A Critical Review of Human Jaw Biomechanical Modeling
Abstract
:1. Introduction
- Elevation, corresponding to the closing of the mouth
- Depression, corresponding to the opening of the mouth
- Protrusion, corresponding to the protraction of the chin
- Retraction, corresponding to the retraction of the chin
- Lateral motions (side to side)
2. Materials and Methods
3. The Literature’s Main Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Picasso, B. Fondamenti di Meccanica e Biomeccanica; Springer: Milan, Italy, 2012. [Google Scholar]
- Ruggiero, A.; De Stefano, M.; Rao, T.V.V. Squeaking in Total Hip Arthroplasty. In Industrial Tribology; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar]
- Madeti, B.K.; Chalamalasetti, S.R.; Pragada, S.K.S. Biomechanics of knee joint—A review. Front. Mech. Eng. 2015, 10, 176–186. [Google Scholar]
- Czerniecki, J.M. Foot and ankle biomechanics in walking and running: A review. Am. J. Phys. Med. Rehabil. 1988, 67, 246–252. [Google Scholar]
- Ruggiero, A.; De Stefano, M. Experimental Investigation on the Bio-tribocorrosive behavior of Ti6Al4V alloy and 316 L stainless steel in two biological solutions. Tribol. Int. 2023, 190, 109033. [Google Scholar] [CrossRef]
- Ruggiero, A.; De Stefano, M. On the Biotribological Surfaces of Dental Implants: Investigation in the Framework of Osseointegration. Biotribology 2023, 35–36, 100254. [Google Scholar] [CrossRef]
- De Stefano, M.; Aliberti, S.M.; Ruggiero, A. (Bio)Tribocorrosion in Dental Implants: Principles and Techniques of Investigation. Appl. Sci. 2022, 12, 7421. [Google Scholar] [CrossRef]
- Lanza, A.; De Stefano, M.; Ruggiero, A. Investigating the optimal design of All-on-Four technique adopting finite element analysis: The aspect of framework material, kind and position of implants. Biomed. Eng. Adv. 2023, 6, 100110. [Google Scholar]
- De Stefano, M.; Lanza, A.; Faia, E.; Ruggiero, A. A novel ultrashort dental implant design for the reduction of the bone stress/strain: A comparative numerical investigation. Biomed. Eng. Adv. 2023, 5, 100077. [Google Scholar] [CrossRef]
- De Stefano, M.; Lanza, A.; Sbordone, L.; Ruggiero, A. Stress-strain and fatigue life numerical evaluation of two different dental implants considering isotropic and anisotropic human jaw. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2023, 237, 1190–1201. [Google Scholar] [CrossRef]
- Smith, A.L.; Davis, J.; Panagiotopoulou, O.; Taylor, A.B.; Robinson, C.; Ward, C.V.; Kimbel, W.H.; Alemseged, Z.; Ross, C.F. Does the model reflect the system? When two-dimensional biomechanics is not ‘good enough’. J. R. Soc. Interface 2023, 20, 20220536. [Google Scholar] [CrossRef]
- Teixeira, E.R.; Sato, Y.; Akagawa, Y.; Shindoi, S. A comparative evaluation of mandibular finite element models with different lengths and elements for implant biomechanics. J. Oral Rehabil. 1998, 25, 299–303. [Google Scholar] [CrossRef]
- Anitua, E.; Ibarra, N.L.S.; Rotaeche, L.S. Implant-Supported Prostheses in the Edentulous Mandible: Biomechanical Analysis of Different Implant Configurations via Finite Element Analysis. Dent. J. 2023, 11, 4. [Google Scholar] [CrossRef] [PubMed]
- Ichim, I.; Swain, M.V.; Kieser, J.A. Mandibular stiffness in humans: Numerical predictions. J. Biomech. 2006, 39, 1903–1913. [Google Scholar] [CrossRef]
- Ansoms, P.; Barzegari, M.; Sloten, J.V.; Geris, L. Coupling biomechanical models of implants with biodegradation models: A case study for biodegradable mandibular bone fixation plates. J. Mech. Behav. Biomed. Mater. 2023, 147, 106120. [Google Scholar] [CrossRef]
