Prediction of Railway Embankment Slope Hydromechanical Properties under Bidirectional Water Level Fluctuations
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Plackett–Burman and BBD-RSM Experiment Design
2.2. The Artificial Neural Network (ANN) Model and Its Importance
2.3. Models and Evaluation Criteria for ANN and BBD-RSM
2.4. Study Area Overview
2.5. Modeling Approach
3. Results and Discussion
3.1. Parameter Screening with Plackett–Burman (PBD) and RSM Modeling
3.1.1. Water Level Stability Factor Responses
3.1.2. Validation and Selection of BBD-RSM Model
3.1.3. Actual vs. Predicted Investigative Plots for the Responses
3.1.4. FWL and RWL Stability Factor Response
3.2. The Modeling and Optimization of Artificial Neural Networks
3.3. Performance Comparison between BBD-RSM and ANN Models
4. Conclusions
- The investigation showed a substantial link between the embankment slope seepage line and lakes water level fluctuations. The Plackett–Burman design was used to independently study the parameters that significantly affect the railway slope’s total static stability factor under rising and falling water levels. Key parameters, such as angle of internal friction (ϕ), soil density (ρs), and cohesion (c), significantly impact the slope stability during a rise in water level. However, ks, H, u, v, and E were less significant. During falling water levels, ϕ, c, H, and ρs were more important but in a different sequence.
- The BBD-RSM and ANN studies used 3D surface and profiler diagrams to find factor–response relationships. These diagrams accurately predicted the components needed to fulfil goals. The predicted results were supported by ANOVA models. The study found some notable second-order interactions. RWL interactions were c x ρs, ϕ x ρs, and ρs2, and the FWL interactions were H x c and c x ρs. We also found that RWL was more consistent at higher unit weights and FWL was more stable at lower unit weights. RWL’s finest factor combinations are (14.11, 37.4, and 1711.9), and FWL’s are (14.175, 37.4, 15.529, and 1713.24)
- The research found that BBD-RSM and ANN were effective for evaluating RWL and FWL stability coefficients. All input variables affected the coefficients, but angle of internal friction had the greatest impact, followed by soil density and then cohesion for the RWL. The angle of internal friction had the greatest impact on FWL, followed by cohesion, water level, and soil density. Compared to ANN-based models, RSM-based models performed slightly better during RWL, with comparable R2 values but fewer prediction errors (RMSE and MRE). Compared to RSM-based models, the RSM model produced R2 values of 0.99(99) and 0.99 with MREs of 0.01 and 0.24 under both RWL and FWL conditions, respectively. However, for ANN, respectively, they produced R2 values of 0.99(99) and 0.99(98), with MRE values of 0.02 and 0.21, indicating that ANN-based models performed slightly better during FWL, with higher R2 values and reduced prediction errors (MRE). Coupled analysis with RSM and ANN models improved accuracy, efficiency, iteration needs, trial durations, and cost-effectiveness for both experimental and numerical processes.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Briggs, K.; Loveridge, F.; Glendinning, S. Failures in transport infrastructure embankments. Eng. Geol. 2017, 219, 107–117. [Google Scholar] [CrossRef]
- Reale, C.; Gavin, K.; Martinovic, K. Analysing the effect of rainfall on railway embankments using fragility curves. In Proceedings of the Transport Research Arena 2018: A Digital Era for Transport, Vienna, Austria, 16–19 April 2018. [Google Scholar]
