, Q.; Liu, Y.-H.; Xiao, H.-W. Effects of Different Drying Methods on Drying Kinetics, Physicochemical Properties, Microstructure, and Energy Consumption of Potato (Solanum tuberosum L.) Cubes. Dry. Technol. 2021, 39, 418–431. [Google Scholar] [CrossRef]
- Abril, B.; Sanchez-Torres, E.A.; Bou, R.; Benedito, J.; Garcia-Perez, J.V. Influence of Pork Liver Drying on Ferrochelatase Activity for Zinc Protoporphyrin Formation. LWT 2022, 171, 114128. [Google Scholar] [CrossRef]
- Lammerskitten, A.; Shorstkii, I.; Parniakov, O.; Mykhailyk, V.; Toepfl, S.; Rybak, K.; Dadan, M.; Nowacka, M.; Wiktor, A. The Effect of Different Methods of Mango Drying Assisted by a Pulsed Electric Field on Chemical and Physical Properties. J. Food Process Preserv. 2020, 44, e14973. [Google Scholar] [CrossRef]
- Kipcak, A.S.; İsmail, O. Microwave Drying of Fish, Chicken and Beef Samples. J. Food Sci. Technol. 2021, 58, 281–291. [Google Scholar] [CrossRef] [PubMed]
- Mohapatra, D.; Bira, Z.M.; Kerry, J.P.; Frías, J.M.; Rodrigues, F.A. Postharvest Hardness and Color Evolution of White Button Mushrooms (Agaricus bisporus). J. Food Sci. 2010, 75, E146–E152. [Google Scholar] [CrossRef] [PubMed]
- Ciurzyńska, A.; Popkowicz, P.; Galus, S.; Janowicz, M. Innovative Freeze-Dried Snacks with Sodium Alginate and Fruit Pomace (Only Apple or Only Chokeberry) Obtained within the Framework of Sustainable Production. Molecules 2022, 27, 3095. [Google Scholar] [CrossRef] [PubMed]
- Mungure, T.E.; Farouk, M.M.; Birch, E.J.; Carne, A.; Staincliffe, M.; Stewart, I.; Bekhit, A.E.-D.A. Effect of PEF Treatment on Meat Quality Attributes, Ultrastructure and Metabolite Profiles of Wet and Dry Aged Venison Longissimus Dorsi Muscle. Innov. Food Sci. Emerg. Technol. 2020, 65, 102457. [Google Scholar] [CrossRef]
- Wang, Q.; Wei, R.; Hu, J.; Luan, Y.; Liu, R.; Ge, Q.; Yu, H.; Wu, M. Moderate Pulsed Electric Field-Induced Structural Unfolding Ameliorated the Gelling Properties of Porcine Muscle Myofibrillar Protein. Innov. Food Sci. Emerg. Technol. 2022, 81, 103145. [Google Scholar] [CrossRef]
- Chang, C.-K.; Lung, C.-T.; Gavahian, M.; Yudhistira, B.; Chen, M.-H.; Santoso, S.P.; Hsieh, C.-W. Effect of Pulsed Electric Field-Assisted Thawing on the Gelling Properties of Pekin Duck Meat Myofibrillar Protein. J. Food Eng. 2023, 350, 111482. [Google Scholar] [CrossRef]
- Parniakov, O.; Bals, O.; Lebovka, N.; Vorobiev, E. Pulsed Electric Field Assisted Vacuum Freeze-Drying of Apple Tissue. Innov. Food Sci. Emerg. Technol. 2016, 35, 52–57. [Google Scholar] [CrossRef]
