The Impact of Port Total Factor Productivity on Carbon Dioxide Emissions in Port Cities: Evidence from the Yangtze River Ports
Abstract
:1. Introduction
2. Research Framework
3. Literature Review
3.1. Factors Influencing CO2 Emissions in Cities along the Yangtze River
3.2. The Impact of Transportation Infrastructure on Urban CO2 Emissions
4. Methodology and Data
4.1. Calculation of Total Factor Productivity for Yangtze River Inland Ports
4.2. Econometric Models
4.2.1. Two-Way Fixed Effects Model and Panel Quantile Model
4.2.2. Panel Threshold Model
4.2.3. Variables and Data
5. Results
5.1. Total Factor Productivity of Yangtze River Inland Ports
5.2. Baseline Regression Results
5.3. Threshold Effect Analysis
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ban, Q.; Li, Y.; Tian, G.; Wu, Z.; Xia, Q. Carbon Inequality Embodied in Inter-Provincial Trade of China’s Yangtze River Economic Belt. Energies 2023, 16, 4942. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, Z.; Wang, C. Random forest analysis of factors affecting urban carbon emissions in cities within the Yangtze River Economic Belt. PLoS ONE 2021, 16, e0252337. [Google Scholar] [CrossRef]
- Song, Y.; Liu, H. Internet development, economic level, and port total factor productivity: An empirical study of Yangtze River ports. Int. J. Logist. Res. Appl. 2020, 23, 375–389. [Google Scholar] [CrossRef]
- Qi, X.; Huang, X.; Song, Y.; Chuai, X.; Wu, C.; Wang, D. The transformation and driving factors of multi-linkage embodied carbon emission in the Yangtze River Economic Belt. Ecol. Indic. 2021, 126, 107622. [Google Scholar] [CrossRef]
- Zhang, S.; Kharrazi, A.; Yu, Y.; Ren, H.; Hong, L.; Ma, T. What causes spatial carbon inequality? Evidence from China’s Yangtze River economic Belt. Ecol. Indic. 2021, 121, 107129. [Google Scholar] [CrossRef]
- Cheon, S.; Dowall, D.E.; Song, D.-W. Evaluating impacts of institutional reforms on port efficiency changes: Ownership, corporate structure, and total factor productivity changes of world container ports. Transp. Res. Part E Logist. Transp. Rev. 2010, 46, 546–561. [Google Scholar] [CrossRef]
- Wu, Y.; Zong, T.; Shuai, C.; Jiao, L. How does new-type urbanization affect total carbon emissions, per capita carbon emissions, and carbon emission intensity? An empirical analysis of the Yangtze River economic belt, China. J. Environ. Manag. 2024, 349, 119441. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Hao, J. Regional Differences and Influencing Factors of Carbon Emission Efficiency in the Yangtze River Economic Belt. Sustainability 2022, 14, 4814. [Google Scholar] [CrossRef]
- Tang, D.; Zhang, Y.; Bethel, B.J. An Analysis of Disparities and Driving Factors of Carbon Emissions in the Yangtze River Economic Belt. Sustainability 2019, 11, 2362. [Google Scholar] [CrossRef]
- Zhang, R.; Tai, H.; Cheng, K.; Zhu, Y.; Hou, J. Carbon emission efficiency network formation mechanism and spatial correlation complexity analysis: Taking the Yangtze River Economic Belt as an example. Sci. Total Environ. 2022, 841, 156719. [Google Scholar] [CrossRef] [PubMed]
- Rao, G.; Liao, J.; Zhu, Y.; Guo, L. Decoupling of economic growth from CO2 emissions in Yangtze River Economic Belt sectors: A sectoral correlation effects perspective. Appl. Energy 2022, 307, 118223. [Google Scholar] [CrossRef]
- Wang, M.; Wang, Y.; Wu, Y.; Yue, X.; Wang, M.; Hu, P. Identifying the spatial heterogeneity in the effects of the construction land scale on carbon emissions: Case study of the Yangtze River Economic Belt, China. Environ. Res. 2022, 212, 113397. [Google Scholar] [CrossRef]
- Fang, G.; Gao, Z.; Wang, L.; Tian, L. How does green innovation drive urban carbon emission efficiency?—Evidence from the Yangtze River Economic Belt. J. Clean. Prod. 2022, 375, 134196. [Google Scholar] [CrossRef]
