Impact of Selected Yeast Strains on Quality Parameters of Obtained Sauerkraut
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Material and Microorganisms
2.2. Fermentation of Sauerkraut
2.3. Determination of Sugars and Organic Acids via HPLC
2.4. Determination of Volatile Compounds (HS-SPME-GC-TOFMS)
2.5. Colour of Sauerkraut
2.6. Aroma Analysis (QDA)
2.7. Statistical Analysis
3. Results and Discussion
3.1. Organic Acids and Sugars
3.2. Volatile Compounds
3.3. Colour and Aroma Profile
(mg/kg) | Control | D. hansenii Dh17 | D. hansenii Dh19 | D. hansenii Dh31 | W. anomalus Wa1 | W. anomalus Wa7 | R. mucilaginosa Rm8 | W. anomalus Wa22 | R. mucilaginosa Rm26 | P. fermentans Pf9 | C. lusitaniae Cl6 | SEM 1 | Sig. 2 | OT [mg/kg] | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sulphur compounds | ||||||||||||||||
Carbon disulfide | 526 | 76 | 6.4 a | 6.2 a | 6.3 a | 6.7 a | 11.9 a | 21.4 b | 6.4 a | 20.2 b | 24.5 b | 9.1 a | 7.7 a | 1.4 | *** | 0.2 |
3-Butenenitrile | 658 | 41 | 28.2 b–e | 25.5 a–d | 28.5 c–e | 19.8 a | 32.5 de | 20.6 a–c | 20.4 ab | 45.8 f | 34.8 e | 19.9 a | 23.2 a–c | 1.5 | *** | na |
Methyl thiocyanate | 676 | 73 | 5.3 a–d | 2.9 a | 4.0 ab | 2.8 a | 7.0 b–d | 5.4 a–d | 5.1 a–c | 8.5 de | 7.0 bd | 7.9 c–e | 10.6 e | 0.5 | *** | na |
Dimethyl disulfide | 729 | 94 | 10.3 a | 16.3 b | 9.6 a | 9.9 a | 23.3 de | 26.5 e | 17.8 bc | 20.0 b–d | 22.6 c–e | 19.0 b–d | 18.6 b–d | 1.0 | *** | 0.016 |
Allyl thiocyanate | 812 | 39 | 0.00 | 0.79 | 0.57 | 0.46 | 0.00 | 0.00 | 1.60 | 0.54 | 0.00 | 0.00 | 0.72 | 0.17 | ns | na |
Allyl isothiocyanate | 847 | 99 | 44.9 de | 24.4 a | 30.3 ab | 34.6 bc | 49.1 e | 39.7 cd | 38.6 cd | 63.4 f | 40.7 cd | 45.1 de | 60.1 f | 2.1 | *** | 0.04 |
Dimethyl trisulfide | 949 | 126 | 0.95 b | 1.77 d | 1.19 b–d | 1.19 b–d | 1.59 cd | 3.74 e | 0.58 ab | 0.91 b | 0.87 b | 1.15 bc | 0.25 a | 0.17 | *** | 0.05 |
3-Butenyl isothiocyanate | 958 | 72 | 0.00 a | 2.27 cd | 1.78 bc | 3.27 def | 3.88 ef | 4.44 f | 0.72 ab | 2.53 cde | 0.63 ab | 0.00 a | 0.71 ab | 0.29 | *** | 0.01 |
3-Methylthiopropyl isothiocyanate | 1287 | 101 | 8.4 cd | 12.2 e | 4.9 ab | 2.2 a | 4.2 ab | 1.8 a | 9.0 cd | 6.0 bc | 4.0 ab | 3.0 ab | 9.9 de | 0.6 | *** | 0.006 |
Terpenes | ||||||||||||||||
p-Cymene | 1011 | 119 | 5.13 | 0.60 | 2.72 | 3.41 | 4.49 | 4.87 | 4.43 | 4.61 | 3.07 | 5.18 | 8.04 | 0.47 | ns | 0.057 |
Dihydromyrcenol | 1053 | 59 | 2.24 | 3.87 | 4.87 | 3.53 | 4.09 | 4.04 | 2.81 | 4.41 | 2.50 | 2.11 | 2.80 | 0.26 | ns | na |
α-Terpineol | 1196 | 93 | 0.00 | 0.37 | 0.47 | 0.31 | 0.32 | 0.15 | 0.19 | 0.21 | 0.05 | 0.00 | 0.00 | 0.04 | ns | 330 |
β-Damascenone | 1371 | 69 | 10.2 d | 2.7 ab | 2.7 ab | 1.8 a | 2.3 ab | 1.7 a | 6.6 b–d | 8.1 cd | 5.2 a–c | 3.6 a–c | 19.0 e | 1.0 | *** | 0.002 |