- Balshi, T.J.; Wolfinger, G.J.; Stein, B.E.; Balshi, S.F. A long-term retrospective analysis of survival rates of implants in the mandible. Int. J. Oral Maxillofac. Implants 2015, 30, 1348–1354. [Google Scholar] [CrossRef]
- Khadembaschi, D.; Brierly, G.I.; Chatfield, M.D.; Beech, N.; Batstone, M.D. Systematic review and pooled analysis of survival rates, success, and outcomes of osseointegrated implants in a variety of composite free flaps. Head Neck 2020, 42, 2669–2686. [Google Scholar] [CrossRef]
- Vollmer, D.; Meyer, U.; Joos, U.; Vègh, A.; Piffko, J. Experimental and finite element study of a human mandible. J. Craniomaxillofac. Surg. 2000, 28, 91–96. [Google Scholar] [CrossRef]
- Viano, D.C.; Bir, C.; Walilko, T.; Sherman, D. Ballistic Impact to the Forehead, Zygoma, and Mandible: Comparison of Human and Frangible Dummy Face Biomechanics. J. Trauma Inj. Infect. Crit. Care 2004, 56, 1305–1311. [Google Scholar] [CrossRef]
- Bujtár, P.; Simonovics, J.; Váradi, K.; Sándor, G.K.B.; Avery, C.M.E. The biomechanical aspects of reconstruction for segmental defects of the mandible: A finite element study to assess the optimisation of plate and screw factors. J. Cranio-Maxillofac. Surg. 2014, 42, 855–862. [Google Scholar] [CrossRef]
- Alkan, A.; Celebi, N.; Ozden, B.; Baş, B.; Inal, S. Biomechanical comparison of different plating techniques in repair of mandibular angle fractures. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2007, 104, 752–756. [Google Scholar] [CrossRef]
- Ingawalé, S.; Goswami, T. Temporomandibular Joint: Disorders, Treatments, and Biomechanics. Ann. Biomed. Eng. 2009, 37, 976–996. [Google Scholar] [CrossRef]
- Zhong, S.; Shi, Q.; Sun, Y.; Yang, S.; Dessel, V.J.; Gu, Y.; Chen, X.; Lübbers, H.-T.; Politis, C. Biomechanical comparison of locking and non-locking patient-specific mandibular reconstruction plate using finite element analysis. J. Mech. Behav. Biomed. Mater. 2021, 124, 104849. [Google Scholar] [CrossRef] [PubMed]
- Bezerra, T.P.; Junior, F.I.S.; Scarparo, H.C.; Costa, F.W.G.; Studart-Soares, E.C. Do erupted third molars weaken the mandibular angle after trauma to the chin region? A 3D finite element study. Int. J. Oral Maxillofac. Surg. 2013, 42, 474–478. [Google Scholar] [CrossRef] [PubMed]
- Antic, S.; Vukicevic, A.M.; Milasinovic, M.; Saveljic, I.; Jovicic, G.; Filipovic, N.; Rakocevic, Z.; Djuric, M. Impact of the lower third molar presence and position on the fragility of mandibular angle and condyle: A Three-dimensional finite element study. J. Craniomaxillofac. Surg. 2015, 43, 870–878. [Google Scholar] [CrossRef] [PubMed]
- Huys, S.E.F.; Keelson, B.; Brucker, Y.; Gompel, G.V.; Mey, J.; Sloten, J.V.; Buls, N. The use of dynamic CT imaging for tracking mandibular movements in a phantom. Biomed. Phys. Eng. Express 2022, 9, 015002. [Google Scholar] [CrossRef] [PubMed]
- Christensen, L.V.; Rassouli, N.M. Experimental occlusal interferences. Part I. A review. J. Oral Rehabil. 1995, 22, 515–520. [Google Scholar] [CrossRef]
- Cheng, K.J.; Liu, Y.F.; Wang, J.H.; Jun, J.C.; Jiang, X.F.; Wang, R.; Baur, D.A. Biomechanical behavior of mandibles reconstructed with fibular grafts at different vertical positions using finite element method. J. Plast. Reconstr. Aesthet. Surg. 2019, 72, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Pepicelli, A.; Woods, M.; Briggs, C. The mandibular muscles and their importance in orthodontics: A contemporary review. Am. J. Orthod. Dentofac. Orthop. 2005, 128, 774–780. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, M.; Willaert, R.; Khan, A.; Krairi, A.; Paepegem, W.V. Biomechanical evaluation of the human mandible after temporomandibular joint replacement under different biting conditions. Sci. Rep. 2021, 11, 14034. [Google Scholar] [CrossRef] [PubMed]