- Wiktor, A.; Schulz, M.; Voigt, E.; Witrowa-Rajchert, D.; Knorr, D. The Effect of Pulsed Electric Field Treatment on Immersion Freezing, Thawing and Selected Properties of Apple Tissue. J. Food Eng. 2015, 146, 8–16. [Google Scholar] [CrossRef]
- Konieczny, P.; Kowalski, R.; Prycz, J. Wybrane Wyróżniki Jakościowe Suszonych Przekąsek z Mięsa Wołowego. Żywność Nauka Technologia Jakość 2004, 3, 32–39. [Google Scholar]
- Ghosh, S.; Gillis, A.; Levkov, K.; Vitkin, E.; Golberg, A. Saving Energy on Meat Air Convection Drying with Pulsed Electric Field Coupled to Mechanical Press Water Removal. Innov. Food Sci. Emerg. Technol. 2020, 66, 102509. [Google Scholar] [CrossRef]
- Palma-Acevedo, A.; Pérez-Won, M.; Tabilo-Munizaga, G.; Ortiz-Viedma, J.; Lemus-Mondaca, R. Effects of PEF-Assisted Freeze-Drying on Protein Quality, Microstructure, and Digestibility in Chilean Abalone “Loco” (Concholepas concholepas) Mollusk. Front. Nutr. 2022, 9, 810827. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.; Yang, X.; Ren, G.; Pang, Y.; Liu, L.; Liu, Y. Technical Aspects in Freeze-Drying of Foods. Dry. Technol. 2016, 34, 1271–1285. [Google Scholar] [CrossRef]
- Tylewicz, U.; Aganovic, K.; Vannini, M.; Toepfl, S.; Bortolotti, V.; Dalla Rosa, M.; Oey, I.; Heinz, V. Effect of Pulsed Electric Field Treatment on Water Distribution of Freeze-Dried Apple Tissue Evaluated with DSC and TD-NMR Techniques. Innov. Food Sci. Emerg. Technol. 2016, 37, 352–358. [Google Scholar] [CrossRef]
- Witrowa-Rajchert, D.; Rząca, M. Effect of Drying Method on the Microstructure and Physical Properties of Dried Apples. Dry. Technol. 2009, 27, 903–909. [Google Scholar] [CrossRef]
- Alahakoon, A.U.; Faridnia, F.; Bremer, P.J.; Silcock, P.; Oey, I. Pulsed Electric Fields Effects on Meat Tissue Quality and Functionality. In Handbook of Electroporation; Miklavcic, D., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 1–21. [Google Scholar]
- Wiktor, A.; Iwaniuk, M.; Śledź, M.; Nowacka, M.; Chudoba, T.; Witrowa-Rajchert, D. Drying Kinetics of Apple Tissue Treated by Pulsed Electric Field. Dry. Technol. 2013, 31, 112–119. [Google Scholar] [CrossRef]
- Fauster, T.; Giancaterino, M.; Pittia, P.; Jaeger, H. Effect of Pulsed Electric Field Pretreatment on Shrinkage, Rehydration Capacity and Texture of Freeze-Dried Plant Materials. LWT 2020, 121, 108937. [Google Scholar] [CrossRef]
- Kotnik, T.; Frey, W.; Sack, M.; Haberl Meglič, S.; Peterka, M.; Miklavčič, D. Electroporation-Based Applications in Biotechnology. Trends Biotechnol. 2015, 33, 480–488. [Google Scholar] [CrossRef]
- Kim, S.-Y.; Lee, B.-M.; Hong, S.-Y.; Yeo, H.-H.; Jeong, S.-H.; Lee, D.-U. A Pulsed Electric Field Accelerates the Mass Transfer during the Convective Drying of Carrots: Drying and Rehydration Kinetics, Texture, and Carotenoid Content. Foods 2023, 12, 589. [Google Scholar] [CrossRef]
