A New Method for Evaluating the Reactive Strength Index in Track and Field Sprinting: Relationships with Muscle Architecture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedure
2.3. Statistical Analysis
3. Results
4. Discussion
Limitations and Strengths
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lloyd, R.S.; Oliver, J.L.; Hughes, M.G.; Williams, C.A. Reliability and Validity of Field-Based Measures of Leg Stiffness and Reactive Strength Index in Youths. J. Sports Sci. 2009, 27, 1565–1573. [Google Scholar] [CrossRef] [PubMed]
- Komi, P.V.; Bosco, C. Utilization of stored elastic energy in leg extensor muscles in men and women. Med. Sci. Sports Exerc. 1978, 10, 261–265. [Google Scholar]
- Bobbert, M.F.; Gerritsen, K.G.M.; Litjens, M.C.A.; Van Soest, A.J.V. Why is countermovement jump height greater than squat jump height? Med. Sci. Sports Exerc. 1996, 28, 1402–1412. [Google Scholar] [CrossRef] [PubMed]
- Schmidtbleicher, D. Training for power events. In The Encyclopedia of Sports Medicine; Komi, P.V., Ed.; Vol 3: Strength and Power in Sport; Blackwell: Oxford, UK, 1992; pp. 169–179. [Google Scholar]
- Debaere, S.; Jonkers, I.; Delecluse, C. The contribution of step characteristics to sprint running performance in high-level male and female athletes. J. Strength. Cond. Res. 2013, 27, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Kryöläinen, H.; Komi, P.V. The neuromuscular system in maximal stretch-shortening cycle exercises: Comparison between power- and endurance-trained athletes. J. Electromyogr. Kinesiol. 1995, 5, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Coh, M.; Tomazin, K. Kinematic analysis of the sprint start and acceleration from the blocks. New Studies in Athletics. 2006, 21, 23–33. [Google Scholar]
- Flanagan, E.P.; Comyns, T.M. The Use of Contact Time and the Reactive Strength Index to Optimize Fast Stretch-Shortening Cycle Training. Natl. Strength Cond. Assoc. 2008, 30, 5. [Google Scholar] [CrossRef]
- Young, W.; McLean, B.; Ardagna, J. Relationship between strength qualities and sprinting performance. J. Sports Med. Phys. Fit. 1995, 35, 13–19. [Google Scholar]
- Feldmann, C.R.; Weiss, L.W.; Ferreira, L.C.; Schilling, B.K.; Hammond, K.G. Reactive strength index and ground contact time: Reliability, precision, and association with drop vertical jump displacement. J. Strength. Cond. Res. 2011, 25, S1. [Google Scholar] [CrossRef]
- Markwick, W.J.; Bird, S.P.; Tufano, J.J.; Seitz, L.B.; Haf, G.G. The intraday reliability of the reactive strength index calculated from a drop jump in professional men’s basketball. Int. J. Sports Physiol. Perform. 2015, 10, 482–488. [Google Scholar] [CrossRef]
- Chelly, S.M.; Denis, C. Leg power and hopping stiffness: Relationship with sprint running performance. Med. Sci. Sports Exerc. 2001, 33, 326–333. [Google Scholar] [CrossRef] [PubMed]
- Harper, D.; Hobbs, S.; Moore, J. The ten to five repeated jump test: A new test for evaluation of lower body reactive strength. In British Association of Sports and Exercises Sciences Student Conference; BASES: Chester, UK, 2011. [Google Scholar]