Geranyl acetone | 1451 | 43 | 5.8 ab | 30.8 f | 17.2 d | 26.0 e | 13.0 c | 3.3 a | 9.6 bc | 5.7 a | 3.9 a | 2.2 a | 9.9 bc | 1.7 | *** | 60 |
β-Ionone | 1488 | 177 | 0.00 a | 0.44 d | 0.19 bc | 0.22 c | 0.00 a | 0.03 a | 0.00 a | 0.00 a | 0.12 b | 0.00 a | 0.00 a | 0.03 | *** | 0.007 |
−1 | −0.5 | 0 | 0.5 | 1 |
Control | D. hansenii Dh17 | D. hansenii Dh19 | D. hansenii Dh31 | W. anomalus Wa1 | W. anomalus Wa7 | W. anomalus Wa22 | R. mucilaginosa Rm8 | R. mucilaginosa Rm26 | P. fermentans Pf9 | C. lusitaniae Cl6 | SEM 1 | Sig. 2 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CIE L | 65.5 | 66.7 | 65.3 | 65.1 | 64.6 | 65.0 | 63.6 | 62.6 | 65.2 | 63.5 | 66.4 | 0.4 | ns |
CIE a* | 0.2 b | −1.3 a | −0.8 a | −1.0 a | −0.9 a | −1.4 a | −1.5 a | −1.0 a | −0.9 a | −0.9 a | −1.4 a | 0.2 | * |
CIE b* | 29.9 c | 22.6 ab | 26.4 a–c | 25.0 a–c | 25.0 a–c | 25.0 a–c | 21.6 a | 24.7 ab | 25.9 a–c | 27.0 c | 26.9 bc | 0.8 | * |
C* | 29.9 c | 22.7 ab | 26.5 a–c | 25.0 a–c | 25.0 a–c | 25.0 a–c | 21.6 a | 24.7 a–c | 25.9 a–c | 27.0 c | 26.9 bc | 0.8 | * |
h0 | 88.6 b | 86.2 ab | 87.3 ab | 87.7 ab | 87.9 ab | 86.8 ab | 85.8 a | 87.7 ab | 87.7 ab | 88.2 ab | 86.9 ab | 0.4 | * |
Δe | 0.0 | 7.5 | 3.6 | 5.1 | 5.1 | 5.3 | 8.8 | 6.1 | 4.2 | 3.7 | 3.6 | 0.8 | |
−1 | −0.5 | 0 | 0.5 | 1 |
3.4. Principal Component Analysis (PCA)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, Z.; Li, J.; Zhou, X.; Wei, B.; Xie, S.; Du, T.; Xiong, T. The lactic acid bacteria and yeast community of home-made sauerkraut from three provinces in Southwest China. Arch. Microbiol. 2021, 203, 3171–3182. [Google Scholar] [CrossRef] [PubMed]
- Satora, P.; Celej, D.; Skotniczny, M.; Trojan, N. Identyfikacja drożdży obecnych w kiszonej kapuście komercyjnej i otrzymywanej w gospodarstwach rolnych. Żywność Nauka Technologia Jakość 2017, 24, 27–36. [Google Scholar] [CrossRef]
- Li, K.-Y. Fermentation. In Handbook of Food and Beverage Fermentation Technology; Hui, Y.H., Meunier-Goddik, L., Hansen, Å.S., Josephsen, J., Nip, W.K., Stanfield, P.S., Toldrá, F., Eds.; Marcel Dekker Inc.: New York, NY, USA, 2004; pp. 595–610. [Google Scholar]
- Satora, P.; Strnad, S. The Influence of Fermentation Vessels on Yeast Microbiota and Main Parameters of Sauerkraut. Appl. Sci. 2024, 14, 236. [Google Scholar] [CrossRef]
- Satora, P.; Skotniczny, M.; Strnad, S.; Ženišová, K. Yeast Microbiota during Sauerkraut Fermentation and Its Characteristics. Int. J. Mol. Sci. 2020, 21, 9699. [Google Scholar] [CrossRef] [PubMed]
- ISO 8589; Sensory Analysis. General Guidance for the Design of Test Rooms. The International Organization for Standardization: Geneva, Switzerland, 2007.
