Ready-to-Use Vegetable Salads: Physicochemical and Microbiological Evaluation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Chemicals, Working Standard Solutions and Culture Media
2.3. Physicochemical Analysis
2.4. Microbiological Analysis
2.5. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gonçalves, J.C.; Guiné, R.P.; Djekic, I.; Smigic, N. Consumers’ attitudes toward refrigerated ready-to-eat meat and dairy foods. Open Agric. 2023, 8, 20220155. [Google Scholar] [CrossRef]
- Smigic, N.; Ozilgen, S.; Gómez-López, V.M.; Osés, S.M.; Miloradovic, Z.; Aleksic, B.; Miocinovic, J.; Smole Možina, S.; Kunčič, A.; Guiné, R.; et al. Consumer attitudes and perceptions towards chilled ready-to-eat foods: A multi-national study. J. Consum. Prot. Food Saf. 2023, 18, 133–146. [Google Scholar] [CrossRef] [PubMed]
- Łepecka, A.; Zielińska, D.; Szymański, P.; Buras, I.; Kołożyn-Krajewska, D. Assessment of the Microbiological Quality of Ready-to-Eat Salads—Are There Any Reasons for Concern about Public Health? Int. J. Environ. Res. Public Health 2022, 19, 1582. [Google Scholar] [CrossRef] [PubMed]
- Mir, S.A.; Shah, M.A.; Mir, M.M.; Dar, B.N.; Greiner, R.; Roohinejad, S. Microbiological contamination of ready-to-eat vegetable salads in developing countries and potential solutions in the supply chain to control microbial pathogens. Food Control 2018, 85, 235–244. [Google Scholar] [CrossRef]
- Finger, J.A.F.F.; Santos, I.M.; Silva, G.A.; Bernardino, M.C.; Pinto, U.M.; Maffei, D.F. Minimally Processed Vegetables in Brazil: An Overview of Marketing, Processing, and Microbiological Aspects. Foods 2023, 12, 2259. [Google Scholar] [CrossRef] [PubMed]
- Ülger, T.G.; Songur, A.N.; Çırak, O.; Çakıroğlu, F.P. Role of vegetables in human nutrition and disease prevention. In Vegetables: Importance of Quality Vegetables to Human Health; Asaduzzaman, M., Asao, T., Eds.; IntechOpen: London, UK, 2018; pp. 7–32. [Google Scholar]
- The Fruit and Vegetable Sector in the EU—A Statistical Overview. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=The_fruit_and_vegetable_sector_in_the_EU_-_a_statistical_overview#Fruit_and_vegetable_production (accessed on 21 February 2024).
- Santos, M.I.; Grácio, M.; Silva, M.C.; Pedroso, L.; Lima, A. One Health Perspectives on Food Safety in Minimally Processed Vegetables and Fruits: From Farm to Fork. Microorganisms 2023, 11, 2990. [Google Scholar] [CrossRef] [PubMed]
- Kalmpourtzidou, A.; Eilander, A.; Talsma, E.F. Global Vegetable Intake and Supply Compared to Recommendations: A Systematic Review. Nutrients 2020, 12, 1558. [Google Scholar] [CrossRef]
- Jideani, A.I.; Silungwe, H.; Takalani, T.; Omolola, A.O.; Udeh, H.O.; Anyasi, T.A. Antioxidant-rich natural fruit and vegetable products and human health. Int. J. Food Prop. 2021, 24, 41–67. [Google Scholar] [CrossRef]
- Fresh Fruit and Vegetable Production, Trade, Supply, Consumption and Monitor in EU-27. 2023. Available online: https://freshfel.org/what-we-do/consumption-monitor/ (accessed on 21 February 2024).
- Goryńska-Goldmann, E.; Murawska, A.; Balcerowska-Czerniak, G. Consumer Profiles of Sustainable Fruit and Vegetable Consumption in the European Union. Sustainability 2023, 15, 15512. [Google Scholar] [CrossRef]
- How Much Fruit and Vegetables Do You Eat Daily? Available online: https://ec.europa.eu/eurostat/web/products-eurostat-news/-/ddn-20220104-1 (accessed on 21 February 2024).