- Linrong, X.; Usman, A.B.; Bello, A.-A.D.; Yongwei, L. Rainfall-induced transportation embankment failure: A review. Open Geosci. 2023, 15, 20220558. [Google Scholar] [CrossRef]
- Kite, D.; Siino, G.; Audley, M. Detecting Embankment Instability Using Measurable Track Geometry Data. Infrastructures 2020, 5, 29. [Google Scholar] [CrossRef]
- Dai, Z.; Guo, J.; Yu, F.; Zhou, Z.; Li, J.; Chen, S. Long-term uplift of high-speed railway subgrade caused by swelling effect of red-bed mudstone: Case study in Southwest China. Bull. Eng. Geol. Environ. 2021, 80, 4855–4869. [Google Scholar] [CrossRef]
- Sheng, M.-H.; Ai, X.-Y.; Huang, B.-C.; Zhu, M.-K.; Liu, Z.-Y.; Ai, Y.-W. Effects of biochar additions on the mechanical stability of soil aggregates and their role in the dynamic renewal of aggregates in slope ecological restoration. Sci. Total Environ. 2023, 898, 165478. [Google Scholar] [CrossRef]
- Shuaibu, A.; Muhammad, M.M.; Bello, A.-A.D.; Sulaiman, K.; Kalin, R.M. Flood Estimation and Control in a Micro-Watershed Using GIS-Based Integrated Approach. Water 2023, 15, 4201. [Google Scholar] [CrossRef]
- Wang, L.; Wu, C.; Gu, X.; Liu, H.; Mei, G.; Zhang, W. Probabilistic stability analysis of earth dam slope under transient seepage using multivariate adaptive regression splines. Bull. Eng. Geol. Environ. 2020, 79, 2763–2775. [Google Scholar] [CrossRef]
- Yao, J.; Chen, Y.; Guan, X.; Zhao, Y.; Chen, J.; Mao, W. Recent climate and hydrological changes in a mountain–basin system in Xinjiang, China. Earth-Sci. Rev. 2022, 226, 103957. [Google Scholar] [CrossRef]
- Isidoro, J.M.; Martins, R.; Carvalho, R.F.; de Lima, J.L. A high-frequency low-cost technique for measuring small-scale water level fluctuations using computer vision. Measurement 2021, 180, 109477. [Google Scholar] [CrossRef]
- Fan, Z.; Zheng, H.; Liu, K.; Chen, C.; Yang, F. Investigation of the shear band evolution in soil-rock mixture using the assumed enhanced strain method with the meshes of improved numerical manifold method. Eng. Anal. Bound. Elem. 2022, 144, 530–538. [Google Scholar] [CrossRef]
- Yi, S.; Liu, J. Field investigation of steel pipe pile under lateral loading in extensively soft soil. Front. Mater. 2022, 9, 971485. [Google Scholar] [CrossRef]
- Xie, Y.; Feng, S.-J.; Xiong, Y.-L.; Zhang, L.-L.; Ye, G.-L. Coupled hydraulic-mechanical-air simulation of unsaturated railway embankment under rainfall and dynamic train load. Transp. Geotech. 2021, 27, 100463. [Google Scholar] [CrossRef]
- Wan, X.; Ding, J.; Hong, Z.; Huang, C.; Shang, S.; Ding, C. Dynamic Response of a Low Embankment Subjected to Traffic Loads on the Yangtze River Floodplain, China. Int. J. Geomech. 2022, 22, 04022065. [Google Scholar] [CrossRef]
- Wang, R.; Hu, Z.; Ma, J.; Ren, X.; Li, F.; Zhang, F. Dynamic response and long-term settlement of a compacted loess embankment under moving train loading. KSCE J. Civ. Eng. 2021, 25, 4075–4087. [Google Scholar] [CrossRef]
- Sushma, M.; Bhushan, J.S.; Madhav, M.R. Assessment of Stability of Embankments on Soft Ground Using Matsuo Chart and SLOPE/W. In Best Practices in Geotechnical and Pavement Engineering; Springer: Berlin/Heidelberg, Germany, 2023; pp. 71–78. [Google Scholar]
- Zhou, C.; Shen, Z.; Xu, L.; Sun, Y.; Zhang, W.; Zhang, H.; Peng, J. Global Sensitivity Analysis Method for Embankment Dam Slope Stability Considering Seepage–Stress Coupling under Changing Reservoir Water Levels. Mathematics 2023, 11, 2836. [Google Scholar] [CrossRef]