- Alahakoon, A.U.; Oey, I.; Silcock, P.; Bremer, P. Understanding the Effect of Pulsed Electric Fields on Thermostability of Connective Tissue Isolated from Beef Pectoralis Muscle Using a Model System. Food Res. Int. 2017, 100, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Alp, D.; Bulantekin, Ö. The Microbiological Quality of Various Foods Dried by Applying Different Drying Methods: A Review. Eur. Food Res. Technol. 2021, 247, 1333–1343. [Google Scholar] [CrossRef]
- Rahman, M.S.; Labuza, T. Water Activity and Food Preservation. In Handbook of Food Preservation; CRC Press: Boca Raton, FL, USA, 2007; pp. 447–476. [Google Scholar]
- Lammerskitten, A.; Mykhailyk, V.; Wiktor, A.; Toepfl, S.; Nowacka, M.; Bialik, M.; Czyżewski, J.; Witrowa-Rajchert, D.; Parniakov, O. Impact of Pulsed Electric Fields on Physical Properties of Freeze-Dried Apple Tissue. Innov. Food Sci. Emerg. Technol. 2019, 57, 102211. [Google Scholar] [CrossRef]
- Yang, S.; Suwal, S.; Andersen, U.; Otte, J.; Ahrné, L. Effects of Pulsed Electric Field on Fat Globule Structure, Lipase Activity, and Fatty Acid Composition in Raw Milk and Milk with Different Fat Globule Sizes. Innov. Food Sci. Emerg. Technol. 2021, 67, 102548. [Google Scholar] [CrossRef]
- Dehghannya, J.; Farshad, P.; Khakbaz Heshmati, M. Three-Stage Hybrid Osmotic–Intermittent Microwave–Convective Drying of Apple at Low Temperature and Short Time. Dry. Technol. 2018, 36, 1982–2005. [Google Scholar] [CrossRef]
- Miraei Ashtiani, S.-H.; Sturm, B.; Nasirahmadi, A. Effects of Hot-Air and Hybrid Hot Air-Microwave Drying on Drying Kinetics and Textural Quality of Nectarine Slices. Heat Mass Transf. 2018, 54, 915–927. [Google Scholar] [CrossRef]
- Tepe, T.K.; Tepe, B. The Comparison of Drying and Rehydration Characteristics of Intermittent-Microwave and Hot-Air Dried-Apple Slices. Heat Mass Transf. 2020, 56, 3047–3057. [Google Scholar] [CrossRef]
- Xu, K.; Zhang, M.; Mujumdar, A.S.; Liu, Y. A Novel Two-step Process to Produce High-quality Basil Flavoured Chicken Powder: Effect of Ultrasonication Followed by Microwave Vacuum and Hot Air Drying. Flavour. Fragr. J. 2021, 36, 323–331. [Google Scholar] [CrossRef]
- Rahman, M.S.; Salman, Z.; Kadim, I.T.; Mothershaw, A.; Al-Riziqi, M.H.; Guizani, N.; Mahgoub, O.; Ali, A. Microbial and Physico-Chemical Characteristics of Dried Meat Processed by Different Methods. Int. J. Food Eng. 2005, 1, 1–14. [Google Scholar] [CrossRef]