- Ladaru, G.-R.; Ilie, D.M.; Diaconeasa, M.C.; Petre, I.L.; Marin, F.; Lazar, V. Influencing Factors of a Sustainable Vegetable Choice. The Romanian Consumers’ Case. Sustainability 2020, 12, 9991. [Google Scholar] [CrossRef]
- Hosseini, M.J.; Dezhangah, S.; Esmi, F.; Gharavi-Nakhjavani, M.S.; Hashempour-Baltork, F.; Alizadeh, A.M. A worldwide systematic review, meta-analysis and meta-regression of nitrate and nitrite in vegetables and fruits. Ecotoxicol. Environ. Saf. 2023, 257, 114934. [Google Scholar] [CrossRef] [PubMed]
- Luetic, S.; Knezovic, Z.; Jurcic, K.; Majic, Z.; Tripkovic, K.; Sutlovic, D. Leafy Vegetable Nitrite and Nitrate Content: Potential Health Effects. Foods 2023, 12, 1655. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority. EFSA Confirms Safe Levels for Nitrites and Nitrates Added to Food. Available online: https://www.efsa.europa.eu/en/press/news/170615 (accessed on 21 February 2024).
- Arienzo, A.; Murgia, L.; Fraudentali, I.; Gallo, V.; Angelini, R.; Antonini, G. Microbiological Quality of Ready-to-Eat Leafy Green Salads during Shelf-Life and Home-Refrigeration. Foods 2020, 9, 1421. [Google Scholar] [CrossRef] [PubMed]
- Sant’Anna, P.B.; de Melo Franco, B.D.; Maffei, D.F. Microbiological safety of ready-to-eat minimally processed vegetables in Brazil: An overview. J. Sci. Food Agric. 2020, 100, 4664–4670. [Google Scholar] [CrossRef] [PubMed]
- Ghinea, C.; Prisacaru, A.E.; Leahu, A. Physico-Chemical and Sensory Quality of Oven-Dried and Dehydrator-Dried Apples of the Starkrimson, Golden Delicious and Florina Cultivars. Appl. Sci. 2022, 12, 2350. [Google Scholar] [CrossRef]
- Żmudzińska, A.; Puścion-Jakubik, A.; Soroczyńska, J.; Socha, K. Evaluation of Selected Antioxidant Parameters in Ready-to-Eat Food for Infants and Young Children. Nutrients 2023, 15, 3160. [Google Scholar] [CrossRef] [PubMed]
- Armellini, R.; Peinado, I.; Pittia, P.; Scampicchio, M.; Heredia, A.; Andres, A. Effect of saffron (Crocus sativus L.) enrichment on antioxidant and sensorial properties of wheat flour pasta. Food Chem. 2018, 254, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Mazzucotelli, C.A.; González-Aguilar, G.A.; Villegas-Ochoa, M.A.; Domínguez-Avila, A.J.; Ansorena, M.R.; Di Scala, K.C. Chemical characterization and functional properties of selected leafy vegetables for innovative mixed salads. J. Food Biochem. 2018, 42, e12461. [Google Scholar] [CrossRef]
- Araújo-Rodrigues, H.; Santos, D.; Campos, D.A.; Guerreiro, S.; Ratinho, M.; Rodrigues, I.M.; Pintado, M.E. Impact of Processing Approach and Storage Time on Bioactive and Biological Properties of Rocket, Spinach and Watercress Byproducts. Foods 2021, 10, 2301. [Google Scholar] [CrossRef]
- Mazzucotelli, C.A.; Iglesias Orellano, V.E.; Ansorena, M.R.; Di Scala, K.C. Bioaccessibility and antioxidant capacity of phenolic compounds during shelf life of a new functional vegetable mix. J. Food Measurement Charact. 2022, 16, 4285–4294. [Google Scholar] [CrossRef]
- Prisacaru, A.E.; Ghinea, C.; Apostol, L.C.; Ropciuc, S.; Ursachi, V.F. Physicochemical Characteristics of Vinegar from Banana Peels and Commercial Vinegars before and after In Vitro Digestion. Processes 2021, 9, 1193. [Google Scholar] [CrossRef]
- Savo, V.; Salomone, F.; Mattoni, E.; Tofani, D.; Caneva, G. Traditional Salads and Soups with Wild Plants as a Source of Antioxidants: A Comparative Chemical Analysis of Five Species Growing in Central Italy. Evid. Based Complement Alternat. Med. 2019, 2019, 6782472. [Google Scholar] [CrossRef] [PubMed]
- Cintya, H.; Silalahi, J.; Putra, E.D.L.; Satria, D. Analysis of Nitrate and Nitrite in Vegetables in Medan City. Pharma Chem. 2016, 8, 52–57. [Google Scholar]
- Dobrinas, S.; Soceanu, A.; Popescu, V.; Stanciu, G. Nitrite determination in spices. Ovidius Univ. Ann. Chem. 2013, 24, 21–23. [Google Scholar] [CrossRef]
- ISO 4833-2/2014; Microbiology of the Food Chain—Horizontal Method for the Enumeration of Microorganisms—Part 2: Colony Count at 30 °C by the Surface Plating Technique. ISO: Geneva, Switzerland, 2014.