- Ni, J.; Leung, A.; Ng, C.; Shao, W. Modelling hydro-mechanical reinforcements of plants to slope stability. Comput. Geotech. 2018, 95, 99–109. [Google Scholar] [CrossRef]
- Boldrin, D.; Leung, A.K.; Bengough, A.G. Hydro-mechanical reinforcement of contrasting woody species: A full-scale investigation of a field slope. Géotechnique 2021, 71, 970–984. [Google Scholar] [CrossRef]
- Mohsan, M.; Vossepoel, F.C.; Vardon, P.J. On the use of different data assimilation schemes in a fully coupled hydro-mechanical slope stability analysis. Georisk Assess. Manag. Risk Eng. Syst. Geohazards 2023, 18, 121–137. [Google Scholar] [CrossRef]
- Hou, D.; Zhou, Y.; Zheng, X. Seepage and stability analysis of fissured expansive soil slope under rainfall. Indian Geotech. J. 2023, 53, 180–195. [Google Scholar] [CrossRef]
- Shuaibu, A.; Hounkpè, J.; Bossa, Y.A.; Kalin, R.M. Flood Risk Assessment and Mapping in the Hadejia River Basin, Nigeria, Using Hydro-Geomorphic Approach and Multi-Criterion Decision-Making Method. Water 2022, 14, 3709. [Google Scholar] [CrossRef]
- Shuaibu, A.; Kalin, R.M.; Phoenix, V.; Banda, L.C.; Lawal, I.M. Hydrogeochemistry and Water Quality Index for Groundwater Sustainability in the Komadugu-Yobe Basin, Sahel Region. Water 2024, 16, 601. [Google Scholar] [CrossRef]
- Wang, T.; Luo, Q.; Li, Z.; Zhang, W.; Chen, W.; Wang, L. System safety assessment with efficient probabilistic stability analysis of engineered slopes along a new rail line. Bull. Eng. Geol. Environ. 2022, 81, 68. [Google Scholar] [CrossRef]
- Moldovan, D.-V.; Nagy, A.-C.; Muntean, L.-E.; Ciotlaus, M. Study on the stability of a road fill embankment. Procedia Eng. 2017, 181, 60–67. [Google Scholar] [CrossRef]
- Zewdu, A. Modeling the slope of embankment dam during static and dynamic stability analysis: A case study of Koga dam, Ethiopia. Model. Earth Syst. Environ. 2020, 6, 1963–1979. [Google Scholar] [CrossRef]
- Gao, X.; Liu, H.; Zhang, W.; Wang, W.; Wang, Z. Influences of reservoir water level drawdown on slope stability and reliability analysis. Georisk Assess. Manag. Risk Eng. Syst. Geohazards 2019, 13, 145–153. [Google Scholar] [CrossRef]
- Chen, J.; Zhou, Y. Dynamic responses of subgrade under double-line high-speed railway. Soil Dyn. Earthq. Eng. 2018, 110, 1–12. [Google Scholar] [CrossRef]
- Ahmad, F.; Tang, X.-W.; Qiu, J.-N.; Wróblewski, P.; Ahmad, M.; Jamil, I. Prediction of slope stability using Tree Augmented Naive-Bayes classifier: Modeling and performance evaluation. Math. Biosci. Eng. 2022, 19, 4526–4546. [Google Scholar] [CrossRef] [PubMed]
- Abdalla, J.A.; Attom, M.F.; Hawileh, R. Prediction of minimum factor of safety against slope failure in clayey soils using artificial neural network. Environ. Earth Sci. 2015, 73, 5463–5477. [Google Scholar] [CrossRef]
- Tao, G.L.; Yao, Z.S.; Tan, B.Z.; Gao, C.C.; Yao, Y.W. Application of support vector machine for prediction of slope stability coefficient considering the influence of rainfall and water level. Appl. Mech. Mater. 2016, 851, 840–845. [Google Scholar] [CrossRef]
- Zhang, H.; Nguyen, H.; Bui, X.-N.; Pradhan, B.; Asteris, P.G.; Costache, R.; Aryal, J. A generalized artificial intelligence model for estimating the friction angle of clays in evaluating slope stability using a deep neural network and Harris Hawks optimization algorithm. Eng. Comput. 2021, 38, 3901–3914. [Google Scholar] [CrossRef]
- Hu, L.; Takahashi, A.; Kasama, K. Effect of spatial variability on stability and failure mechanisms of 3D slope using random limit equilibrium method. Soils Found. 2022, 62, 101225. [Google Scholar] [CrossRef]
