Chemical Composition and Antimicrobial Activity of Essential Oils and Hydrosols from Oregano, Sage and Pennyroyal against Oral Pathogens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Isolation of Essential Oils and Hydrosols
2.3. Gas Chromatography–Mass Spectrometry (GS-MS) Analysis of EOs and HDs of Herbs
2.4. Streptococcus mutans and Candida albicans Strains and Growth Conditions
2.5. Determination of S. mutans Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC)
2.6. Determination of C. albicans Minimum Inhibitory Concentration (MIC) and Minimum Fungicidal Concentration (MFC)
3. Results and Discussion
3.1. Essential Oil and Hydrosol Extract Chemical Profile Implementing GS-MS Analysis
3.1.1. O. vulgare Essential Oil and Hydrosol Extract Chemical Profile
Chemotype | Main Compounds | Country Origin | References |
---|---|---|---|
Origanum vulgare ssp. hirtum | |||
Carvacrol | Carvacrol (80%), γ-terpinene (6.5%), p-cymene (2.5%), caryophyllene (2.5%) | Lithuania | [23] |
Carvacrol/γ-terpinene | Carvacrol (30%), γ-terpinene (23%), p-cymene (10%) | Poland | [45] |
trans-Sabinene hydrate/carvacrol | trans-Sabinene hydrate (31%), carvacrol (23%), 4-terpineol (10%), linalyl acetate (5%) | Italy | [24] |
Thymol/γ-terpinene | Thymol (54%), γ-terpinene (13%), p-cymene (6.5%), α-terpinene (2%), β-myrcene (1.5%) | Italy | [46] |
Salvia officinalis | |||
α-Thujone/1,8-cineole/β-pinene | α-Thujone, 1,8-cineole, β-pinene (16%), β-caryophyllene (9%), α-humulene (8.5%), borneol (6%), β-thujone (4%), camphene (2%) | Germany | [48] |
Inflorescence: β-thujone/1,8-cineole/camphor/borneol, Leaves: α-thujone/β-pinene/1,8-cineole | Inflorescence: β-thujone (15%), 1,8-cineole (15%), camphor (13%), borneol (10%), α-thujone (6%), ledol (6%), β-pinene (3%), Leaves: α-thujone (20%), β-pinene (15%), 1,8-cineole (15%), ledol (8%), borneol (7%), β-thujone (6%) | China | [49] |
Inflorescence: α-thujone/E-caryophyllene/manool, Leaves: α-thujone/1,8-cineole/camphor, Stems: α-thujone/manool | α-Thujone (20–42%), (E)-caryophyllene (1–16%), manool (4–15%), viridiflorol (3–13%), 1,8-cineole (3–14%), camphor (1–22%), borneol (1–5%), α-humulene (1.5–4.5%), β-pinene (1–4%), β-thujone (1–4%) | India | [50] |
Camphor/α-thujone | Camphor (24%), α-thujone (23%), sclareol (10%), camphene (9%), β-thujone (8%) | Egypt | [51] |
α-Thujone/camphor/viridiflorol | α-Thujone (22%), camphor (12%), viridiflorol (12%), manool (9%), 1-octen-3-ol (8%), 1,8-cineol (7%), β-thujone (5.5%) | Romania | [52] |
α-Thujone/1,8-cineole/borneol | α-Thujone (25%), 1,8-cineole (15%), borneol (11%), camphor (11%), β-pinene (10%), δ-gurjunene (8%) | South Brazil | [27] |
Camphor/1,8-cineole | Camphor (34%), 1,8-cineole (22%), α-thujone (21%), camphene (5%), β-thujone (4%), borneol (3%), α-pinene (2%), p-cymene (1%), β-pinene (1%) | Tunisia | [53] |
α-Thujone/camphor/caryophyllene | α-Τhujone (8–20%), camphor (8–20%), borneol (3–17%), γ-muurolene (3–4%), sclareol (6–23%). | Italy | [22] |
Mentha pulegium | |||
Pulegone | Pulegone (71%), neo-menthol (11%), iso-pulegol (2%), piperitenone (1.5%) | Algeria | [21] |
Menthone/pulegone | Menthone (36%), pulegone (23%), neo-menthol (9%), 8-hydroxy-δ-4(5)-p-menthen-3-one (2%) | Portugal | [54] |
Pulegone | Pulegone (75%), D-limonene (9%), 2-(2,2,4-trimethyl-3-cyclopenten-1-yl) ethanol (5%), verbenone (3%) | Morocco | [55] |
Pulegone/menthone | Pulegone (41%), menthone (21%), α-terpineol (8%), humulene (5%) | Morocco | [25] |