- Prisacaru, A.E.; Ghinea, C.; Albu, E.; Ursachi, F. Effects of Ginger and Garlic Powders on the Physicochemical and Microbiological Characteristics of Fruit Juices during Storage. Foods 2023, 12, 1311. [Google Scholar] [CrossRef] [PubMed]
- SR EN ISO 7899-2:2002; Water Quality—Detection and Enumeration of Intestinal Enterococci—Part 2: Membrane Filtration Method. ISO: Geneva, Switzerland, 2002.
- ISO 11290-1/2017; Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Listeria monocyto-genes and of Listeria spp.—Part 1: Detection Method. ISO: Geneva, Switzerland, 2017.
- ISO 21528-2/2017; Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Enterobacteriaceae—Part 2: Colony-Count Technique. ISO: Geneva, Switzerland, 2017.
- ISO 6579-1:2017/Amd 1:2020; Microbiology of the food chain. Horizontal method for the detection, enumeration and serotyping of Salmonella. Part 1: Detection of Salmonella spp. ISO: Geneva, Switzerland, 2020.
- ISO 4832/2006; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Coliforms—Colony-Count Technique. ISO: Geneva, Switzerland, 2006.
- Zhang, H.; Yamamoto, E.; Murphy, J.; Locas, A. Microbiological safety of ready-to-eat fresh-cut fruits and vegetables sold on the Canadian retail market. Int. J. Food Microbiol. 2020, 335, 108855. [Google Scholar] [CrossRef] [PubMed]
- Alegbeleye, O.; Sant’Ana, A.S. Survival and growth behaviour of Listeria monocytogenes in ready-to-eat vegetable salads. Food Control 2022, 138, 109023. [Google Scholar] [CrossRef]
- Schmidt, S.J.; Fontana, A.J., Jr. E: Water activity values of select food ingredients and products. In Water Activity in Foods: Fundamentals and Applications; Barbosa-Cánovas, G.V., Fontana, A.J., Jr., Schmidt, S.J., Labuza, T.P., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2020; pp. 573–591. [Google Scholar]
- Mujaffar, S.; Ramsumair, S. Fluidized bed drying of pumpkin (Cucurbita sp.) seeds. Foods 2019, 8, 147. [Google Scholar] [CrossRef]
- Bozinou, E.; Chatzimitakos, T.; Alexandraki, M.; Salakidou, C.; Dourtoglou, V.G.; Lalas, S.I.; Elhakem, A.; Sami, R.; Ashour, A.A.; Shafie, A.; et al. Oxidative and Microbial Stability of a Traditional Appetizer: Aubergine Salad. Processes 2022, 10, 1245. [Google Scholar] [CrossRef]
- Preetha, S.S.; Narayanan, R. Factors influencing the development of microbes in food. Shanlax Int. J. Arts Sci. Humanities. 2020, 7, 57–77. [Google Scholar] [CrossRef]
- Mughrbi, H.N.; Auzi, A.A.; Maghrbi, H. Phytochemicals, nutritional value, antioxidant, and anticoagulant activity of Lactuca sativa L. leaves and stems. Borneo J. Pharm. 2020, 3, 152–161. [Google Scholar] [CrossRef]