- Nagahara, R.; Naito, H.; Miyashiro, K.; Morin, J.; Zushi, K. Traditional and ankle-specifc vertical jumps as strength-power indicators for maximal sprint acceleration. J. Sports Med. Phys. Fit. 2014, 54, 691–699. [Google Scholar]
- Jarvis, P.; Turner, A.; Read, P.; Bishop, C. Reactive Strength Index and its Associations with Measures of Physical and Sports Performance: A Systematic Review with Meta-Analysis. Sports Med. 2022, 52, 301–330. [Google Scholar] [CrossRef]
- Healy, R.; Smyth, C.; Kenny, I.C.; Harrison, A.J. Influence of reactive and maximum strength indicators on sprint performance. J. Strength. Cond. Res. 2019, 33, 3039–3048. [Google Scholar] [CrossRef] [PubMed]
- Smirniotou, A.; Katsikas, C.; Paradisis, G.; Argeitaki, P.; Zacharogiannis, E.; Tziortzis, S. Strength-power parameters as predictors of sprinting performance. J. Sports Med. Phys. Fit. 2008, 48, 447–454. [Google Scholar]
- Hennessy, L.; Kilty, J. Relationship of the stretch-shortening cycle to sprint performance in trained female athletes. J. Strength. Cond. Res. 2001, 15, 326–331. [Google Scholar] [PubMed]
- Maulder, P.; Cronin, J. Horizontal and vertical jump assessment: Reliability, symmetry, discriminative and predictive ability. Phys. Ther. Sport. 2005, 6, 74–82. [Google Scholar] [CrossRef]
- Hunter, J.P.; Marshall, R.N.; McNair, P.J. Relationships between ground reaction force impulse and kinematics of sprint-running acceleration. J. Appl. Biomech. 2005, 21, 31–43. [Google Scholar] [CrossRef] [PubMed]
- Dobbs, C.W.; Gill, N.D.; Smart, D.J.; McGuigan, M.R. Relationship between vertical and horizontal jump variables and muscular performance in athletes. J. Strength. Cond. Res. 2015, 29, 661–671. [Google Scholar] [CrossRef]
- Schuster, D.; Jones, P.A. Relationships between unilateral horizontal and vertical drop jumps and 20 m sprint performance. Phys. Ther. Sport. 2016, 21, 20–25. [Google Scholar] [CrossRef]
- Fukashiro, A.T.; Harada, S.Y.; Kawamoto, K. Relationship between sprint performance and muscle fascicle length in female sprinters. J. Physiol. Anthr. Appl. Hum. Sci. 2001, 20, 141–147. [Google Scholar]
- Bartolomei, S.; D’Amico, A.; Treno, F.; Cortesi, M.; Pagliara, S.; Mignardi, S. Influences of sex on muscle quality and performance in Elite Field Hockey Players. Appl. Sci. 2023, 13, 11314. [Google Scholar] [CrossRef]
- Mangine, G.T.; Fukuda, D.H.; Townsend, J.R.; Wells, A.J.; Gonzalez, A.M.; Jajtner, A.R.; Bohner, J.D.; LaMonica, M.; Hoffman, J.R.; Fragala, M.S.; et al. Sprinting performance on the Woodway Curve 3.0TM is related to muscle architecture. Eur. J. Sport. Sci. 2015, 15, 606–614. [Google Scholar] [CrossRef] [PubMed]
- Stock, M.S.; Thompson, B.J. Echo intensity as an indicator of skeletal muscle quality: Applications, methodology, and future directions. Eur. J. Appl. Physiol. 2021, 121, 369–380. [Google Scholar] [CrossRef] [PubMed]
- Furlong, L.A.; Harrison, A.J.; Jensen, R.L. Measures of strength and jump performance can predict 30-m sprint time in rugby union players. J. Strength. Cond. Res. 2021, 35, 2579–2583. [Google Scholar] [CrossRef]
- Bemben, M.G. Use of diagnostic ultrasound for assessing muscle size. J. Strength Cond. Res. 2022, 16, 103–108. [Google Scholar]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Hunter, J.P.; Marshall, R.N.; Mcnair, P.J. Interaction of Step Length and Step Rate during Sprint Running. Med. Sci. Sports Exerc. 2004, 36, 261–271. [Google Scholar] [CrossRef] [PubMed]