Pulegone/α-terpinyl acetate | Pulegone (34%), α-terpinyl acetate (24%),bicyclo [3.1.0] hexane, 6-isopropylidene-1-methyl (13%), 1,8-cineole (10%), α-humulene (5%), α-pinene (5%) | Morocco | [26] |
Pulegone, pulegone/piperitenone oxide, piperitenone oxide/trans-piperitone epoxide, pylegone/1,8-cineole, pulegone/limonene, pulegone/menthone, pulegone/piperitenone/ment-hone, 1,8-cineole/trans-piperitone epoxide | Pulegone (2.5–52%), piperitenone oxide (0.2–45%), trans-piperitone epoxide (0–29%), 1,8-cineole (0–33%), limonene (0–34%), menthone (0.2–30%), piperitenone (0.2–13%), caryophyllene oxide (0.2–8%), neo-iso-menthol (0.4–8%), menthol (0.2–5%) | Iran | [56] |
No. | Compounds * | RI | LRI | Relative Percentage Area (%) | |||||
---|---|---|---|---|---|---|---|---|---|
EOs | HSs | ||||||||
OVH | SO | MP | OVH | SO | MP | ||||
1 | α-Pinene | 939 | 932 | 1.9 | 2.9 | - | - | - | - |
2 | Camphene | 957 | 946 | - | 2.0 | - | - | - | - |
3 | 3-Octanol | 970 | 988 | - | - | 2.5 | - | - | - |
4 | β-Pinene | 984 | 974 | - | 10.0 | - | - | - | - |
5 | β-Myrcene | 990 | 988 | 2.0 | - | - | - | - | - |
6 | α-Terpinene | 1020 | 1014 | 1.6 | - | - | - | - | - |
7 | o-Cymene | 1032 | 1022 | 11.6 | - | - | - | - | - |
8 | 1,8-Cineole | 1040 | 1026 | - | 15.8 | - | - | 32.6 | - |
9 | γ-Terpinene | 1063 | 1054 | 8.4 | - | - | - | - | - |
10 | α-Thujone | 1113 | 1101 | - | 25.1 | - | - | 22.4 | - |
11 | β-Thujone | 1126 | 1112 | - | 5.0 | - | - | 3.4 | - |
12 | Menthone | 1132 | 1148 | - | - | 7.8 | - | - | 2.6 |
13 | Isomenthone | 1134 | 1158 | - | - | 7.7 | - | - | 1.0 |
14 | Camphor | 1160 | 1141 | - | 2.9 | - | - | 11.3 | - |
15 | Borneol | 1181 | 1165 | - | 5.1 | - | - | 22.6 | - |
16 | Terpinen-4-ol | 1187 | 1174 | - | - | - | - | 3.0 | - |
17 | Pulegone | 1213 | 1133 | - | - | 62.1 | - | - | 50.6 |
18 | Piperitone | 1230 | 1249 | - | - | 11.3 | - | - | 32.4 |
19 | Thymol | 1296 | 1289 | 1.8 | - | - | - | - | - |
20 | Carvacrol | 1269 | 1298 | 63.0 | - | - | 97.3 | - | - |
21 | E-Caryophyllene | 1419 | 1417 | 1.9 | 7.8 | - | - | - | - |
22 | α-Humulene | 1475 | 1452 | - | 7.8 | - | - | - | - |
3.1.2. S. officinalis Essential Oil and Hydrosol Extract Chemical Profile
3.1.3. M. pulegium Essential Oil and Hydrosol Extract Chemical Profile
3.2. Antimicrobial Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kudiyirickal, M.G.; Pappachan, J.M. Diabetes mellitus and oral health. Endocrine 2015, 49, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Forssten, S.D.; Björklund, M.; Ouwehand, A.C. Streptococcus mutans, caries and simulation models. Nutrients 2010, 2, 290–298. [Google Scholar] [CrossRef] [PubMed]
- Lemos, J.A.; Palmer, S.R.; Zeng, L.; Wen, Z.T.; Kajfasz, J.K.; Freires, I.A.; Abranches, J.; Brady, L.J. The Biology of Streptococcus mutans. Microbiol. Spectr. 2019, 7, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Pradebon Brondani, L.; Alves da Silva Neto, T.; Antonio Freitag, R.; Guerra Lund, R. Evaluation of anti-enzyme properties of Origanum vulgare essential oil against oral Candida albicans. J. Mycol. Med. 2018, 28, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Millsop, J.W.; Fazel, N. Oral candidiasis. Clin. Dermatol. 2016, 34, 487–494. [Google Scholar] [CrossRef] [PubMed]
- Gregoire, S.; Xiao, J.; Silva, B.B.; Gonzalez, I.; Agidi, P.S.; Klein, M.I.; Ambatipudi, K.S.; Rosalen, P.L.; Bauserman, R.; Waugh, R.E.; et al. Role of glucosyltransferase B in interactions of Candida albicans with Streptococcus mutans and with an experimental pellicle on hydroxyapatite surfaces. Appl. Environ. Microbiol. 2011, 77, 6357–6367. [Google Scholar] [CrossRef] [PubMed]