- Thiangthum, S.; Dejaegher, B.; Goodarzi, M.; Tistaert, C.; Gordien, A.; Hoai, N.N.; Van, M.C.; Quetin-Leclercq, J.; Suntornsuk, L.; Vander Heyden, Y. Potentially Antioxidant Compounds Indicated from Mallotus and Phyllanthus Species Fingerprints. J. Chromatogr. B 2012, 910, 114–121. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority. Opinion of the Scientific Panel on Contaminants in the Food chain on a request from the European Commission to perform a scientific risk assessment on nitrate in vegetables. EFSA J. 2008, 689, 1–79. [Google Scholar]
- Cheng, C.J.; Kuo, Y.T.; Chen, J.W.; Wei, G.J.; Lin, Y.J. Probabilistic risk and benefit assessment of nitrates and nitrites by integrating total diet study-based exogenous dietary exposure with endogenous nitrite formation using toxicokinetic modeling. Environ. Int. 2021, 157, 106807. [Google Scholar] [CrossRef] [PubMed]
- Commission Regulation (EC) No 2073/2005 of 15 November 2005 on Microbiological Criteria for Foodstuffs. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:02005R2073-20140601&from=DA (accessed on 21 February 2024).
- Commission Regulation (EC) No 1441/2007 of 5 December 2007 Amending Regulation (EC) No 2073/2005 on Microbiological Criteria for Foodstuffs. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2007:322:0012:0029:EN:PDF (accessed on 21 February 2024).
- Jeddi, M.Z.; Yunesian, M.; Gorji, M.E.H.; Noori, N.; Pourmand, M.R.; Khaniki, G.R.J. Microbial evaluation of fresh, minimally-processed vegetables and bagged sprouts from chain supermarkets. J. Health Popul. Nutr. 2014, 32, 391. [Google Scholar] [PubMed]
- Badosa, E.; Trias, R.; Parés, D.; Pla, M.; Montesinos, E. Microbiological quality of fresh fruit and vegetable products in Catalonia (Spain) using normalised plate-counting methods and real time polymerase chain reaction (QPCR). J. Sci. Food Agric. 2008, 88, 605–611. [Google Scholar] [CrossRef]
- Jasper, J.; Elmore, J.S.; Wagstaff, C. Determining the quality of leafy salads: Past, present and future. Postharvest Biol. Technol. 2021, 180, 111630. [Google Scholar] [CrossRef]
- Pezzuto, A.; Belluco, S.; Losasso, C.; Patuzzi, I.; Bordin, P.; Piovesana, A.; Comin, D.; Mioni, R.; Ricci, A. Effectiveness of washing procedures in reducing Salmonella enterica and Listeria monocytogenes on a raw leafy green vegetable (Eruca vesicaria). Front. Microbiol. 2016, 7, 1663. [Google Scholar] [CrossRef] [PubMed]
- Ignat, A.; Manzocco, L.; Bartolomeoli, I.; Maifreni, M.; Nicoli, M.C. Minimization of water consumption in fresh-cut salad washing by UV-C light. Food Control 2015, 50, 491–496. [Google Scholar] [CrossRef]
- Caleb, O.J.; Mahajan, P.V.; Al-Said, F.A.J.; Opara, U.L. Modified atmosphere packaging technology of fresh and fresh-cut produce and the microbial consequences—A review. Food Bioprocess Technol. 2013, 6, 303–329. [Google Scholar] [CrossRef]