- Montaño, A.; Sánchez, A.H.; Beato, V.M.; López-López, A.; de Castro, A. Pickling. Encycl. Food Health 2016, 369–374. [Google Scholar] [CrossRef]
- Yang, X.; Hu, W.; Xiu, Z.; Jiang, A.; Yang, X.; Saren, G.; Feng, K. Effect of salt concentration on microbial communities, physicochemical properties, and metabolite profile during spontaneous fermentation of Chinese northeast sauerkraut. J. Appl. Microbiol. 2020, 129, 1458–1471. [Google Scholar] [CrossRef] [PubMed]
- Guo, B.; Wu, Q.; Jiang, C.; Chen, Y.; Dai, Y.; Ji, C.; Zhang, S.; Dong, L.; Liang, H.; Lin, X. Inoculation of Yarrowia lipolytica promotes the growth of lactic acid bacteria, Debaryomyces udenii and the formation of ethyl esters in sour meat. Food Microbiol. 2024, 119, 104447. [Google Scholar] [CrossRef]
- Breuer, U.; Harms, H. Debaryomyces hansenii—An extremophilic yeast with biotechnological potential. Yeast 2006, 23, 415–437. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, A.; Bento, M.F.; Geraldo, M.D.; Cássio, F. Evaluation of the Lactic Acid Consumption in Yeast Cultures by Voltammetric Means. Electroanalysis 2005, 17, 483–488. [Google Scholar] [CrossRef]
- Ianieva, O.; Podgorsky, V. Enological potential of non-Saccharomyces yeast strains of enological and brewery origin from Ukrainian Collection of Microorganisms. Mycology 2020, 12, 203–215. [Google Scholar] [CrossRef]
- Zhao, H.; Li, Y.; Liu, L.; Zheng, M.; Feng, Z.; Hu, K.; Tao, Y. Effects of inoculation timing and mixed fermentation with Pichia fermentans on Oenococcus oeni viability, fermentation duration and aroma production during wine malolactic fermentation. Food Res. Int. 2022, 159, 111604. [Google Scholar] [CrossRef] [PubMed]
- Chaves, S.R.; Rego, A.; Martins, V.M.; Santos-Pereira, C.; Sousa, M.J.; Côrte-Real, M. Regulation of Cell Death Induced by Acetic Acid in Yeasts. Front. Cell. Dev. Biol. 2021, 9, 642375. [Google Scholar] [CrossRef] [PubMed]
- Carpena, M.; Fraga-Corral, M.; Otero, P.; Nogueira, R.A.; Garcia-Oliveira, P.; Prieto, M.A.; Simal-Gandara, J. Secondary Aroma: Influence of Wine Microorganisms in Their Aroma Profile. Foods 2021, 10, 51. [Google Scholar] [CrossRef] [PubMed]
- Oberg, C.J.; Brown, R.J.; Kauffman, B. Preservation by fermentation focusing on the chemistry and microbiology of vegetables. Prod. Chem. 1993, 70, 653–656. [Google Scholar] [CrossRef]
- Berger, M.D.; Vakula, A.; Horecki, A.T.; Rakić, D.; Pavlić, B.; Malbaša, R.; Vitas, J.; Jerković, J.; Šumić, Z. Cabbage (Brassica oleracea, L. Var. Capitata) Fermentation: Variation of Bioactive Compounds, Sum of Ranking Differences and Cluster Analysis. LWT 2020, 133, 110038. [Google Scholar]
- Rosa, E.; David, M.; Gomes, M.H. Glucose, fructose and sucrose content in broccoli, white cabbage and Portuguese cabbage grown in early and late seasons. J. Sci. Food Agric. 2001, 81, 1145–1149. [Google Scholar] [CrossRef]
- Kulshrestha, S.; Tyagi, P.; Sindhia, V.; Yadavilli, K.S. Invertase and its applications—A brief review. J. Pharm. Res. 2013, 7, 792–797. [Google Scholar] [CrossRef]
- Bhatt, S.M.; Mohan, A.; Srivastava, S.K. Challenges in Enzymatic Route of Mannitol Production. ISRN Biotechnol. 2013, 2013, 914187. [Google Scholar] [CrossRef] [PubMed]