- Zhang, W.; Shen, Z.; Ren, J.; Bian, J.; Xu, L.; Chen, G. Multifield Coupling Numerical Simulation of the Seepage and Stability of Embankment Dams on Deep Overburden Layers. Arab. J. Sci. Eng. 2022, 47, 7293–7308. [Google Scholar] [CrossRef]
- Zhou, T.; Zhang, L.; Cheng, J.; Wang, J.; Zhang, X.; Li, M. Assessing the rainfall infiltration on FOS via a new NSRM for a case study at high rock slope stability. Sci. Rep. 2022, 12, 11917. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Ren, X.; Zhang, J.; Wang, H.; Wang, J.; Zhu, W. Seepage, deformation, and stability analysis of sandy and clay slopes with different permeability anisotropy characteristics affected by reservoir water level fluctuations. Water 2020, 12, 201. [Google Scholar] [CrossRef]
- Mojtahedi, S.F.F.; Tabatabaee, S.; Ghoroqi, M.; Tehrani, M.S.; Gordan, B.; Ghoroqi, M. A novel probabilistic simulation approach for forecasting the safety factor of slopes: A case study. Eng. Comput. 2019, 35, 637–646. [Google Scholar] [CrossRef]
- Ian, V.-K.; Tse, R.; Tang, S.-K.; Pau, G. Bridging the Gap: Enhancing Storm Surge Prediction and Decision Support with Bidirectional Attention-Based LSTM. Atmosphere 2023, 14, 1082. [Google Scholar] [CrossRef]
- Gordan, B.; Armaghani, D.J.; Hajihassani, M.; Monjezi, M. Prediction of seismic slope stability through combination of particle swarm optimization and neural network. Eng. Comput. 2016, 32, 85–97. [Google Scholar] [CrossRef]
- Dragović, S. Artificial neural network modeling in environmental radioactivity studies—A review. Sci. Total Environ. 2022, 847, 157526. [Google Scholar] [CrossRef] [PubMed]
- Yaro, N.S.A.; Sutanto, M.H.; Habib, N.Z.; Napiah, M.; Usman, A.; Muhammad, A. Comparison of Response Surface Methodology and Artificial Neural Network approach in predicting the performance and properties of palm oil clinker fine modified asphalt mixtures. Constr. Build. Mater. 2022, 324, 126618. [Google Scholar] [CrossRef]
- Lafifi, B.; Rouaiguia, A.; Soltani, E.A. A Novel Method for Optimizing Parameters influencing the Bearing Capacity of Geosynthetic Reinforced Sand Using RSM, ANN, and Multi-objective Genetic Algorithm. Stud. Geotech. Mech. 2023, 45, 174–196. [Google Scholar] [CrossRef]
- Plackett, R.L.; Burman, J.P. The design of optimum multifactorial experiments. Biometrika 1946, 33, 305–325. [Google Scholar] [CrossRef]
- De Luna, M.D.G.; Sablas, M.M.; Hung, C.-M.; Chen, C.-W.; Garcia-Segura, S.; Dong, C.-D. Modeling and optimization of imidacloprid degradation by catalytic percarbonate oxidation using artificial neural network and Box-Behnken experimental design. Chemosphere 2020, 251, 126254. [Google Scholar] [CrossRef]
- Aziz, K.; Mamouni, R.; Azrrar, A.; Kjidaa, B.; Saffaj, N.; Aziz, F. Enhanced biosorption of bisphenol A from wastewater using hydroxyapatite elaborated from fish scales and camel bone meal: A RSM@ BBD optimization approach. Ceram. Int. 2022, 48, 15811–15823. [Google Scholar] [CrossRef]
- Buscema, M. Back propagation neural networks. Subst. Use Misuse 1998, 33, 233–270. [Google Scholar] [CrossRef]
- Yang, C.; Liu, K.; Yang, S.; Zhu, W.; Tong, L.; Shi, J.; Wang, Y. Prediction of metformin adsorption on subsurface sediments based on quantitative experiment and artificial neural network modeling. Sci. Total Environ. 2023, 899, 165666. [Google Scholar] [CrossRef]
- Li, S.; Li, Y.; Xu, L. Deformation Pattern and Failure Mechanism of Railway Embankment Caused by Lake Water Fluctuation Using Earth Observation and On-Site Monitoring Techniques. Water 2023, 15, 4284. [Google Scholar] [CrossRef]