- Pandrangi, S.; Balasubramaniam, V.M.; Tao, Y.; Sun, D.W. High-pressure processing of salads and ready meals. In Emerging Technologies for Food Processing; Academic Press: Cambridge, MA, USA, 2014; pp. 25–34. [Google Scholar]
- Gurtler, J.B.; Garner, C.M. A review of essential oils as antimicrobials in foods with special emphasis on fresh produce. J. Food Prot. 2022, 85, 1300–1319. [Google Scholar] [CrossRef]
Ready-to-Use Salad Assortment | Coding | Ingredients |
---|---|---|
Bacio Salad | 1L | Garden chicory, red beetroot, escarole; |
Amorino Salad | 2L | Pan di Zucchero chicory, escarole, red-leaved chicory; |
Fresco Salad | 3L | Curly garden chicory, red cabbage, red leaf chicory, corn kernels; |
Silhouette Salad | 4L | Curled-leaved endive, “Golden Heart” chicory, rocket, red-leaved chicory; |
Lupino Salad | 5L | Pan di Zucchero chicory, white cabbage, carrot, red-leaved chicory; |
Rhapsody Salad | 1K | Iceberg lettuce, romaine, radicchio, carrot, creamy endive; |
Dacia Salad | 2K | White cabbage, carrot, endive lettuce; |
Joy Salad | 3K | Red cabbage, endive lettuce, carrot; |
Fantasy Salad | 4K | Endive lettuce, curly endive, radicchio, spinach; |
Garden Salad | 5K | Romaine lettuce, leek, radish; |
Energy Salad | 1A | Curly endive, curly endive “heart of gold”, red beetroot, pumpkin seeds, sunflower seeds; |
Supreme Salad | 2A | Iceberg lettuce, carrot, red cabbage, celeriac; |
Flavor Salad | 3A | “Lollo rossa” lettuce, “Oak leaf” lettuce, “Bull’s blood” beetroot leaves, lamb’s lettuce; |
Pastel Salad | 4A | Whole leaf garden chicory, “Pan di Zucchero” garden chicory, Curly garden chicory, red leaf chicory, round carrot, round red radish; |
Lettuce Bowl Salad | 1P | “Oak leaf” lettuce; |
Sweet Crisp Salad | 2P | Whole leaf chicory, “Pan di Zucchero” chicory, curly chicory, red-leaved chicory, carrot; |
Mixed Salad | 3P | “Pan di Zucchero” chicory, carrot, red-leaved chicory, arugula, lamb’s lettuce; |
Ready-to-Use Salad Assortment | Energy Value (kJ/kcal) | Fat (g) | Saturated Fatty Acids (g) | Carbohydrates (g) | Sugars (g) | Fiber (g) | Protein (g) | Salt (g) |
---|---|---|---|---|---|---|---|---|
1L | 80/19 | 0.2 | 0.0 | 1.9 | 1.1 | 2.5 | 1.2 | 0.15 |
2L | 75/19 | 0.2 | 0.1 | 2.6 | 1.6 | 0.6 | 1.1 | 0.02 |
3L | 132/23 | 0.7 | 0.2 | 3.5 | 2.0 | 2.4 | 1.6 | 0.15 |
4L | 78/19 | 0.3 | 0.1 | 2.0 | 0.5 | 0.5 | 2.0 | 0.03 |
5L | 88/21 | 0.2 | 0.1 | 2.9 | 0.9 | 1.8 | 1.0 | 0.05 |
1K | 64.8/15.49 | 0.22 | 0.0 | 4.29 | 2.2 | - | 1.1 | 0.02 |
2K | 106.4/25.43 | 0.28 | 0.0 | 6.98 | 4.4 | - | 1.2 | 0.06 |
3K | 106.4/25.43 | 0.28 | 0.0 | 6.98 | 4.4 | - | 1.2 | 0.06 |
4K | 60/14.3 | 0.20 | 0.0 | 2.80 | 1.3 | - | 1.8 | 0.09 |
5K | 58.2/13.9 | 0.20 | 0.0 | 3.80 | 1.6 | - | 1.2 | 0.02 |