- Johannigsmeier, S.D.; McFeeters, J.F.; Fleming, H.P.; Thompson, R.L. Effects of Leuconostoc mesenteroides Starter Culture on Fermentation of Cabbage with Reduced Salt Concentrations. J. Food Sci. 2007, 72, 166–172. [Google Scholar]
- Shaigani, P.; Awad, D.; Redai, V. Oleaginous yeasts- substrate preference and lipid productivity: A view on the performance of microbial lipid producers. Microb. Cell Fact. 2021, 20, 220. [Google Scholar] [CrossRef]
- Ivit, N.N.; Longo, R.; Kemp, B. The Effect of Non-Saccharomyces and Saccharomyces Non-Cerevisiae Yeasts on Ethanol and Glycerol Levels in Wine. Fermentation 2020, 6, 77. [Google Scholar] [CrossRef]
- Kryachko, Y.; Batbayar, B.; Tanaka, T.; Nickerson, M.T.; Korber, D.R. Production of glycerol by Lactobacillus plantarum NRRL B-4496 and formation of hexamine during fermentation of pea protein enriched flour. J. Biotechnol. 2020, 323, 331–340. [Google Scholar] [CrossRef]
- Wolkers-Rooijackers, J.C.M.; Thomas, S.M.; Nout, M.J.R. Effects of sodium reduction scenarios on fermentation and quality of sauerkraut. LWT 2013, 54, 383–388. [Google Scholar] [CrossRef]
- De Jong, B.W.; Shi, S.; Siewers, V. Improved production of fatty acid ethyl esters in Saccharomyces cerevisiae through up-regulation of the ethanol degradation pathway and expression of the heterologous phosphoketolase pathway. Microb. Cell. Fact. 2014, 13, 39. [Google Scholar] [CrossRef] [PubMed]
- Vincenti, S.; Mariani, M.; Alberti, J.-C.; Jacopini, S.; Brunini-Bronzini de Caraffa, V.; Berti, L.; Maury, J. Biocatalytic Synthesis of Natural Green Leaf Volatiles Using the Lipoxygenase Metabolic Pathway. Catalysts 2019, 9, 873. [Google Scholar] [CrossRef]
- Mastrigt, O.; van Abee, T.; Lillevang, S.K.; Smid, E.J. Quantitative physiology and aroma formation of a dairy Lactococcus lactis at near-zero growth rates. Food Microbiol. 2018, 73, 216–226. [Google Scholar] [CrossRef]
- Meng, W.; Zhang, L.; Cao, M. 2,3-Butanediol synthesis from glucose supplies NADH for elimination of toxic acetate produced during overflow metabolism. Cell Discov. 2021, 7, 43. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, O.O.; Gonzalez, E.; Fernandez, M.R.; Larroy, C.; Sola, L.; Pericas, M.A.; Pares, X.; Biosca, J.A. Characterization of a (2R,3R)-2,3-butanediol dehydrogenase as the Saccharomyces cerevisiae YAL060W gene product. Disruption and induction of the gene. J. Biol. Chem. 2000, 275, 35876–35885. [Google Scholar] [CrossRef] [PubMed]
- Wieczorek, M.N.; Drabińska, N. Flavour Generation during Lactic Acid Fermentation of Brassica Vegetables—Literature Review. Appl. Sci. 2022, 12, 5598. [Google Scholar] [CrossRef]
- Lončarić, A.; Marček, T.; Šubarić, D.; Jozinović, A.; Babić, J.; Miličević, B.; Sinković, K.; Šubarić, D.; Ačkar, Đ. Comparative Evaluation of Bioactive Compounds and Volatile Profile of White Cabbages. Molecules 2020, 25, 3696. [Google Scholar] [CrossRef]
- Lee, S.M.; Lim, H.J.; Chang, J.W.; Hurh, B.-S.; Kim, Y.-S. Investigation on the formations of volatile compounds, fatty acids, and γ-lactones in white and brown rice during fermentation. Food Chem. 2018, 269, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Hu, W.; Xiu, Z.; Jiang, A.; Yang, X.; Feng, K. Comparison of northeast sauerkraut fermentation between single lactic acid bacteria strains and traditional fermentation. Food Res. Int. 2020, 137, 109553. [Google Scholar] [CrossRef] [PubMed]