- Matys, A.; Witrowa-Rajchert, D.; Parniakov, O.; Wiktor, A. Assessment of the Effect of Air Humidity and Temperature on Convective Drying of Apple with Pulsed Electric Field Pretreatment. LWT 2023, 188, 115455. [Google Scholar] [CrossRef]
- Lee, C.-W.; Oh, H.-J.; Han, S.-H.; Lim, S.-B. Effects of Hot Air and Freeze Drying Methods on Physicochemical Properties of Citrus ‘Hallabong’ Powders. Food Sci. Biotechnol. 2012, 21, 1633–1639. [Google Scholar] [CrossRef]
- Matys, A.; Dadan, M.; Witrowa-Rajchert, D.; Parniakov, O.; Wiktor, A. Response Surface Methodology as a Tool for Optimization of Pulsed Electric Field Pretreatment and Microwave-Convective Drying of Apple. Appl. Sci. 2022, 12, 3392. [Google Scholar] [CrossRef]
- Arroyo, C.; Eslami, S.; Brunton, N.P.; Arimi, J.M.; Noci, F.; Lyng, J.G. An Assessment of the Impact of Pulsed Electric Fields Processing Factors on Oxidation, Color, Texture, and Sensory Attributes of Turkey Breast Meat. Poult. Sci. 2015, 94, 1088–1095. [Google Scholar] [CrossRef]
- Lammerskitten, A.; Wiktor, A.; Mykhailyk, V.; Samborska, K.; Gondek, E.; Witrowa-Rajchert, D.; Toepfl, S.; Parniakov, O. Pulsed Electric Field Pre-Treatment Improves Microstructure and Crunchiness of Freeze-Dried Plant Materials: Case of Strawberry. LWT 2020, 134, 110266. [Google Scholar] [CrossRef]
- Bhatta, S.; Janezic, T.S.; Ratti, C. Freeze-Drying of Plant-Based Foods. Foods 2020, 9, 87. [Google Scholar] [CrossRef]
- Lee, S.; Choi, Y.-S.; Jo, K.; Jeong, H.G.; Yong, H.I.; Kim, T.-K.; Jung, S. Processing Characteristics of Freeze-Dried Pork Powder for Meat Emulsion Gel. Food Sci. Anim. Resour. 2021, 41, 997–1011. [Google Scholar] [CrossRef]
- Mokrzycki, W.; Tatol, M. Color Difference Delta E—A Survey. Mach. Graph. Vis. 2011, 20, 381–441. [Google Scholar]
Material | Mass Change (%) | Dry Matter Content [%] | aw [−] |
---|---|---|---|
RAW | - | 24.8 ± 0.8 b | 0.954 ± 0.025 a |
PEF 15 kJ/kg | −0.50 ± 0.24 a 1 | 25.3 ± 0.7 ab | 0.976 ± 0.001 b |
PEF 30 kJ/kg | −2.82 ± 0.45 b | 26.7 ± 1.0 a | 0.976 ± 0.002 b |
Code | PEF Specific Energy Input [kJ/kg] | Drying | |
---|---|---|---|
Hot Air (HA) | Freeze-Drying (FD) | ||
RAW | - | − | − |
PEF 15 kJ/kg | 15 | − | − |
PEF 30 kJ/kg | 30 | − | − |
HA | - | + | − |
HA_PEF 15 kJ/kg | 15 | + | − |
HA_PEF 30 kJ/kg | 30 | + | − |
FD | - | − | + |
FD_PEF 15 kJ/kg | 15 | − | + |
FD_PEF 30 kJ/kg | 30 | − | + |
Material | Dry Matter Content [%] | aw [−] | RR [−] | SSL [−] | Hygroscopic Properties [−] |
---|---|---|---|---|---|
After 30 min | After 30 min | After 24 h | |||
HA | 92.6 ± 0.3 b 1 | 0.408 ± 0.039 b | 1.400 ± 0.128 b | 0.009 ± 0.001 b | 1.146 ± 0.011 ab |