- Liu, J.; Xu, F.; Wang, H.; Zhang, X. Investigating the Impacts of Built-Up Land Allocation on Carbon Emissions in 88 Cities of the Yangtze River Economic Belt Based on Panel Regressions. Land 2023, 12, 854. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, P. Industrialization, urbanization, and carbon emission efficiency of Yangtze River Economic Belt—Empirical analysis based on stochastic frontier model. Environ. Sci. Pollut. Res. 2021, 28, 66914–66929. [Google Scholar] [CrossRef]
- Wu, S.; Zhang, K. Influence of Urbanization and Foreign Direct Investment on Carbon Emission Efficiency: Evidence from Urban Clusters in the Yangtze River Economic Belt. Sustainability 2021, 13, 2722. [Google Scholar] [CrossRef]
- Li, K.; Zhou, Y.; Xiao, H.; Li, Z.; Shan, Y. Decoupling of economic growth from CO2 emissions in Yangtze River Economic Belt cities. Sci. Total Environ. 2021, 775, 145927. [Google Scholar] [CrossRef]
- Guo, T.; Bai, L.; Chen, H.; Luo, K. Effects of ICT agglomeration on carbon emission reduction: New evidence from the Yangtze River Economic Belt. Environ. Sci. Pollut. Res. 2023, 30, 110869–110887. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Pan, Z.; Tang, D.; Deng, Z.; Boamah, V. Impact of Environmental Regulation and Industrial Agglomeration on Carbon Emissions in the Yangtze River Economic Belt. Sustainability 2023, 15, 8308. [Google Scholar] [CrossRef]
- Ma, L.; Hong, Y.; He, S.; Luo, H.; Liu, G.; Zheng, J.; Xia, Y.; Xiao, D. The influence of digital economy development on urban carbon emission intensity in the Yangtze River Economic Belt: Mediating mechanism and spatial effect. Front. Ecol. Evol. 2023, 11, 1148505. [Google Scholar] [CrossRef]
- Ai, K.; Xu, N. Does Regional Integration Improve Carbon Emission Performance?—A Quasi-Natural Experiment on Regional Integration in the Yangtze River Economic Belt. Sustainability 2023, 15, 15154. [Google Scholar] [CrossRef]
- Xie, R.; Fang, J.; Liu, C. The effects of transportation infrastructure on urban carbon emissions. Appl. Energy 2017, 196, 199–207. [Google Scholar] [CrossRef]
- Sun, L.; Li, W. Has the opening of high-speed rail reduced urban carbon emissions? Empirical analysis based on panel data of cities in China. J. Clean. Prod. 2021, 321, 128958. [Google Scholar] [CrossRef]
- Xiao, F.; Pang, Z.; Yan, D.; Kong, Y.; Yang, F. How does transportation infrastructure affect urban carbon emissions? An empirical study based on 286 cities in China. Environ. Sci. Pollut. Res. 2023, 30, 10624–10642. [Google Scholar] [CrossRef]
- Xie, R.; Fang, J.; Liu, C. Impact and Spatial Spillover Effect of Transport Infrastructure on Urban Environment. Energy Procedia 2016, 104, 227–232. [Google Scholar] [CrossRef]
- Zeng, C.; Chai, B.; Stringer, L.C.; Li, Y.; Wang, Z.; Deng, X.; Ma, B.; Ren, J. Land-based transportation influences carbon emission in urbanized China: A regional spatial spillover perspective. Sustain. Cities Soc. 2024, 100, 105008. [Google Scholar] [CrossRef]
- Li, H.; Luo, N. Will improvements in transportation infrastructure help reduce urban carbon emissions?—Motor vehicles as transmission channels. Environ. Sci. Pollut. Res. 2022, 29, 38175–38185. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Li, M.; Wang, M.; Zong, T.; Song, M. The effects of a Smart Logistics policy on carbon emissions in China: A difference-in-differences analysis. Transp. Res. Part E Logist. Transp. Rev. 2020, 137, 101939. [Google Scholar] [CrossRef]
- Lu, H.; Xiao, C.; Jiao, L.; Du, X.; Huang, A. Spatial-temporal evolution analysis of the impact of smart transportation policies on urban carbon emissions. Sustain. Cities Soc. 2024, 101, 105177. [Google Scholar] [CrossRef]
- Wilmsmeier, G.; Tovar, B.; Sanchez, R.J. The evolution of container terminal productivity and efficiency under changing economic environments. Res. Transp. Bus. Manag. 2013, 8, 50–66. [Google Scholar] [CrossRef]
- Dietz, T.; Rosa, E.A. Rethinking the Environmental Impacts of Population, Affluence and Technology. Hum. Ecol. Rev. 1994, 1, 277–300. [Google Scholar]
- Fan, Y.; Liu, L.-C.; Wu, G.; Wei, Y.-M. Analyzing impact factors of CO2 emissions using the STIRPAT model. Environ. Impact Assess. Rev. 2006, 26, 377–395. [Google Scholar] [CrossRef]