- Ghawi, S.K.; Methven, L.; Rastall, R.A.; Niranjam, K. Thermal and high hydrostatic pressure inactivation of myrosinase from green cabbage: A kinetic study. Food Chem. 2012, 131, 1240–1247. [Google Scholar] [CrossRef]
- Chen, C.W.; Ho, C.T. Thermal degradation of allyl isothiocyanate in aqueous solution. J. Agric. Food Chem. 1998, 46, 220–223. [Google Scholar] [CrossRef] [PubMed]
- Oshiki, M.; Fukushima, T.; Kawano, S.; Kasahara, Y.; Nakagawa, J. Thiocyanate Degradation by a Highly Enriched Culture of the Neutrophilic Halophile Thiohalobacter sp. Strain FOKN1 from Activated Sludge and Genomic Insights into Thiocyanate Metabolism. Microbes Environ. 2019, 34, 402–412. [Google Scholar] [CrossRef] [PubMed]
- Ciska, E.; Drabińska, N.; Narwojsz, A.; Honke, J. Stability of glucosinolates and glucosinolate degradation products during storage of boiled white cabbage. Food Chem. 2016, 203, 340–347. [Google Scholar] [CrossRef] [PubMed]
- Wieczorek, M.N.; Walczak, M.; Skrzypczak-Zielińska, M.; Jeleń, H.H. Bitter taste of Brassica vegetables: The role of genetic factors, receptors, isothiocyanates, glucosinolates, and flavor context. Crit. Rev. Food Sci. Nutr. 2017, 58, 3130–3140. [Google Scholar] [CrossRef]
- Ahmed, N.; Darshanee, H.L.C.; Khan, I.A.; Zhang, Z.-F.; Liu, T.-X. Host Selection Behavior of the Green Peach Aphid, Myzus persicae, in Response to Volatile Organic Compounds and Nitrogen Contents of Cabbage Cultivars. Front. Plant Sci. 2019, 10, 79. [Google Scholar] [CrossRef]
- Martins, N.; Roriz, C.L.; Morales, P.; Barros, L.; Ferreira, I.C.F.R. Food colorants: Challenges, opportunities and current desires of agro- industries to ensure consumer expectations and regulatory practices. Trends Food Sci. Technol. 2016, 52, 1–15. [Google Scholar] [CrossRef]
- Tao, Y.; Han, M.; Gao, X.; Han, Y.; Show, P.-L.; Liu, C.; Xie, G. Applications of water blanching, surface contacting ultrasound-assisted air drying, and their combination for dehydration of white cabbage: Drying mechanism, bioactive profile, color and rehydration property. Ultrason. Sonochem. 2019, 53, 192–201. [Google Scholar] [CrossRef]
- Kusznierewicz, B.; Śmiechowska, A.; Bartoszek, A.; Namieśnik, J. The effect of heating and fermenting on antioxidant properties of white cabbage. Food Chem. 2008, 108, 853–861. [Google Scholar] [CrossRef] [PubMed]
- Mokrzycki, W.; Tatol, M. Color difference Delta E—A survey. Mach. Graph. Vis. 2011, 20, 383–411. [Google Scholar]
- Major, N.; Bažon, I.; Išić, N.; Kovačević, T.K.; Ban, D.; Radeka, S.; Goreta, B.S. Bioactive Properties, Volatile Compounds, and Sensory Profile of Sauerkraut Are Dependent on Cultivar Choice and Storage Conditions. Foods 2022, 11, 1218. [Google Scholar] [CrossRef]
- Holt, S.; Miks, M.H.; de Carvalho, B.T.; Foulquié-Moreno, M.R.; Thevelein, J.M. The molecular biology of fruity and floral aromas in beer and other alcoholic beverages. FEMS Microbiol. Rev. 2019, 43, 193–222. [Google Scholar] [CrossRef] [PubMed]
- Hutzler, M.; Riedl, R.; Koob, J.; Jacob, F. Fermentation and spoilage yeasts and their relevance for the beverage industry: A review. Brew Sci. 2012, 65, 33–52. [Google Scholar]