- Yap, P.S.X.; Yiap, B.C.; Ping, H.C.; Lim, S.H.E. Essential Oils, A New Horizon in Combating Bacterial Antibiotic Resistance. Open Microbiol. J. 2014, 8, 6–14. [Google Scholar] [CrossRef] [PubMed]
- Sharifzadeh, A.; Shokri, H.; Abbaszadeh, S. Interaction of carvacroland voriconazole against drug-resistant Candida strains isolated from patients with candidiasis. J. Mycol. Med. 2019, 29, 44–48. [Google Scholar] [CrossRef] [PubMed]
- Cieplik, F.; Jakubovics, N.S.; Buchalla, W.; Maisch, T.; Hellwig, E.; Al-Ahmad, A. Resistance toward chlorhexidine in oral bacteria-is there cause for concern? Front. Microbiol. 2019, 10, 587. [Google Scholar] [CrossRef]
- Abdi-Moghadam, Z.; Mazaheri, Y.; Rezagholizade-shirvan, A.; Mahmoudzadeh, M.; Sarafraz, M.; Mohtashami, M.; Shokri, S.; Ghasemi, A.; Nickfar, F.; Darroudi, M.; et al. The significance of essential oils and their antifungal properties in the food industry: A systematic review. Heliyon 2023, 9, e21386. [Google Scholar] [CrossRef]
- Hou, T.; Sana, S.S.; Li, H.; Xing, Y.; Nanda, A.; Netala, V.R.; Zhang, Z. Essential oils and its antibacterial, antifungal and anti-oxidant activity applications: A review. Food Biosci. 2022, 47, 101716. [Google Scholar] [CrossRef]
- Solórzano-Santos, F.; Miranda-Novales, M.G. Essential oils from aromatic herbs as antimicrobial agents. Curr. Opin. Biotechnol. 2012, 23, 136–141. [Google Scholar] [CrossRef]
- D’Amato, S.; Serio, A.; López, C.C.; Paparella, A. Hydrosols: Biological activity and potential as antimicrobials for food applications. Food Control 2018, 86, 126–137. [Google Scholar] [CrossRef]
- García-Salinas, S.; Elizondo-Castillo, H.; Arruebo, M.; Mendoza, G.; Irusta, S. Evaluation of the antimicrobial activity and cytotoxicity of different components of natural origin present in essential oils. Molecules 2018, 23, 1399. [Google Scholar] [CrossRef]
- Chouhan, S.; Sharma, K.; Guleria, S. Antimicrobial Activity of Some Essential Oils—Present Status and Future Perspectives. Medicines 2017, 4, 58. [Google Scholar] [CrossRef] [PubMed]
- Amorati, R.; Foti, M.C.; Valgimigli, L. Antioxidant activity of essential oils. J. Agric. Food Chem. 2013, 61, 10835–10847. [Google Scholar] [CrossRef] [PubMed]
- Narayanan, N.; Thangavelu, L. Salvia officinalis in dentistry. Dent. Hypotheses 2015, 6, 27–30. [Google Scholar] [CrossRef]
- Aćimović, M.; Tešević, V.; Smiljanić, K.; Cvetković, M.; Stanković, J.; Kiprovski, B.; Sikora, V. Hydrolates: By-products of essential oil distillation: Chemical composition, biological activity and potential uses. Adv. Technol. 2020, 9, 54–70. [Google Scholar] [CrossRef]
- Economoy, G.; Panagopoulos, G.; Tarantilis, P.; Kalivas, D.; Kotoulas, V.; Travlos, I.S.; Polysiou, M.; Karamanos, A. Variability in essential oil content and composition of Origanum hirtum L., Origanum onites L., Coridothymus capitatus (L.) and Satureja thymbra L. populations from the Greek island Ikaria. Ind. Crop. Prod. 2011, 33, 236–241. [Google Scholar] [CrossRef]
- Giannoulis, K.D.; Kamvoukou, C.A.; Gougoulias, N.; Wogiatzi, E. Irrigation and nitrogen application affect Greek oregano (Origanum vulgare ssp. hirtum) dry biomass, essential oil yield and composition. Ind. Crops Prod. 2020, 150, 112392. [Google Scholar] [CrossRef]