- Washif, J.A.; Kok, L.Y. The Reactive Bounding Coefficient as a Measure of Horizontal Reactive Strength to Evaluate Stretch-Shortening Cycle Performance in Sprinters. J. Hum. Kin. 2020, 73, 45–55. [Google Scholar] [CrossRef]
- Baughman, M.; Takaha, M.; Tellez, T. Sprint training. NSCA J. 1984, 6, 34–36. [Google Scholar]
- Šarabon, N.; Milinović, I.; Dolenec, A.; Kozinc, Ž.; Babić, V. The Reactive Strength Index in Unilateral Hopping for Distance and Its Relationship to Sprinting Performance: How Many Hops Are Enough for a Comprehensive Evaluation? Appl. Sci. 2022, 12, 11383. [Google Scholar] [CrossRef]
- Lockie, R.G.; Murphy, A.J.; Knight, T.J.; Janse de Jonge, X.A. Factors that differentiate acceleration ability in field sport athletes. J. Strength. Cond. Res. 2011, 25, 2704–2714. [Google Scholar] [CrossRef]
- Bret, C.; Rahmani, A.; Dufour, A.B.; Messonnier, L.; Lacour, J.R. Leg strength and stiffness as ability factors in 100 m sprint running. J. Sports Med. Phys. Fitness. 2002, 42, 274–281. [Google Scholar] [PubMed]
- Colyer, S.L.; Nagahara, R.; TakaI, Y.; Salo, A.I.T. How sprinters accelerate beyond the velocity plateau of soccer players: Waveform analysis of ground reaction forces. Scand. J. Med. Sci. Sports. 2018, 28, 2527–2535. [Google Scholar] [CrossRef] [PubMed]
- Bartolomei, S.; Grillone, G.; Di Michele, R.; Cortesi, M. A Comparison between Male and Female Athletes in Relative Strength and Power Performances. J. Funct. Morphol. Kinesiol. 2021, 6, 17. [Google Scholar] [CrossRef] [PubMed]
- Pillen, S.; Tak, R.O.; Zwarts, M.J.; Lammens, M.M.Y.; Verrijp, K.N.; Arts, I.M.P.; Van Der Laak, J.A.; Hoogerbrugge, P.M.; Van Engelen, B.G.M.; Verrips, A. Skeletal muscle ultrasound: Correlation between fibrous tissue and echo intensity. Ultrasound Med. Biol. 2009, 35, 443–446. [Google Scholar] [CrossRef]
- Ciacci, S.; Merni, F.; Bartolomei, S.; Di Michele, R. Sprint start kinematics during competition in elite and world-class male and female sprinters. J. Sport. Sci. 2017, 35, 1270–1278. [Google Scholar] [CrossRef]
Variables | Mean ± SD | Variables | Mean ± SD |
---|---|---|---|
Sprint performance variables | Horizontal jump test | ||
30 m (s) | 4.16 ± 0.48 | Contact time (s) | 0.30 ± 0.07 |
60 m (s) | 7.54 ± 1.04 | Jump length (m) | 1.39 ± 0.33 |
30–60 m split time (s) | 3.35 ± 0.51 | Jump length norm (m/BH) | 0.77 ± 0.17 |
SB 100 m (s) | 11.59 ± 0.91 | RSI HDJ (a.u.) | 4.84 ± 1.64 |
Max speed (ms−1) | 9.10 ± 1.29 | NRSI HDJ (a.u.) | 2.69 ± 0.84 |
Contact time sprint (s) | 0.12 ± 0.01 | Straight-leg running drill test (SLR) | |
Step length sprint (m) | 2.18 ± 0.20 | Contact time (s) | 0.148 ± 0.02 |
Step length norm (m/BH) | 1.23 ± 0.10 | Step length (m) | 1.73 ± 0.19 |
RSI RUN (a.u.) | 19.27 ± 3.50 | Step length norm (m/BH) | 0.98 ± 0.12 |
NRSI RUN (a.u.) | 10.79 ± 1.76 | RSI SLR (a.u.) | 11.83 ± 2.26 |
Vertical jump test | NRSI SLR (a.u.) | 6.68 ± 1.33 | |
Contact time (s) | 0.22 ± 0.03 | Ultrasound measurements | |
Rebound height (cm) | 47.29 ± 10.30 | VLMT (mm) | 15.25 ± 2.63 |