- Narisetty, V.; Castro, E.; Durgapal, S.; Coulon, F.; Jacob, S.; Kumar, D.; Kumar Awasthi, M.; Kishore Pant, K.; Parameswaran, B.; Kumar, V. High level xylitol production by Pichia fermentans using non-detoxified xylose-rich sugarcane bagasse and olive pits hydrolysates. Bioresour. Technol. 2021, 342, 126005. [Google Scholar] [CrossRef] [PubMed]
- Du Toit, M.; Pretorius, I.S. Microbial spoilage and preservation of wine: Using weapons from nature’s own arsenal—A review. S. Afr. J. Enol. Vitic. 2000, 21, 74–92. [Google Scholar] [CrossRef]
- Padilla, B.; Gil, J.; Manzanares, P. Challenges of the Non-Conventional Yeast Wickerhamomyces anomalus in Winemaking. Fermentation 2008, 4, 68. [Google Scholar] [CrossRef]
- Tkáčová, J.; Furdíková, K.; Klempová, T.; Ďurčanská, K.; Čertík, M. Screening of carotenoid-producing Rhodotorula strains isolated from natural sources. Acta Chim. Slov. 2015, 8, 34–38. [Google Scholar] [CrossRef]
Species | Strain | Isolation | Homology [%] | ||
---|---|---|---|---|---|
Day of Fermentation | Vessel | ||||
Pichia fermentans | Pf9 | 4 | Glass | 100.0 | MT645416 |
Wickerhamomyces anomalus | Wa1 | 1 | Stoneware | 99.0 | KY657575 |
Wickerhamomyces anomalus | Wa7 | 2 | Stoneware | 99.6 | KY105860 |
Wickerhamomyces anomalus | Wa22 | 4 | Stoneware | 98.4 | KT580795 |
Rhodotorula mucilaginosa | Rm8 | 1 | Glass | 100.0 | OQ692821 |
Rhodotorula mucilaginosa | Rm26 | 0 | Glass | 99.8 | JQ293997 |
Debaryomyces hansenii | Dh17 | 0 | Glass | 99.0 | MT192508 |
Debaryomyces hansenii | Dh19 | 1 | Glass | 99.2 | MK275230 |
Debaryomyces hansenii | Dh31 | 4 | Glass | 98.3 | KM816678 |
Clavispora lusitaniae | Cl6 | 7 | Glass | 99.0 | MK312615 |
(g/kg) | Control | D. hansenii Dh17 | D. hansenii Dh19 | D. hansenii Dh31 | W. anomalus Wa1 | W. anomalus Wa7 | W. anomalus Wa22 | R. mucilaginosa Rm8 | R. mucilaginosa Rm26 | P. fermentans Pf9 | C. lusitaniae Cl6 | SEM 1 | Sig. 2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Oxalic acid | 1.25 | 1.53 | 1.89 | 1.27 | 1.28 | 1.08 | 1.34 | 1.67 | 1.31 | 1.68 | 1.49 | 0.06 | ns |
Citric acid | 0.91 bc | 0.90 bc | 1.05 c | 0.74 ab | 0.80 bc | 1.04 bc | 0.78 bc | 1.06 c | 0.49 a | 0.76 a–c | 0.98 bc | 0.04 | ** |
Succinic acid | 0.90 | 0.82 | 1.03 | 0.79 | 0.71 | 0.87 | 0.76 | 0.94 | 0.74 | 0.64 | 1.01 | 0.03 | ns |
Lactic acid | 9.3 ab | 13.4 c | 10.6 bc | 10.4 a–c | 6.5 a | 7.9 ab | 7.6 ab | 8.5 ab | 8.2 ab | 6.5 a | 7.7 ab | 0.5 | * |
Acetic acid | 1.05 a–c | 1.40 cd | 1.69 d | 1.44 cd | 1.24 b–d | 1.52 cd | 1.02 a–c | 1.46 cd | 0.54 a | 0.75 ab | 1.45 cd | 0.07 | *** |
Glucose | 4.15 cd | 5.40 de | 6.70 e | 4.47 cd | 2.02 ab | 6.42 e | 0.84 a | 4.64 cd | 3.48 bc | 2.53 b | 4.76 cd | 0.34 | *** |
Fructose | 2.46 ab | 2.62 a–c | 4.17 de | 3.23 a–d | 4.17 de | 4.67 e | 3.54 cd | 3.43 b–d | 2.65 a–c | 2.22 a | 3.60 cd | 0.16 | *** |
Mannitol | 5.67 ab | 7.63 cd | 8.80 d | 6.88 b–d | 6.22 a–c | 8.13 cd | 6.31 a–c | 7.14 b–d | 5.65 ab | 4.35 a | 7.47 b–d | 0.27 | *** |
Glycerol | 0.84 a–d | 0.99 d | 0.88 b–d | 0.77 a–d | 0.65 ab | 0.67 ab | 0.71 a–c | 0.75 a–d | 0.95 cd | 0.62 a | 0.69 a–c | 0.03 | * |
Ethanol | 4.31 c–e | 5.35 e–g | 5.78 fg | 5.67 fg | 4.14 b–d | 5.71 fg | 3.30 bc | 6.13 g | 2.99 ab | 1.96 a | 4.78 d–f | 0.25 | *** |