- Igwe, O.; Chukwu, C. Slope stability analysis of mine waste dumps at a mine site in Southeastern Nigeria. Bull. Eng. Geol. Environ. 2019, 78, 2503–2517. [Google Scholar] [CrossRef]
- Rahimi, A.; Rahardjo, H.; Leong, E.-C. Effect of antecedent rainfall patterns on rainfall-induced slope failure. J. Geotech. Geoenvironmental Eng. 2011, 137, 483–491. [Google Scholar] [CrossRef]
- Rahardjo, H.; Nistor, M.-M.; Gofar, N.; Satyanaga, A.; Xiaosheng, Q.; Yee, S.I.C. Spatial distribution, variation and trend of five-day antecedent rainfall in Singapore. Georisk Assess. Manag. Risk Eng. Syst. Geohazards 2020, 14, 177–191. [Google Scholar] [CrossRef]
- Kim, S.W.; Chun, K.W.; Kim, M.; Catani, F.; Choi, B.; Seo, J.I. Effect of antecedent rainfall conditions and their variations on shallow landslide-triggering rainfall thresholds in South Korea. Landslides 2021, 18, 569–582. [Google Scholar] [CrossRef]
- Isiyaka, H.A.; Jumbri, K.; Sambudi, N.S.; Zango, Z.U.; Abdullah, N.A.F.; Saad, B.; Mustapha, A. Adsorption of dicamba and MCPA onto MIL-53 (Al) metal–organic framework: Response surface methodology and artificial neural network model studies. RSC Adv. 2020, 10, 43213–43224. [Google Scholar] [CrossRef] [PubMed]
- Foong, L.K.; Moayedi, H. Slope stability evaluation using neural network optimized by equilibrium optimization and vortex search algorithm. Eng. Comput. 2021, 38, 1269–1283. [Google Scholar] [CrossRef]
- Bharati, A.K.; Ray, A.; Khandelwal, M.; Rai, R.; Jaiswal, A. Stability evaluation of dump slope using artificial neural network and multiple regression. Eng. Comput. 2022, 38 (Suppl. S3), 1835–1843. [Google Scholar] [CrossRef]
- Gelisli, K.; Kaya, T.; Babacan, A.E. Assessing the factor of safety using an artificial neural network: Case studies on landslides in Giresun, Turkey. Environ. Earth Sci. 2015, 73, 8639–8646. [Google Scholar] [CrossRef]
- Genuino, D.A.D.; Bataller, B.G.; Capareda, S.C.; de Luna, M.D.G. Application of artificial neural network in the modeling and optimization of humic acid extraction from municipal solid waste biochar. J. Environ. Chem. Eng. 2017, 5, 4101–4107. [Google Scholar] [CrossRef]
- Betiku, E.; Taiwo, A.E. Modeling and optimization of bioethanol production from breadfruit starch hydrolyzate vis-à-vis response surface methodology and artificial neural network. Renew. Energy 2015, 74, 87–94. [Google Scholar] [CrossRef]
Factor Level | v (m/s) | ρs (kg/m3) | c (Kpa) | φ (°) | L (KN) | κs (m/s) | μ | E (Mpa) | H (m) |
---|---|---|---|---|---|---|---|---|---|
+ | 0.22 | 2090 | 15.4 | 37.4 | 143 | 5.83 × 10−6 | 0.33 | 25.85 | 18.7 |
0 | 0.2 | 1900 | 14 | 34 | 130 | 5.30 × 10−6 | 0.3 | 23.5 | 17.0 |
- | 0.18 | 1710 | 12.6 | 30.6 | 117 | 4.77 × 10−6 | 0.27 | 21.15 | 15.3 |
Iterations | Plackett–Burman Analysis of Nine Criteria for Rising Water Level | Plackett–Burman Analysis of Nine Criteria for Falling Water Level | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
H | v | k | c | ϕ | µ | E | ρs | L | SRF Rising | H | v | k | c | ϕ | µ | E | ρs | L | SRF Falling | |
ID | ||||||||||||||||||||
SR 1 | + | − | − | − | + | + | + | − | + | 2.155 | + | + | − | + | + | − | + | − | − | 1.986 |
SR 2 | + | + | − | + | − | − | − | + | + | 2.066 | + | + | − | + | − | − | − | + | + | 1.782 |
SR 3 | + | − | + | − | − | − | + | + | + | 1.827 | − | − | − | − | − | − | − | − | − | 1.78 |
SR 4 | − | − | − | − | − | − | − | − | − | 1.825 | + | − | − | − | + | + | + | − | + | 1.931 |
SR 5 | − | + | − | − | − | + | + | + | − | 1.891 | + | + | + | − | + | + | − | + | − | 1.852 |