- Meyer, C.; Kahn, J.L.; Lambert, A.; Boutemy, P.; Wilk, A. Development of a static simulator of the mandible. J. Cranio-Maxillofac. Surg. 2000, 28, 278–286. [Google Scholar] [CrossRef]
- Choi, A.H.; Conway, R.C.; Taraschi, V.; Ben-Nissan, B. Biomechanics and functional distortion of the human mandible. J. Investig. Clin. Dent. 2015, 6, 241–251. [Google Scholar] [CrossRef]
- Curtis, D.A.; Plesh, O.; Hannam, A.G.; Sharma, A.; Curtis, T.A. Modeling of jaw biomechanics in the reconstructed mandibulectomy patient. J. Prosthet. Dent. 1999, 81, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Ahlgren, J.; Öwall, B. Muscular activity and chewing force: A polygraphic study of human mandibular movements. Arch. Oral Biol. 1970, 15, 271–280. [Google Scholar] [CrossRef]
- Hiraba, K.; Hibino, K.; Hiranuma, K.; Negoro, T. EMG activities of two heads of the human lateral pterygoid muscle in relation to mandibular condyle movement and biting force. J. Neurophysiol. 2000, 83, 2120–2137. [Google Scholar] [CrossRef] [PubMed]
- Saini, H.; Ackland, D.C.; Gong, L.; Cheng, L.K.; Röhrle, O. Occlusal load modelling significantly impacts the predicted tooth stress response during biting: A simulation study. Comput. Methods Biomech. Biomed. Eng. 2020, 23, 261–270. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.; Sun, Y.; Yang, S.; Dessel, J.V.; Lübbers, H.T.; Zhong, S.; Gu, Y.; Bila, M.; Politis, C. Preclinical study of additive manufactured plates with shortened lengths for complete mandible reconstruction: Design, biomechanics simulation, and fixation stability assessment. Comput. Biol. Med. 2021, 139, 105008. [Google Scholar] [CrossRef] [PubMed]
- Korioth, T.W.; Romilly, D.P.; Hannam, A.G. Three-dimensional finite element stress analysis of the dentate human mandible. Am. J. Phys. Anthropol. 1992, 88, 69–96. [Google Scholar] [CrossRef] [PubMed]
- Korioth, T.W.; Hannam, A.G. Deformation of the human mandible during simulated tooth clenching. J. Dent. Res. 1994, 73, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Naeije, M.; Hofman, N. Biomechanics of the human temporomandibular joint during chewing. J. Dent. Res. 2003, 82, 528–531. [Google Scholar] [CrossRef] [PubMed]
- Yachouh, J.; Domergue, S.; Hoarau, R.; Loosli, Y.; Goudot, P. Biomechanics of the weakened mandible: Use of image correlation analysis. Br. J. Oral Maxillofac. Surg. 2013, 51, e137–e141. [Google Scholar] [CrossRef]
- Prasadh, S.; Suresh, S.; Hong, K.L.; Bhargav, A.; Rosa, V.; Wong, R.C.W. Biomechanics of alloplastic mandible reconstruction using biomaterials: The effect of implant design on stress concentration influences choice of material. J. Mech. Behav. Biomed. Mater. 2020, 103, 103548. [Google Scholar] [CrossRef]
- Ramos, A.; Ballu, A.; Mesnard, M.; Talaia, P.; Simões, J.A. Numerical and Experimental Models of the Mandible. Exp. Mech. 2011, 51, 1053–1059. [Google Scholar] [CrossRef]
- Knoell, A.C. A mathematical model of an in vitro human mandible. J. Biomech. 1977, 10, 159–166. [Google Scholar] [CrossRef]
- Ichim, I.; Swain, M.; Kieser, J.A. Mandibular biomechanics and development of the human chin. J. Dent. Res. 2006, 85, 638–642. [Google Scholar] [CrossRef] [PubMed]