HA_PEF 15 kJ/kg | 92.9 ± 1.0 b | 0.386 ± 0.066 b | 1.334 ± 0.090 b | 0.009 ± 0.001 b | 1.164 ± 0.013 b |
HA_PEF 30 kJ/kg | 90.2 ± 0.2 a | 0.486 ± 0.038 c | 1.311 ± 0.036 b | 0.008 ± 0.001 b | 1.122 ± 0.015 a |
FD | 96.1 ± 0.5 cd | 0.101 ± 0.024 a | 2.924 ± 0.114 a | 0.019 ± 0.001 a | 1.241 ± 0.010 d |
FD_PEF 15 kJ/kg | 97.2 ± 0.2 d | 0.080 ± 0.009 a | 2.981 ± 0.500 a | 0.019 ± 0.003 a | 1.223 ± 0.007 cd |
FD_PEF 30 kJ/kg | 96.0 ± 1.1 c | 0.116 ± 0.032 a | 2.731 ± 0.524 a | 0.018 ± 0.003 a | 1.213 ± 0.015 c |
Material | L* (−) | a* (−) | b* (−) | BI [−] | ΔE (−) | |
---|---|---|---|---|---|---|
Compared to Raw Material | Compared to HA/FD | |||||
RAW | 53.1 ± 1.9 d 1 | −1.9 ± 0.4 a | 4.0 ± 1.7 a | - | - | - |
PEF 15 kJ/kg | 46.5 ± 3.9 c | −2.7 ± 0.4 a | 2.8 ± 1.1 a | - | 7.3 ± 3.0 | - |
PEF 30 kJ/kg | 52.0 ± 5.9 d | −3.1 ± 0.7 a | 3.4 ± 2.0 a | - | 5.3 ± 3.4 | - |
HA | 44.4 ± 5.2 bc | 7.2 ± 1.5 c | 18.5 ± 2.8 cd | 65.8 ± 12.3 c | 19.9 ± 2.6 | - |
HA_PEF 15 kJ/kg | 40.8 ± 3.6 ab | 6.6 ± 1.6 c | 17.0 ± 3.5 bc | 65.3 ± 14.1 c | 20.3 ± 2.9 | 5.9 ± 2.8 |
HA_PEF 30 kJ/kg | 38.7 ± 5.3 a | 7.0 ± 2.1 c | 15.8 ± 3.8 b | 65.2 ± 13.5 c | 21.4 ± 3.2 | 8.2 ± 4.1 |
FD | 81.0 ± 7.1 f | 2.9 ± 1.7 b | 15.2 ± 3.8 b | 24.0 ± 9.3 a | 31.2 ± 4.8 | - |
FD_PEF 15 kJ/kg | 75.9 ± 3.0 e | 4.0 ± 1.5 b | 20.6 ± 2.2 d | 35.2 ± 5.8 b | 29.0 ± 2.1 | 8.1 ± 2.4 |
FD_PEF 30 kJ/kg | 71.2 ± 5.4 e | 4.1 ± 1.7 b | 20.1 ± 1.9 d | 37.2 ± 5.8 b | 25.3 ± 4.1 | 11.8 ± 3.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nowacka, M.; Szymanska, I.; Rybak, K.; Karwacka, M.; Matys, A.; Wiktor, A.; Slowinski, M.; Witrowa-Rajchert, D. Effect of PEF Treatment on Chosen Properties of Raw and Hot Air- and Freeze-Dried Poultry Meat. Appl. Sci. 2024, 14, 1808. https://doi.org/10.3390/app14051808
Nowacka M, Szymanska I, Rybak K, Karwacka M, Matys A, Wiktor A, Slowinski M, Witrowa-Rajchert D. Effect of PEF Treatment on Chosen Properties of Raw and Hot Air- and Freeze-Dried Poultry Meat. Applied Sciences. 2024; 14(5):1808. https://doi.org/10.3390/app14051808
Chicago/Turabian StyleNowacka, Malgorzata, Iwona Szymanska, Katarzyna Rybak, Magdalena Karwacka, Aleksandra Matys, Artur Wiktor, Miroslaw Slowinski, and Dorota Witrowa-Rajchert. 2024. "Effect of PEF Treatment on Chosen Properties of Raw and Hot Air- and Freeze-Dried Poultry Meat" Applied Sciences 14, no. 5: 1808. https://doi.org/10.3390/app14051808
APA StyleNowacka, M., Szymanska, I., Rybak, K., Karwacka, M., Matys, A., Wiktor, A., Slowinski, M., & Witrowa-Rajchert, D. (2024). Effect of PEF Treatment on Chosen Properties of Raw and Hot Air- and Freeze-Dried Poultry Meat. Applied Sciences, 14(5), 1808. https://doi.org/10.3390/app14051808