- Addelli, M.; Moghrani, H.; Aboun, A.; Maachi, R. Algerian Mentha pulegium L. leaves essential oil: Chemical composition, antimicrobial, insecticidal and antioxidant activities. Ind. Crop. Prod. 2016, 94, 197–205. [Google Scholar] [CrossRef]
- Russo, A.; Formisano, C.; Rigano, D.; Senatore, F.; Delfine, S.; Cardile, V.; Rosselli, S.; Bruno, M. Chemical composition and anticancer activity of essential oils of Mediterranean sage (Salvia officinalis L.) grown in different environmental conditions. Food Chem. Toxicol. 2013, 55, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Baranauskiene, R.; Venskutonis, P.R.; Dambrauskiene, E.; Viškelis, P. Harvesting time influences the yield and oil composition of Origanum vulgare L. ssp. vulgare and ssp. hirtum. Ind. Crops Prod. 2013, 49, 43–51. [Google Scholar] [CrossRef]
- Semenzato, G.; Del Duca, S.; Vassallo, A.; Zaccaroni, M.; Mucci, N.; Greco, C.; Padula, A.; Castronovo, L.M.; Chioccioli, S.; Pistelli, L.; et al. Exploring the nexus between the composition of essential oil and the bacterial phytobiome associated with different compartments of the medicinal plants Origanum vulgare ssp. vulgare, O. vulgare ssp. hirtum, and O. heracleoticum. Ind. Crop. Prod. 2023, 191, 115997. [Google Scholar] [CrossRef]
- Bouyahya, A.; Et-Touys, A.; Bakri, Y.; Talbaui, A.; Fellah, H.; Abrini, J.; Dakka, N. Chemical composition of Mentha pulegium and Rosmarinus officinalis essential oils and their antileishmanial, antibacterial and antioxidant activities. Microb. Pathog. 2017, 111, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Cherrat, L.; Espina, L.; Bakkali, M.; Pagan, R.; Laglaoui, A. Chemical composition, antioxidant and antimicrobial properties of Mentha pulegium, Lavandula stoechas and Satureja calamintha Scheele essential oils and an evaluation of their bactericidal effect in combined processes. Innov. Food Sci. Emerg. Technol. 2014, 22, 221–229. [Google Scholar] [CrossRef]
- Delamare, A.P.L.; Moschen-Pistorello, I.T.; Artico, L.; Atti-Serafini, L.; Echeverrigaray, S. Antibacterial activity of the essential oils of Salvia officinalis L. and Salvia triloba L. cultivated in South Brazil. Food Chem. 2007, 100, 603–608. [Google Scholar] [CrossRef]
- Durović, S.; Micić, D.; Pezo, L.; Radić, D.; Bazarnova, J.G.; Smyatskaya, Y.; Blagijević, S. The effect of various extraction techniques on the quality of sage (Salvia officinalis L.) essential oil, expressed by chemical composition, thermal properties and biological activity. Food Chem. 2022, 13, 100213. [Google Scholar] [CrossRef]
- Hayouni, E.A.; Chraief, I.; Abedrabba, M.; Bouix, M.; Leveau, J.-Y.; Mohammed, H.; Hamdi, M. Tunisian Salvia officinalis L. and Schinus molle L. essential oils: Their chemical compositions and their preservative effects against Salmonella inoculated in minced beef meat. Int. J. Food Microbiol. 2008, 125, 242–251. [Google Scholar] [CrossRef]
- Saǧdiç, O.; Özcan, M. Antibacterial activity of Turkish spice hydrosols. Food Control 2002, 14, 141–143. [Google Scholar] [CrossRef]
- Valderrama, F.; Ruiz, F. An optimal control approach to steam distillation of essential oils from aromatic plants. Comput. Chem. Eng. 2018, 117, 25–31. [Google Scholar] [CrossRef]
- Masango, P. Cleaner production of essential oils by steam distillation. J. Clean. Prod. 2005, 13, 833–839. [Google Scholar] [CrossRef]
- Zheljazkov, V.D.; Astatkie, T.; Schlegel, V. Distillation time changes oregano essential oil yields and composition but not the antioxidant or antimicrobial activities. HortScience 2012, 47, 777–784. [Google Scholar] [CrossRef]