- Aftabi, H.; Zaraska, K.; Eghbal, A.; McGregor, S.; Prisman, E.; Hodgson, A.; Fels, S. Computational models and their applications in biomechanical analysis of mandibular reconstruction surgery. Comput. Biol. Med. 2023, 169, 107887. [Google Scholar] [CrossRef]
- Natali, A.N.; Carniel, E.L.; Pavan, P.G. Modelling of mandible bone properties in the numerical analysis of oral implant biomechanics. Comput. Methods Programs Biomed. 2010, 100, 158–165. [Google Scholar] [CrossRef]
- Craig, M.; Bir, C.; Viano, D.; Tashman, S. Biomechanical response of the human mandible to impacts of the chin. J. Biomech. 2008, 41, 2972–2980. [Google Scholar] [CrossRef]
- Alvarez-Arenal, A.; Lasheras, F.S.; Fernández, E.M.; González, I. A jaw model for the study of the mandibular flexure taking into account the anisotropy of the bone. Math. Comput. Model. 2009, 50, 695–704. [Google Scholar] [CrossRef]
- Meira, J.B.C.; Landgraf, H.; Shinohara, E.H.; Luz, J.G.C.; Ballester, R.Y. A new way of evaluating the biomechanics of the mandible with freedom in three axes in space: Technical note. J. Oral Maxillofac. Surg. Med. Pathol. 2018, 30, 405–408. [Google Scholar] [CrossRef]
- Santis, R.D.; Mollica, F.; Esposito, R.; Ambrosio, L.; Nicolais, L. An experimental and theoretical composite model of the human mandible. J. Mater. Sci. Mater. Med. 2005, 16, 1191–1197. [Google Scholar] [CrossRef] [PubMed]
- Wong, R.C.W.; Tideman, H.; Kin, L.; Merkx, M.A.W. Biomechanics of mandibular reconstruction: A review. Int. J. Oral Maxillofac. Surg. 2010, 39, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Bedrossian, E.; Bedrossian, E.A. Treatment Planning the Edentulous Mandible. Review of Biomechanical and Clinical Considerations: An Update. Int. J. Oral Maxillofac. Implant. 2019, 34, e33. [Google Scholar] [CrossRef] [PubMed]
- Eijden, T.M. Biomechanics of the Mandible. Crit. Rev. Oral Biol. Med. 2000, 11, 123–136. [Google Scholar] [CrossRef] [PubMed]
- Roberts, W.E.; Goodacre, C.J. The Temporomandibular Joint: A Critical Review of Life-Support Functions, Development, Articular Surfaces, Biomechanics and Degeneration. J. Prosthodont. 2020, 29, 772–779. [Google Scholar] [CrossRef] [PubMed]
- Wong, R.C.W.; Tideman, H.; Merkx, M.A.W.; Jansen, J.; Goh, S.M.; Liao, K. Review of biomechanical models used in studying the biomechanics of reconstructed mandibles. Int. J. Oral Maxillofac. Surg. 2011, 40, 393–400. [Google Scholar] [CrossRef]
- Gupta, K.K.; Knoell, A.C.; Grenoble, D.E. Mathematical modeling and structural analysis of the mandible. Biomater. Med. Devices Artif. Organs 1973, 1, 469–479. [Google Scholar] [CrossRef]
- Hannam, A.G. Dynamic modeling and jaw biomechanics. Orthod. Craniofac. Res. 2003, 1, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Vallabh, R.; Zhang, J.; Fernandez, J.; Dimitroulis, G.; Ackland, D.C. The morphology of the human mandible: A computational modelling study. Biomech. Model. Mechanobiol. 2020, 19, 1187–1202. [Google Scholar] [CrossRef]
- Li, P.; Tang, Y.; Li, J.; Shen, L.; Tian, W.; Tang, W. Establishment of sequential software processing for a biomechanical model of mandibular reconstruction with custom-made plate. Comput. Methods Programs Biomed. 2013, 111, 642–649. [Google Scholar] [CrossRef]
- Liao, S.H.; Tong, R.F.; Dong, J.X. Influence of anisotropy on peri-implant stress and strain in complete mandible model from CT. Comput. Med. Imaging Graph. 2008, 32, 53–60. [Google Scholar] [CrossRef]
- Tomonari, H.; Kwon, S.; Kuninori, T.; Miyawaki, S. Differences between the chewing and non-chewing sides of the mandibular first molars and condyles in the closing phase during chewing in normal subjects. Arch. Oral Biol. 2017, 81, 198–205. [Google Scholar] [CrossRef]