SR 6 | − | + | + | − | + | − | − | − | + | 2.031 | − | + | − | − | − | + | + | + | − | 1.703 |
SR 7 | − | − | + | + | + | − | + | + | − | 2.28 | − | + | + | − | + | − | − | − | + | 1.916 |
SR 8 | + | − | − | − | + | + | + | − | + | 2.131 | + | − | + | + | − | + | − | − | − | 1.846 |
SR 9 | + | − | + | + | − | + | − | − | − | 2.07 | − | − | − | + | + | + | − | + | + | 2.011 |
SR 10 | − | + | + | + | − | + | + | − | + | 1.947 | + | − | + | − | − | − | + | + | + | 1.681 |
SR 11 | + | + | − | + | + | − | + | − | − | 2.156 | − | + | + | + | − | + | + | − | + | 1.826 |
SR 12 | + | + | + | − | + | + | − | + | − | 2.13 | − | − | + | + | + | − | + | + | − | 2.009 |
Output | SD | PRESS | R2 | Adj.R2 | Pred.R2 | Adq.P | p-Value | COV | Remarks |
---|---|---|---|---|---|---|---|---|---|
RWL | 0.00(05) | 0.00(00) | 0.99(99) | 0.99(99) | 0.99(98) | 898.00 | <0.0001 | 0.02(33) | significant |
FWL | 0.00(61) | 0.00(32) | 0.99(51) | 0.99(25) | 0.97(80) | 76.62 | <0.0001 | 0.31(13) | significant |
Parameters/Responses | Lowest and Highest Limits | Goal | Weight | Importance |
---|---|---|---|---|
Friction angle | 30.6–37.4 | In range | 1 | 3 |
Cohesion | 12.6–15.4 | In range | 1 | 3 |
Unit weight | 1710–2090 | In range | 1 | 3 |
Water level | 15.3–18.7 | In range | 1 | 3 |
SRF rising | –2.3(2) | Maximize | 1 | 3 |
SRF falling | –2.1 | Maximize | 1 | 3 |
S/N | Designs | RWL | FWL | ||||
---|---|---|---|---|---|---|---|
R2 | RMSE | MAD | R2 | RMSE | MAD | ||
1 | (3) | 0.98(30) | 0.00(75) | 0.00(62) | 0.99(86) | 0.00(28) | 0.00(21) |
2 | (4) | 0.99(88) | 0.00(12) | 0.00(18) | 0.99(93) | 0.00(20) | 0.00(16) |
3 | (5) | 0.99(91) | 0.00(18) | 0.00(14) | 0.99(05) | 0.00(72) | 0.00(56) |
4 | (6) | 0.99(99) | 1.17 × 10−15 | 8.88 × 10−16 | 0.99(96) | 0.00(14) | 0.00(11) |
5 | (7) | 0.99(91) | 0.00(17) | 0.00(14) | 0.99(67) | 0.00(43) | 0.00(34) |
6 | (8) | 0.99(91) | 0.00(17) | 0.00(13) | 0.99(97) | 0.00(14) | 0.00(11) |
7 | (9) | 0.99(91) | 0.00(17) | 0.00(13) | 0.99(99) | 0.00(14) | 0.00(11) |
8 | (10) | 0.99(91) | 0.00(17) | 0.00(13) | 0.99(69) | 0.00(41) | 0.00(34) |
Responses | R2 | MRE | RMSE | |||
---|---|---|---|---|---|---|
RSM | ANN | RSM | ANN | RSM | ANN | |
RWL | 0.99(99) | 0.99(99) | 0.01(04) | 0.17(84) | 0.00(03) | 0.00(84) |
FWL | 0.99(25) | 0.99(97) | 0.23(90) | 0.21(15) | 0.00(05) | 0.00(54) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aliyu, B.U.; Xu, L.; Bello, A.-A.D.; Shuaibu, A.; Kalin, R.M.; Ahmad, A.; Islam, N.; Raza, B. Prediction of Railway Embankment Slope Hydromechanical Properties under Bidirectional Water Level Fluctuations. Appl. Sci. 2024, 14, 3402. https://doi.org/10.3390/app14083402
Aliyu BU, Xu L, Bello A-AD, Shuaibu A, Kalin RM, Ahmad A, Islam N, Raza B. Prediction of Railway Embankment Slope Hydromechanical Properties under Bidirectional Water Level Fluctuations. Applied Sciences. 2024; 14(8):3402. https://doi.org/10.3390/app14083402
Chicago/Turabian StyleAliyu, Bamaiyi Usman, Linrong Xu, Al-Amin Danladi Bello, Abdulrahman Shuaibu, Robert M. Kalin, Abdulaziz Ahmad, Nahidul Islam, and Basit Raza. 2024. "Prediction of Railway Embankment Slope Hydromechanical Properties under Bidirectional Water Level Fluctuations" Applied Sciences 14, no. 8: 3402. https://doi.org/10.3390/app14083402
APA StyleAliyu, B. U., Xu, L., Bello, A.-A. D., Shuaibu, A., Kalin, R. M., Ahmad, A., Islam, N., & Raza, B. (2024). Prediction of Railway Embankment Slope Hydromechanical Properties under Bidirectional Water Level Fluctuations. Applied Sciences, 14(8), 3402. https://doi.org/10.3390/app14083402