- Miguel, G.; Cruz, C.; Faleiro, M.L.; Simões, M.T.F.; Figueiredo, A.C.; Barroso, J.G.; Pedro, L.G. Salvia officinalis L. essential oils: Effect of hydrodistillation time on the chemical composition, antioxidant and antimicrobial activities. Nat. Prod. Res. 2011, 25, 526–541. [Google Scholar] [CrossRef]
- Zheljazkov, V.D.; Astatkie, T.; Shiwakoti, S.; Poudyal, S.; Horgan, T.; Kovatcheva, N.; Dobreva, A. Essential oil yield and composition of garden sage as a function of different steam distillation times. HortScience 2014, 49, 785–790. [Google Scholar] [CrossRef]
- Zheljazkov, V.D.; Astatkie, T. Effect of distillation time on mentha canadensis essential oil yield and composition. HortScience 2012, 47, 643–647. [Google Scholar] [CrossRef]
- Rodríguez-Solana, R.; Daferera, D.J.; Mitsi, C.; Trigas, P.; Polissiou, M.; Tarantilis, P.A. Comparative chemotype determination of Lamiaceae plants by means of GC–MS, FT-IR, and dispersive-Raman spectroscopic techniques and GC-FID quantification. Ind. Crops Prod. 2014, 62, 22–33. [Google Scholar] [CrossRef]
- Lucero, M.; Estell, R.; Tellez, M.; Fredrickson, E. A Retention Index Calculator Simplifi es Identifi cation of Plant Volatile Organic Compounds. Phytochem. Anal. 2009, 20, 378–384. [Google Scholar] [CrossRef]
- Tsavea, E.; Mossialos, D. Antibacterial activity of honeys produced in Mount Olympus area against nosocomial and foodborne pathogens is mainly attributed to hydrogen peroxide and proteinaceous compounds. J. Apic. Res. 2019, 58, 756–763. [Google Scholar] [CrossRef]
- Didaras, N.A.; Kafantaris, I.; Dimitriou, T.G.; Mitsagga, C.; Karatasou, K.; Giavasis, I.; Stagos, D.; Amoutzias, G.D.; Hatjina, F.; Mossialos, D. Biological properties of bee bread collected from apiaries located across Greece. Antibiotics 2021, 10, 555. [Google Scholar] [CrossRef]
- Pfaller, M.A.; Haturvedi, V.; Espinel-Ingroff, A.; Ghannoum, M.A.; Gosey, L.L.; Odds, F.C.; Rex, J.H.; Rinaldi, M.G.; Sheehan, D.J.; Walsh, T.J.; et al. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts. In Approved Standard—Second Edition Serving the World’ s Medical Science Community Through Voluntary Consensus; NCCLS: Wayne, PA, USA, 2002; Volume 22, ISBN 1562384694. [Google Scholar]
- Karamanos, A.J.; Sotiropoulou, D.E.K. Field studies of nitrogen application on Greek oregano (Origanum vulgare ssp. hirtum (Link) Ietswaart) essential oil during two cultivation seasons. Ind. Crop. Prod. 2013, 46, 246–252. [Google Scholar] [CrossRef]
- Tsimogiannis, D.; Oreopoulou, V. A kinetic study of essential oil components distillation for the recovery of carvacrol rich fractions. J. Appl. Res. Med. Aromat. Plants 2018, 9, 117–123. [Google Scholar] [CrossRef]
- Król, B.; Kołodziej, B.; Kędzia, B.; Hołderna-Kędzia, E.; Sugier, D.; Luchowska, K. Date of harvesting affects yields and quality of Origanum vulgare ssp. hirtum (Link) Ietswaart. J. Sci. Food Agric. 2019, 99, 5432–5443. [Google Scholar] [CrossRef] [PubMed]
- Węglarz, Z.; Kosakowska, O.; Przybył, J.L.; Pióro-Jabrucka, E.; Baczek, K. The Quality of Greek Oregano (O. vulgare L. subsp. hirtum (Link) Ietswaart) and Common Oregano (O. vulgare L. subsp. vulgare) Cultivated in the Temperate Climate of Central Europe. Foods 2020, 9, 1671. [Google Scholar] [CrossRef] [PubMed]