−1 | −0.5 | 0 | 0.5 | 1 |
(mg/kg) | Control | D. hansenii Dh17 | D. hansenii Dh19 | D. hansenii Dh31 | W. anomalus Wa1 | W. anomalus Wa7 | R. mucilaginosa Rm8 | W. anomalus Wa22 | R. mucilaginosa Rm26 | P. fermentans Pf9 | C. lusitaniae Cl6 | SEM 1 | Sig. 2 | OT [mg/kg] | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Alcohols | ||||||||||||||||
1-Propanol, 2-methyl- | 629 | 74 | 0.0 a | 2.3 a | 1.8 a | 4.7 a | 2.5 a | 0.0 a | 4.3 a | 0.0 a | 0.0 a | 0.0 a | 11.20 b | 0.68 | *** | 16 |
1-Penten-3-ol | 673 | 57 | 24.4 c | 0.6 a | 7.9 ab | 3.6 ab | 0.0 a | 0.0 a | 13.5 a–c | 0.0 a | 0.0 a | 18.3 bc | 41.8 d | 2.58 | *** | 0.4 |
1-Butanol, 3-methyl- | 723 | 55 | 2.4 a | 36.3 b–e | 37.7 c–e | 64.2 e–g | 72.7 g | 40.5 c–f | 47.8 d–g | 19.9 a–d | 15.8 a–c | 7.7 ab | 68.3 fg | 4.6 | *** | 0.41 |
1-Butanol, 2-methyl- | 732 | 56 | 6.1 a | 31.1 a–c | 41.2 bc | 41.2 bc | 52.6 c | 47.9 c | 80.6 d | 6.7 a | 6.9 a | 15.8 ab | 118.0 e | 6.3 | *** | 20 |
2,3-Butanediol | 789 | 45 | 156 g | 89 def | 93 ef | 55 b–d | 83 c–e | 20 ab | 50 bc | 38 ab | 41 ab | 10 a | 122 fg | 8 | *** | 1 |
3-Hexen-1-ol, (Z)- | 831 | 67 | 4.4 a | 1.8 a | 3.7 a | 2.4 a | 4.2 a | 3.6 a | 3.8 a | 4.3 a | 2.6 a | 5.3 a | 9.2 b | 0.4 | * | 0.1 |
1-Hexanol | 865 | 56 | 2.44 ab | 0.68 ab | 2.61 ab | 2.50 ab | 0.00 a | 0.00 a | 3.42 bc | 1.13 ab | 0.61 ab | 1.68 ab | 6.23 c | 0.40 | ** | 2.5 |
1-Hexanol, 2-ethyl- | 1020 | 57 | 2.6 ab | 7.7 d–f | 9.9 f | 7.5 d–f | 7.0 c–f | 6.3 c–e | 5.4 b–d | 9.5 ef | 4.2 a–d | 3.5 a–c | 1.7 a | 0.5 | *** | 0.024 |
Nonanol | 1186 | 41 | 1.44 cd | 3.01 f | 2.45 ef | 0.58 ab | 0.70 a–c | 0.72 a–c | 2.24 ef | 2.39 ef | 1.24 bc | 0.32 a | 2.08 de | 0.17 | *** | 1 |
1-Decanol | 1262 | 55 | 24.4 d | 9.5 ab | 13.2 bc | 3.9 a | 7.8 ab | 5.4 a | 17.1 c | 25.3 d | 13.4 bc | 6.0 a | 38.5 e | 1.7 | *** | 0.775 |
Undecanol | 1364 | 55 | 60.3 c | 22.7 ab | 27.8 ab | 8.4 a | 22.3 ab | 12.4 a | 44.6 bc | 57.6 c | 42.2 bc | 22.3 ab | 137.2 d | 6.6 | *** | 0.5 |
1-Dodecanol | 1472 | 41 | 9.8 c | 25.6 d | 23.4 d | 8.6 a–c | 9.8 c | 3.0 a | 7.7 a–c | 9.1 bc | 6.4 a–c | 3.8 ab | 26.0 d | 1.6 | *** | 0.158 |
1-Tetradecanol | 1664 | 55 | 0.07 a | 0.99 d | 0.19 a | 1.44 e | 0.57 bc | 0.22 ab | 0.20 ab | 0.72 cd | 0.20 ab | 0.21 ab | 1.50 e | 0.09 | *** | na |
Carbonyl compounds | ||||||||||||||||
Nonanal | 1083 | 57 | 0.00 a | 1.92 c–e | 2.06 de | 2.87 e | 2.80 de | 0.87 ab | 0.99 a–c | 2.77 de | 0.00 a | 1.74 b–d | 1.96 c–e | 0.19 | *** | 0.001 |
Decanal | 1209 | 57 | 1.01 a–c | 2.07 de | 1.59 cd | 2.55 e | 0.92 a–c | 0.43 a | 1.27 bc | 0.82 a–c | 0.73 ab | 0.38 a | 2.46 e | 0.15 | *** | 0.0003 |
2-Dodecanone | 1383 | 58 | 0.00 a | 1.09 d | 0.61 c | 0.91 d | 0.30 b | 0.00 a | 0.00 a | 0.00 a | 0.00 a | 0.00 a | 0.00 a | 0.07 | *** | 460 |
Dodecanal | 1409 | 41 | 0.13 a | 1.84 c | 2.01 cd | 2.53 d | 1.69 c | 0.34 a | 0.97 b | 0.27 a | 0.46 ab | 0.16 a | 1.70 c | 0.16 | *** | 0.055 |
Benzophenone | 1585 | 105 | 2.2 ab | 4.9 c | 3.1 b | 3.1 b | 2.1 ab | 0.9 a | 2.3 ab | 2.1 ab | 1.4 a | 1.0 a | 4.6 c | 0.3 | *** | na |
−1 | −0.5 | 0 | 0.5 | 1 |