RSI VDJ (a.u.) | 2.15 ± 0.57 | VLEI | 42.23 ± 5.88 |
RSI RUN | NRSI RUN | RSI VDJ | RSI HDJ | NRSI HDJ | RSI SLR | NRSI SLR | VLMT | VLEI | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
r | R2 | r | R2 | r | R2 | r | R2 | r | R2 | r | R2 | r | R2 | r | R2 | r | R2 | |
30 m (s) | −0.95 ** | 0.90 ** | −0.91 ** | 0.83 ** | −0.77 ** | 0.60 ** | −0.48 | 0.21 | −0.41 | 0.17 | −0.52 | 0.27 | −0.38 | 0.14 | −0.50 | 0.34 | 0.76 * | 0.58 * |
60 m (s) | −0.95 ** | 0.91 ** | −0.92 ** | 0.84 ** | −0.77 ** | 0.60 ** | −0.47 | 0.21 | −0.40 | 0.16 | −0.50 | 0.25 | −0.37 | 0.13 | −0.52 | 0.27 | 0.77 * | 0.59 * |
30–60 m (s) | −0.96 ** | 0.91 ** | −0.92 ** | 0.85 ** | −0.77 ** | 0.59 ** | −0.45 | 0.20 | −0.40 | 0.16 | −0.49 | 0.24 | −0.35 | 0.13 | −0.53 | 0.28 | 0.77 * | 0.59 * |
Max speed (m·s−1) | 0.97 ** | 0.94 ** | 0.90 ** | 0.82 ** | 0.76 * | 0.59 ** | 0.52 | 0.24 | 0.44 | 0.19 | 0.44 | 0.20 | 0.28 | 0.08 | 0.51 | 0.26 | −0.82 * | 0.68 * |
SB 100 m (s) | −0.96 ** | 0.92 ** | −0.90 ** | 0.79 ** | −0.72 * | 0.52 ** | −0.45 | 0.22 | −0.41 | 0.17 | −0.41 | 0.17 | −0.26 | 0.07 | −0.57 | 0.32 | 0.87 ** | 0.75 ** |
RSI RUN | NRSI RUN | RSI VDJ | RSI HDJ | NRSI HDJ | RSI SLR | NRSI SLR | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
r | R2 | r | R2 | r | R2 | r | R2 | r | R2 | r | R2 | r | R2 | |
RSI RUN | ||||||||||||||
NRSI RUN | 0.96 ** | 0.92 ** | ||||||||||||
RSIDJV | 0.85 * | 0.72 * | 0.81 ** | 0.65 * | ||||||||||
RSIDJH | 0.53 | 0.29 | 0.43 | 0.19 | 0.74 * | 0.55 * | ||||||||
NRSIDJH | 0.56 | 0.31 | 0.56 | 0.31 | 0.72 * | 0.52 * | 0.74 * | 0.55 * | ||||||
RSI SLR | 0.63 * | 0.40 * | 0.70 * | 0.49 * | 0.76 * | 0.58 * | 0.43 | 0.18 | 0.68 * | 0.47 * | ||||
NRSI SLR | 0.48 | 0.23 | 0.60 | 0.36 | 0.64 * | 0.41 * | 0.31 | 0.09 | 0.61 | 0.37 | 0.98 ** | 0.95 ** |
RSI RUN | NRSI RUN | RSI HDJ | NRSI HDJ | RSI VDJ | RSI SLR | NRSI SLR | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
r | R2 | r | R2 | r | R2 | r | R2 | r | R2 | r | R2 | r | R2 | |
VLMT | 0.62 | 0.38 | 0.67 | 0.44 | 0.46 | 0.21 | 0.50 | 0.25 | 0.53 | 0.28 | 0.46 | 0.21 | 0.42 | 0.18 |
VLEI | −0.80 * | 0.63 | −0.70 * | 0.49 | −0.34 | 0.11 | −0.36 | 0.13 | −0.59 | 0.35 | −0.50 | 0.25 | −0.34 | 0.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciacci, S.; Nigro, F.; Bartolomei, S. A New Method for Evaluating the Reactive Strength Index in Track and Field Sprinting: Relationships with Muscle Architecture. Appl. Sci. 2024, 14, 3232. https://doi.org/10.3390/app14083232
Ciacci S, Nigro F, Bartolomei S. A New Method for Evaluating the Reactive Strength Index in Track and Field Sprinting: Relationships with Muscle Architecture. Applied Sciences. 2024; 14(8):3232. https://doi.org/10.3390/app14083232
Chicago/Turabian StyleCiacci, Simone, Federico Nigro, and Sandro Bartolomei. 2024. "A New Method for Evaluating the Reactive Strength Index in Track and Field Sprinting: Relationships with Muscle Architecture" Applied Sciences 14, no. 8: 3232. https://doi.org/10.3390/app14083232
APA StyleCiacci, S., Nigro, F., & Bartolomei, S. (2024). A New Method for Evaluating the Reactive Strength Index in Track and Field Sprinting: Relationships with Muscle Architecture. Applied Sciences, 14(8), 3232. https://doi.org/10.3390/app14083232