- Napoli, E.; Mazzaglia, A.; Restuccia, C.; Ragni, P.; Lanza, C.M.; Ruberto, G. The effect of γ-irradiation on chemical composition, microbial load and sensory properties of Sicilian oregano. Lwt 2016, 72, 566–572. [Google Scholar] [CrossRef]
- Moukhles, A.; Ellaghdach, A.; Driss, A.B.; El Amrani, M.A.; Aghmiz, A.; Mansour, A.I. Chemical profile and in vitro antibacterial potential of essential oils and hydrolat extracts from aerial parts of three wild species of Moroccan Thymus. Sci. African 2022, 18, e01434. [Google Scholar] [CrossRef]
- Tibaldi, G.; Hazrati, S.; Hosseini, S.J.; Ertani, A.; Bulgari, R.; Nicola, S. Cultivation techniques and drying process can affect the inflorescence essential oil composition of three selections of Salvia officinalis. Ind. Crops Prod. 2022, 183, 114923. [Google Scholar] [CrossRef]
- Li, B.; Zhang, C.; Peng, L.; Liang, Z.; Yan, X.; Zhu, Y.; Liu, Y. Comparison of essential oil composition and phenolic acid content of selected Salvia species measured by GC-MS and HPLC methods. Ind. Crops Prod. 2015, 69, 329–334. [Google Scholar] [CrossRef]
- Verma, R.S.; Padalia, R.C.; Chauhan, A. Harvesting season and plant part dependent variations in the essential oil composition of Salvia officinalis L. grown in northern India. J. Herb. Med. 2015, 5, 165–171. [Google Scholar] [CrossRef]
- Abou Baker, D.H.; Amarowicz, R.; Kandeil, A.; Ali, M.A.; Ibrahim, E.A. Antiviral activity of Lavandula angustifolia L. and Salvia officinalis L. essential oils against avian influenza H5N1 virus. J. Agric. Food Res. 2021, 4, 100135. [Google Scholar] [CrossRef]
- Radulescu, V.; Chiliment, S.; Oprea, E. Capillary gas chromatography-mass spectrometry of volatile and semi-volatile compounds of Salvia officinalis. J. Chromatogr. A 2004, 1027, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Kammoun El Euch, S.; Hassine, D.B.; Cazaux, S.; Bouzouita, N.; Bouajila, J. Salvia officinalis essential oil: Chemical analysis and evaluation of anti- enzymatic and antioxidant bioactivities. S. Afr. J. Bot. 2019, 120, 253–260. [Google Scholar] [CrossRef]
- Teixeira, B.; Marques, A.; Ramos, C.; Batistam, I.; Serrano, C.; Matos, O.; Neng, N.R.; Nogueira, J.M.F.; Saraiva, J.A.; Nunes, M.L. European pennyroyal (Mentha pulegium) from Portugal: Chemical composition of essential oil and antioxidant and antimicrobial properties of extracts and essential oil. Ind. Crop. Prod. 2012, 36, 81–87. [Google Scholar] [CrossRef]
- Oualdi, I.; Elfazazi, K.; Azzouzo, H.; Oussaid, A.; Touzani, R. Chemical composition and antimicrobial properties of Moroccan Mentha pulegium L. essential oil. Mater. Today Proccedings 2023, 72, 3768–3774. [Google Scholar] [CrossRef]
- Mollaei, S.; Ebadi, M.; Hazrati, S.; Habibi, B.; Gholami, F.; Sourestani, M.M. Essential oil variation and antioxidant capacity of Mentha pulegium populations and their relation to ecological factors. Biochem. Syst. Ecol. 2020, 91, 104084. [Google Scholar] [CrossRef]
- Sharifi-Rad, M.; Varoni, E.M.; Iriti, M.; Martorell, M.; Setzer, W.N.; del Mar Contreras, M.; Salehi, B.; Soltani-Nejad, A.; Rajabi, S.; Tajbakhsh, M.; et al. Carvacrol and human health: A comprehensive review. Phyther. Res. 2018, 32, 1675–1687. [Google Scholar] [CrossRef] [PubMed]
- Chrysargyris, A.; Laoutari, S.; Litskas, V.D.; Stavrinides, M.C.; Tzortzakis, N. Effects of water stress on lavender and sage biomass production, essential oil composition and biocidal properties against Tetranychus urticae (Koch). Sci. Hortic. 2016, 213, 96–103. [Google Scholar] [CrossRef]