(mg/kg) | Control | D. hansenii Dh17 | D. hansenii Dh19 | D. hansenii Dh31 | W. anomalus Wa1 | W. anomalus Wa7 | R. mucilaginosa Rm8 | W. anomalus Wa22 | R. mucilaginosa Rm26 | P. fermentans Pf9 | C. lusitaniae Cl6 | SEM 1 | Sig. 2 | OT [mg/kg] | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Esters | ||||||||||||||||
Ethyl acetate | 614 | 43 | 143 a | 610 ab | 440 ab | 1503 bc | 640 ab | 331 a | 1008 a–c | 226 a | 208 a | 162 a | 1795 c | 129 | * | 5 |
2-Butoxyethyl acetate | 1061 | 43 | 1.13 | 1.52 | 3.86 | 1.10 | 5.34 | 1.85 | 3.50 | 5.90 | 3.13 | 2.68 | 0.71 | 0.42 | ns | 0.1 |
Ethyl octanoate | 1204 | 88 | 0.23 ab | 2.25 e | 0.92 d | 7.59 f | 0.51 c | 0.14 a | 0.97 d | 0.23 ab | 0.49 bc | 0.19 a | 1.10 d | 0.38 | *** | 0.07 |
Ethyl 2-methyloctanoate | 1225 | 102 | 12.0 a | 84.5 c | 92.8 c | 45.6 b | 22.0 a | 12.4 a | 12.1 a | 12.9 a | 11.7 a | 13.4 a | 17.0 a | 5.4 | *** | na |
Phenethyl acetate | 1245 | 104 | 0.19 b–d | 0.97 f | 0.47 e | 0.27 cd | 0.17 bc | 0.00 a | 0.29 d | 0.00 a | 0.27 cd | 0.11 ab | 0.96 f | 0.06 | *** | 0.02 |
Propyl noanoate | 1377 | 61 | 0.1 a | 6.0 c | 3.5 b | 6.3 c | 1.7 ab | 0.2 a | 0.7 a | 0.1 a | 0.1 a | 0.1 a | 0.0 a | 0.5 | *** | na |
Ethyl decanoate | 1391 | 88 | 2.9 a–c | 26.0 f | 8.3 a–d | 16.6 e | 6.0 a–c | 1.4 a | 9.7 b–e | 3.6 ab | 10.6 c–e | 1.9 ab | 15.0 de | 1.43 | *** | 6.3 |
Dibutyl succinate | 1560 | 101 | 104 bc | 204 d | 132 c | 69 ab | 53 ab | 32 a | 75 ab | 93 bc | 62 ab | 41 a | 224 d | 12 | *** | na |
Ethyl dodecanoate | 1596 | 88 | 1.7 a | 6.0 ab | 4.2 ab | 10.7 bc | 21.7 d | 3.5 ab | 18.4 cd | 6.3 ab | 11.0 bc | 2.2 a | 3.9 ab | 1.3 | *** | 0.4 |
1-Methylethyl dodecanoate | 1627 | 60 | 3.5 ab | 8.4 d | 4.9 bc | 7.1 cd | 2.2 ab | 1.4 a | 2.9 ab | 2.9 ab | 2.3 ab | 1.2 a | 6.8 cd | 0.5 | *** | na |
Benzyl benzoate | 1749 | 105 | 24.0 b | 45.9 c | 22.3 b | 38.3 c | 16.9 ab | 9.0 a | 19.8 ab | 23.9 b | 18.2 ab | 10.1 a | 58.3 d | 2.8 | *** | 0.341 |
Ethyl tetradecanoate | 1787 | 88 | 0.71 a | 1.06 a | 1.60 ab | 3.48 ab | 4.46 b | 0.86 a | 3.00 ab | 4.57 b | 7.76 c | 1.24 ab | 2.73 ab | 0.44 | *** | 4 |
Ethyl hexadecanoate | 1979 | 88 | 1.7 a | 1.6 a | 1.0 a | 1.9 a | 1.4 a | 1.1 a | 4.1 c | 5.4 c | 3.9 bc | 2.4 ab | 7.2 d | 0.4 | *** | 2 |
Lactones | ||||||||||||||||
γ-Nonalactone | 1312 | 85 | 3.3 d | 2.2 a–d | 2.0 a–d | 1.5 ab | 1.8 a–c | 0.8 a | 2.4 b–d | 3.1 cd | 1.7 a–c | 1.0 ab | 5.8 e | 0.3 | *** | 0.007 |
γ-Undecalactone | 1573 | 85 | 0.9 ab | 2.4 c | 1.8 bc | 0.6 a | 0.8 ab | 0.4 a | 0.8 ab | 1.0 ab | 0.9 ab | 0.5 a | 2.6 c | 0.2 | *** | 0.06 |
−1 | −0.5 | 0 | 0.5 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Satora, P.; Strnad, S. Impact of Selected Yeast Strains on Quality Parameters of Obtained Sauerkraut. Appl. Sci. 2024, 14, 3462. https://doi.org/10.3390/app14083462
Satora P, Strnad S. Impact of Selected Yeast Strains on Quality Parameters of Obtained Sauerkraut. Applied Sciences. 2024; 14(8):3462. https://doi.org/10.3390/app14083462
Chicago/Turabian StyleSatora, Paweł, and Szymon Strnad. 2024. "Impact of Selected Yeast Strains on Quality Parameters of Obtained Sauerkraut" Applied Sciences 14, no. 8: 3462. https://doi.org/10.3390/app14083462
APA StyleSatora, P., & Strnad, S. (2024). Impact of Selected Yeast Strains on Quality Parameters of Obtained Sauerkraut. Applied Sciences, 14(8), 3462. https://doi.org/10.3390/app14083462