1A | 237/57 | 3.41 | 0.5 | 2.50 | 0.1 | 1.8 | 3.1 | 0.26 |
2A | 77/18 | 0.10 | 0.1 | 1.52 | 0.2 | 2.5 | 0.9 | 0.08 |
3A | 47/11 | 0.18 | 0.1 | 0.50 | 0.1 | 1.6 | 1.6 | 0.17 |
4A | 56/14 | 0.10 | 0.1 | 1.36 | 0.1 | 2.2 | 0.9 | 0.10 |
1P | 45/11 | 0.0 | 0.0 | 2.10 | 0.0 | - | 1.4 | 0.03 |
2P | 86/20 | 0.20 | 0.1 | 3.60 | 1.1 | - | 1.0 | 0.20 |
3P | 124/29 | 0.0 | 0.0 | 5.20 | 1.4 | - | 2.1 | 0.10 |
Sample | Total Number of Germs (TNGs) | Yeasts and Molds (YM) | Staphylococci (ST) | Enterobacteriaceae (EB) | Total Coliforms (TC) |
---|---|---|---|---|---|
1L | 5.61 ± 0.02 g | 4.56 ± 0.07 a | - | - | 6.03 ± 0.02 b |
2L | 5.48 ± 0.06 hi | 4.42 ± 0.10 a | - | - | 6.12 ± 0.02 b |
3L | 5.42 ± 0.03 i | 4.82 ± 0.04 a | - | 5.28 ± 0.02 d | 6.07 ± 0.02 b |
4L | 5.78 ± 0.01 f | 2.67 ± 2.31 a | 2.67 ± 2.31 bc | 4.67 ± 0.06 e | 6.09 ± 0.02 b |
5L | 5.54 ± 0.02 gh | 5.48 ± 0.01 a | - | - | 6.03 ± 0.02 b |
1K | 5.46 ± 0.01 hi | 4.94 ± 0.03 a | 1.33 ± 2.31 c | 4.50 ± 0.17 e | 6.39 ± 0.01 a |
2K | 5.56 ± 0.01 gh | 4.80 ± 0.04 a | 4.1 ± 0.17 ab | 4.75 ± 0.08 e | 6.37 ± 0.01 a |
3K | 5.50 ± 0.03 hi | 4.00 ± 0.00 a | 4.97 ± 1.29 ab | 4.16 ± 0.28 f | 6.33 ± 0.02 a |
4K | 5.62 ± 0.02 g | 2.77 ± 2.40 a | 5.97 ± 0.80 a | - | 6.01 ± 0.02 b |
5K | 5.80 ± 0.00 f | 5.17 ± 0.02 a | 3.32 ± 2.87 b | - | 6.01 ± 0.02 b |
1A | 7.47 ± 0.03 d | - | - | 6.56 ± 0.03 a | 5.66 ± 0.10 de |
2A | 7.59 ± 0.03 c | - | - | 6.35 ± 0.06 ab | 5.52 ± 0.07 e |
3A | 8.12 ± 0.01 a | - | - | 6.04 ± 0.04 c | 5.46 ± 0.15 e |
4A | 7.88 ± 0.03 b | - | - | 6.40 ± 0.09 ab | 5.50 ± 0.17 e |
1P | 8.09 ± 0.04 a | - | - | 6.26 ± 0.01 bc | 5.00 ± 0.00 f |
2P | 7.17 ± 0.09 e | - | - | 6.20 ± 0.10 bc | 5.75 ± 0.05 cd |
3P | 7.83 ± 0.04 b | - | - | 6.33 ± 0.03 ab | 5.94 ± 0.03 bc |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albu, E.; Prisacaru, A.E.; Ghinea, C.; Ursachi, F.; Apostol, L.C. Ready-to-Use Vegetable Salads: Physicochemical and Microbiological Evaluation. Appl. Sci. 2024, 14, 3068. https://doi.org/10.3390/app14073068
Albu E, Prisacaru AE, Ghinea C, Ursachi F, Apostol LC. Ready-to-Use Vegetable Salads: Physicochemical and Microbiological Evaluation. Applied Sciences. 2024; 14(7):3068. https://doi.org/10.3390/app14073068
Chicago/Turabian StyleAlbu, Eufrozina, Ancuta Elena Prisacaru, Cristina Ghinea, Florin Ursachi, and Laura Carmen Apostol. 2024. "Ready-to-Use Vegetable Salads: Physicochemical and Microbiological Evaluation" Applied Sciences 14, no. 7: 3068. https://doi.org/10.3390/app14073068
APA StyleAlbu, E., Prisacaru, A. E., Ghinea, C., Ursachi, F., & Apostol, L. C. (2024). Ready-to-Use Vegetable Salads: Physicochemical and Microbiological Evaluation. Applied Sciences, 14(7), 3068. https://doi.org/10.3390/app14073068