- Usano-Alemany, J.; Palá-Paúl, J.; Herráiz-Peñalver, D. Essential oil yields and qualities of different clonal lines of Salvia lavandulifolia monitored in Spain over four years of cultivation. Ind. Crops Prod. 2016, 80, 251–261. [Google Scholar] [CrossRef]
- Khan, M.; Khan, S.T.; Khan, N.A.; Mahmood, A.; Al-Kedhairy, A.A.; Alkhathlan, H.Z. The composition of the essential oil and aqueous distillate of Origanum vulgare L. growing in Saudi Arabia and evaluation of their antibacterial activity. Arab. J. Chem. 2018, 11, 1189–1200. [Google Scholar] [CrossRef]
- Thakur, M.; Kumar, R. Microclimatic buffering on medicinal and aromatic plants: A review. Ind. Crop. Prod. 2021, 160, 113144. [Google Scholar] [CrossRef]
- Assaf, M.; Korkmaz, A.; Karaman, Ş.; Kulak, M. Effect of plant growth regulators and salt stress on secondary metabolite composition in Lamiaceae species. S. Afr. J. Bot. 2022, 144, 480–493. [Google Scholar] [CrossRef]
- Politi, M.; Ferrante, C.; Menghini, L.; Angelini, P.; Flores, G.A.; Muscatello, B.; Braca, A.; Leo, M. De Activity Evaluation. JCR J. Clin. Rheumatol. 2004, 10, S41. [Google Scholar] [CrossRef]
- Cunha, B.A. Antibiotic side effects. Med. Clin. N. Am. 2001, 85, 149–185. [Google Scholar] [CrossRef]
- Kyriakidis, I.; Tragiannidis, A.; München, S.; Andreas, H. Clinical Hepatotoxicity Associated with Antifungal Agents; Taylor and Francis: Abingdon, UK, 2017; ISBN 4925183478. [Google Scholar]
- Pandey, A.K.; Kumar, P.; Singh, P.; Tripathi, N.N.; Bajpai, V.K. Essential oils: Sources of antimicrobials and food preservatives. Front. Microbiol. 2017, 7, 2161. [Google Scholar] [CrossRef] [PubMed]
- Božik, M.; Císarová, M.; Tančinová, D.; Kouřimská, L.; Hleba, L.; Klouček, P. Selected essential oil vapours inhibit growth of Aspergillus spp. in oats with improved consumer acceptability. Ind. Crops Prod. 2017, 98, 146–152. [Google Scholar] [CrossRef]
- Frankova, A.; Smid, J.; Bernardos, A.; Finkousova, A.; Marsik, P.; Novotny, D.; Legarová, V.; Pulkrabek, J.; Kloucek, P. The antifungal activity of essential oils in combination with warm air flow against postharvest phytopathogenic fungi in apples. Food Control 2016, 68, 62–68. [Google Scholar] [CrossRef]
- Pola, C.C.; Medeiros, E.A.A.; Pereira, O.L.; Souza, V.G.L.; Otoni, C.G.; Camilloto, G.P.; Soares, N.F.F. Cellulose acetate active films incorporated with oregano (Origanum vulgare) essential oil and organophilic montmorillonite clay control the growth of phytopathogenic fungi. Food Packag. Shelf Life 2016, 9, 69–78. [Google Scholar] [CrossRef]
- Napoli, E.; Giovino, A.; Carrubba, A.; Siong, V.H.Y.; Rinoldo, C.; Nina, O.; Ruberto, G. Variations of essential oil constituents in oregano (Origanum vulgare subsp. viridulum (= o. heracleoticum) over cultivation cycles. Plants 2020, 9, 1174. [Google Scholar] [CrossRef] [PubMed]
- Pozzatti, P.; Scheid, L.A.; Spader, T.B.; Atayde, M.L.; Santurio, J.M.; Alves, S.H. In vitro activity of essential oils extracted from plants used as spices against fluconazole-resistant and fluconazole-susceptible Candida spp. Can. J. Microbiol. 2008, 54, 950–956. [Google Scholar] [CrossRef]
- Rúa, J.; Del Valle, P.; De Arriaga, D.; Fernández-Álvarez, L.; García-Armesto, M.R. Combination of Carvacrol and Thymol: Antimicrobial Activity Against Staphylococcus aureus and Antioxidant Activity. Foodborne Pathog. Dis. 2019, 16, 622–629. [Google Scholar] [CrossRef]