- Pastor, J.T.; Lovell, C.A.K. A global Malmquist productivity index. Econ. Lett. 2005, 88, 266–271. [Google Scholar] [CrossRef]
- Zhang, T.; Su, P.; Deng, H. Does the Agglomeration of Producer Services and the Market Entry of Enterprises Promote Carbon Reduction? An Empirical Analysis of the Yangtze River Economic Belt. Sustainability 2021, 13, 13821. [Google Scholar] [CrossRef]
- Fang, X.; Wei, M.; Huang, W.-C. Mechanism and Empirical Evidence of Green Taxation Influencing Carbon Emissions in China’s Yangtze River Economic Belt. Sustainability 2023, 15, 14983. [Google Scholar] [CrossRef]
- Li, X.; Huang, C.; Zhan, S.; Wu, Y. The Carbon Emission Reduction Effect of City Cluster—Evidence from the Yangtze River Economic Belt in China. Energies 2022, 15, 6210. [Google Scholar] [CrossRef]
- Lu, Q.; Lv, T.; Wang, S.; Wei, L. Spatiotemporal Variation and Development Stage of CO2 Emissions of Urban Agglomerations in the Yangtze River Economic Belt, China. Land 2023, 12, 1678. [Google Scholar] [CrossRef]
- Chen, S.; Tan, Z.; Mu, S.; Wang, J.; Chen, Y.; He, X. Synergy level of pollution and carbon reduction in the Yangtze River Economic Belt: Spatial-temporal evolution characteristics and driving factors. Sustain. Cities Soc. 2023, 98, 104859. [Google Scholar] [CrossRef]
- Wang, S.; Liu, X.; Zhou, C.; Hu, J.; Ou, J. Examining the impacts of socioeconomic factors, urban form, and transportation networks on CO2 emissions in China’s megacities. Appl. Energy 2017, 185, 189–200. [Google Scholar] [CrossRef]
- Estache, A.; de la Fé, B.T.; Trujillo, L. Sources of efficiency gains in port reform: A DEA decomposition of a Malmquist TFP index for Mexico. Util. Policy 2004, 12, 221–230. [Google Scholar] [CrossRef]
- Kim, M.; Sachish, A. The Structure of Production, Technical Change and Productivity in a Port. J. Ind. Econ. 1986, 35, 209–223. [Google Scholar] [CrossRef]
- Nwanosike, F.O.; Tipi, N.S.; Warnock-Smith, D. Productivity change in Nigerian seaports after reform: A Malmquist productivity index decomposition approach. Marit. Policy Manag. 2016, 43, 798–811. [Google Scholar] [CrossRef]
- Yang, Z.; Soltani, N. A new SBM-based global Malmquist productivity index and target setting. Comput. Ind. Eng. 2021, 158, 107411. [Google Scholar] [CrossRef]
- Oh, D.-H. A global Malmquist-Luenberger productivity index. J. Product. Anal. 2010, 34, 183–197. [Google Scholar] [CrossRef]
- Wang, C.-H.; Lee, J.-Y.; Chang, Y.-H. Measuring productivity in the biotechnology industry using the global Malmquist index. Appl. Econ. Lett. 2012, 19, 807–812. [Google Scholar] [CrossRef]
- Ray, S.C.; Desli, E. Productivity Growth, Technical Progress, and Efficiency Change in Industrialized Countries: Comment. Am. Econ. Rev. 1997, 87, 1033–1039. [Google Scholar]
- Banker, R.D.; Charnes, A.; Cooper, W.W. Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis. Manag. Sci. 1984, 30, 1078–1092. [Google Scholar] [CrossRef]
- Tovar, B.; Wall, A. Are larger and more complex port more productive? An analysis of Spanish port authorities. Transp. Res. Part A Policy Pract. 2019, 121, 265–276. [Google Scholar] [CrossRef]
- Li, Z.; Wang, X.; Zheng, R.; Na, S.; Liu, C. Evaluation Analysis of the Operational Efficiency and Total Factor Productivity of Container Terminals in China. Sustainability 2022, 14, 13007. [Google Scholar] [CrossRef]
- Cheon, S.; Dowall David, E.; Song, D.-W. Typology of Long-Term Port Efficiency Improvement Paths: Malmquist Total Factor Productivity forWorld Container Ports. J. Infrastruct. Syst. 2009, 15, 340–350. [Google Scholar] [CrossRef]
- Tongzon, J. Efficiency measurement of selected Australian and other international ports using data envelopment analysis. Transp. Res. Part A Policy Pract. 2001, 35, 107–122. [Google Scholar] [CrossRef]
- Yan, D.; Kong, Y.; Ren, X.; Shi, Y.; Chiang, S. The determinants of urban sustainability in Chinese resource-based cities: A panel quantile regression approach. Sci. Total Environ. 2019, 686, 1210–1219. [Google Scholar] [CrossRef]