- Leyva-l, N.; Guti, E.P.; Vazquez-olivo, G.; Heredia, J.B. Essential Oils of Oregano: Biological Activity beyond Their Antimicrobial Properties. Molecules 2017, 22, 989. [Google Scholar] [CrossRef] [PubMed]
- Wijesundara, N.M.; Rupasinghe, H.P.V. Essential oils from Origanum vulgare and Salvia officinalis exhibit antibacterial and anti-biofilm activities against Streptococcus pyogenes. Microb. Pathog. 2018, 117, 118–127. [Google Scholar] [CrossRef]
- Beheshti-Rouy, M.; Azarsina, M.; Rezaie-Soufi, L.; Alikhani, M.Y.; Roshanaie, G.; Komaki, S. The antibacterial effect of sage extract (Salvia officinalis) mouthwash against Streptococcus mutans in dental plaque: A randomized clinical trial. Iran. J. Microbiol. 2015, 7, 173–177. [Google Scholar] [PubMed]
- Ouakouak, H.; Chohra, M.; Denane, M. Chemical Composition, Antioxidant Activities of the Essential Oil of Mentha pulegium L., South East of Algeria. Int. Lett. Nat. Sci. 2015, 39, 49–55. [Google Scholar] [CrossRef]
- European Medicines Agency. Public Statement on the Use of Herbal Medicinal Products Containing Pulegone and Menthofuran; European Medicines Agency: Amsterdam, The Netherlands, 2016; Volume 44, pp. 1–24. [Google Scholar]
- Politi, M.; Menghini, L.; Conti, B.; Bedini, S.; Farina, P.; Cioni, P.L.; Braca, A.; De Leo, M. Reconsidering Hydrosols as Main Products of Aromatic Plants Manufactory: The Lavandin (Lavandula × intermedia) Case Study in Tuscany. Molecules 2020, 25, 2225. [Google Scholar] [CrossRef]
- Yayla, E.M.; Izgu, N.; Ozdemir, L.; Erdem, S.A.; Kartal, M. Sage tea–thyme–peppermint hydrosol oral rinse reduces chemotherapy-induced oral mucositis: A randomized controlled pilot study. Complement. Ther. Med. 2015, 27, 58–64. [Google Scholar] [CrossRef]
Streptococcus mutans | Candida albicans | |||
---|---|---|---|---|
MIC % v/v | MBC % v/v | MIC % v/v | MFC % v/v | |
Hydrosol O. vulgare ssp. hirtum | 25 | 30 | 35 | 35 |
Hydrosol S. officinalis | ND | ND | ND | ND |
Hydrosol M. pulegium | ND | ND | ND | ND |
Essential oil O. vulgare ssp. hirtum | 0.05 | 0.05 | 0.05 | 0.05 |
Essential oil S. officinalis | 0.25 | 0.35 | 0.40 | >0.5 |
Essential oil M. pulegium | 0.45 | 0.45 | 0.25 | 0.25 |
Carvacrol (98%) | 0.0315 | 0.0315 | 0.0175 | 0.0315 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bairamis, A.; Sotiropoulou, N.-S.D.; Tsadila, C.; Tarantilis, P.; Mossialos, D. Chemical Composition and Antimicrobial Activity of Essential Oils and Hydrosols from Oregano, Sage and Pennyroyal against Oral Pathogens. Appl. Sci. 2024, 14, 3238. https://doi.org/10.3390/app14083238
Bairamis A, Sotiropoulou N-SD, Tsadila C, Tarantilis P, Mossialos D. Chemical Composition and Antimicrobial Activity of Essential Oils and Hydrosols from Oregano, Sage and Pennyroyal against Oral Pathogens. Applied Sciences. 2024; 14(8):3238. https://doi.org/10.3390/app14083238
Chicago/Turabian StyleBairamis, Alexandros, Nefeli-Sofia D. Sotiropoulou, Christina Tsadila, Petros Tarantilis, and Dimitris Mossialos. 2024. "Chemical Composition and Antimicrobial Activity of Essential Oils and Hydrosols from Oregano, Sage and Pennyroyal against Oral Pathogens" Applied Sciences 14, no. 8: 3238. https://doi.org/10.3390/app14083238
APA StyleBairamis, A., Sotiropoulou, N.-S. D., Tsadila, C., Tarantilis, P., & Mossialos, D. (2024). Chemical Composition and Antimicrobial Activity of Essential Oils and Hydrosols from Oregano, Sage and Pennyroyal against Oral Pathogens. Applied Sciences, 14(8), 3238. https://doi.org/10.3390/app14083238