- Koenker, R.; Bassett, G. Regression Quantiles. Econometrica 1978, 46, 33–50. [Google Scholar] [CrossRef]
- Lin, B.; Xu, B. Which provinces should pay more attention to CO2 emissions? Using the quantile regression to investigate China’s manufacturing industry. J. Clean. Prod. 2017, 164, 980–993. [Google Scholar] [CrossRef]
- Xu, R.; Xu, L.; Xu, B. Assessing CO2 emissions in China’s iron and steel industry: Evidence from quantile regression approach. J. Clean. Prod. 2017, 152, 259–270. [Google Scholar] [CrossRef]
- Zhong, S.; Wang, M.; Zhu, Y.; Chen, Z.; Huang, X. Urban expansion and the urban–rural income gap: Empirical evidence from China. Cities 2022, 129, 103831. [Google Scholar] [CrossRef]
- Huo, T.; Cao, R.; Du, H.; Zhang, J.; Cai, W.; Liu, B. Nonlinear influence of urbanization on China’s urban residential building carbon emissions: New evidence from panel threshold model. Sci. Total Environ. 2021, 772, 145058. [Google Scholar] [CrossRef]
- Hansen, B.E. Sample Splitting and Threshold Estimation. Econometrica 2000, 68, 575–603. [Google Scholar] [CrossRef]
- Shan, Y.; Liu, J.; Liu, Z.; Shao, S.; Guan, D. An emissions-socioeconomic inventory of Chinese cities. Sci. Data 2019, 6, 190027. [Google Scholar] [CrossRef] [PubMed]
- Ma, G.; Qin, J.; Zhang, Y. Does the carbon emissions trading system reduce carbon emissions by promoting two-way FDI in developing countries? Evidence from Chinese listed companies and cities. Energy Econ. 2023, 120, 106581. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, G.; Zhang, Z.; Wei, Y.; Liu, D.; Chen, Y. How does new energy demonstration city pilot policy affect carbon dioxide emissions? Evidence from a quasi-natural experiment in China. Environ. Res. 2024, 244, 117912. [Google Scholar] [CrossRef]
- Chen, C.; Luo, Y.; Zou, H.; Huang, J. Understanding the driving factors and finding the pathway to mitigating carbon emissions in China’s Yangtze River Delta region. Energy 2023, 278, 127897. [Google Scholar] [CrossRef]
- York, R.; Rosa, E.A.; Dietz, T. STIRPAT, IPAT and ImPACT: Analytic tools for unpacking the driving forces of environmental impacts. Ecol. Econ. 2003, 46, 351–365. [Google Scholar] [CrossRef]
- Giuffrida, N.; Stojaković, M.; Twrdy, E.; Ignaccolo, M. The Importance of Environmental Factors in the Planning of Container Terminals: The Case Study of the Port of Augusta. Appl. Sci. 2021, 11, 2153. [Google Scholar] [CrossRef]
- Eyring, V.; Köhler, H.W.; van Aardenne, J.; Lauer, A. Emissions from international shipping: 1. The last 50 years. J. Geophys. Res. Atmos. 2005, 110, D17305. [Google Scholar] [CrossRef]
- Ye, Y.; Geng, P. A Review of Air Pollution Monitoring Technology for Ports. Appl. Sci. 2023, 13, 5049. [Google Scholar] [CrossRef]
CO2 | |||||
0.078 *** (0.022) | 0.039 * (0.022) | 0.055 * (0.030) | ||
0.351 *** (0.108) | 0.217 ** (0.101) | 0.155 ** (0.073) | ||
0.141 *** (0.027) | 0.070 ** (0.031) | 0.090 *** (0.022) | 0.106 *** (0.030) | |
- | - | - | ||
- | - | - | ||
- | - | - |
12.88 * | |||||
0.062 *** (0.021) | |
−0.121 * (0.064) | |
0.174 *** (0.059) | |
0.083 *** (0.018) | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, X.; Choi, Y.-J. The Impact of Port Total Factor Productivity on Carbon Dioxide Emissions in Port Cities: Evidence from the Yangtze River Ports. Appl. Sci. 2024, 14, 2406. https://doi.org/10.3390/app14062406
Ding X, Choi Y-J. The Impact of Port Total Factor Productivity on Carbon Dioxide Emissions in Port Cities: Evidence from the Yangtze River Ports. Applied Sciences. 2024; 14(6):2406. https://doi.org/10.3390/app14062406
Chicago/Turabian StyleDing, Xingong, and Yong-Jae Choi. 2024. "The Impact of Port Total Factor Productivity on Carbon Dioxide Emissions in Port Cities: Evidence from the Yangtze River Ports" Applied Sciences 14, no. 6: 2406. https://doi.org/10.3390/app14062406
APA StyleDing, X., & Choi, Y. -J. (2024). The Impact of Port Total Factor Productivity on Carbon Dioxide Emissions in Port Cities: Evidence from the Yangtze River Ports. Applied Sciences, 14(6), 2406. https://doi.org/10.3390/app14062406