- Baba, K.; Yugami, K.; Yaka, T.; Ai, M. Impact of balancing-side tooth contact on clenching induced mandibular displacements in humans. J. Oral Rehabil. 2001, 28, 721–727. [Google Scholar] [CrossRef]
- Visscher, C.M.; Slater, J.J.R.H.; Lobbezoo, F.; Naeije, M. Kinematics of the human mandible for different head postures. J. Oral Rehabil. 2000, 27, 299–305. [Google Scholar] [CrossRef]
- Ambrósio, J.A.C.; Kecskeméthy, A. Multibody Dynamics of Biomechanical Models for Human Motion via Optimization. In Computational Methods in Applied Sciences; Springer: Berlin/Heidelberg, Germany, 2007; pp. 245–272. [Google Scholar]
- Winters, J.M. Hill-Based Muscle Models: A Systems Engineering Perspective. In Multiple Muscle Systems; Springer: Berlin/Heidelberg, Germany, 1990; pp. 69–93. [Google Scholar]
- Siebert, T.; Rode, C.; Herzog, W.; Till, O.; Blickhan, R. Nonlinearities make a difference: Comparison of two common Hill-type models with real muscle. Biol. Cybern. 2008, 98, 133–143. [Google Scholar] [CrossRef] [PubMed]
- Carbone, V.; Krogt, M.M.d.; Koopman, H.F.J.M.; Verdonschot, N. Sensitivity of subject-specific models to Hill muscle–tendon model parameters in simulations of gait. J. Biomech. 2016, 49, 1953–1960. [Google Scholar] [CrossRef]
- Cansız, B.; Dal, H.; Kaliske, M. Computational cardiology: A modified Hill model to describe the electro-visco-elasticity of the myocardium. Comput. Methods Appl. Mech. Eng. 2017, 315, 434–466. [Google Scholar] [CrossRef]
- Hill, A.V. The heat of shortening and the dynamic constants of muscle. Proc. R. Sot. Biol. 1938, 126, 136–195. [Google Scholar]
- Hill, A.V. The mechanics of active muscle. Proc. R. Soc. Lond. Ser. B Biol. Sci. 1953, 141, 104–117. [Google Scholar]
- Martins, J.A.C.; Pires, E.B.; Salvado, R.; Dinis, P.B. A numerical model of passive and active behavior of skeletal muscles. Comput. Methods Appl. Mech. Eng. 1998, 151, 419–433. [Google Scholar] [CrossRef]
- Strobach, D.; Kecskemethy, A.; Steinwender, G.; Zwick, E.B. Rapid identification of muscle activation profiles via optimization and smooth profile patches. Mater. Sci. Eng. Technol. 2005, 36, 802–813. [Google Scholar]
- Martins, J.A.C.; Pato, M.P.M.; Pires, E.B. A finite element model of skeletal muscles. Virtual Phys. Prototyp. 2007, 1, 159–170. [Google Scholar] [CrossRef]
- Kajee, Y.; Pelteret, J.P.V.; Reddy, B.D. The biomechanics of the human tongue. Int. J. Numer. Methods Biomed. Eng. 2013, 29, 492–514. [Google Scholar] [CrossRef]
- Strait, D.S.; Wang, Q.; Dechow, P.C.; Ross, C.F.; Richmond, B.G.; Spencer, M.A.; Patel, B.A. Modeling elastic properties in finite-element analysis: How much precision is needed to produce an accurate model? Anat. Rec. 2005, 283, 275–287. [Google Scholar] [CrossRef]
- Zhen, T.; Zhonghua, Z.; Gang, Z.; Yubin, C.; Tao, L.; Yinghui, T. Establishment of a three-dimensional finite element model for gunshot wounds to the human mandible. J. Med. Coll. PLA 2012, 27, 87–100. [Google Scholar] [CrossRef]
- Grünheid, T.; Langenbach, G.E.J.; Korfage, J.A.M.; Zentner, A.; Eijden, T.M.G.J. The adaptive response of jaw muscles to varying functional demands. Eur. J. Orthod. 2009, 31, 596–612. [Google Scholar] [CrossRef]
- Silva, M.; Brandão, S.; Parente, M.P.L.; Mascarenhas, T.; Jorge, R.M.N. Establishing the biomechanical properties of the pelvic soft tissues through an inverse finite element analysis using magnetic resonance imaging. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2016, 230, 298–309. [Google Scholar] [CrossRef]
- Hannam, A.G.; Wood, W.W. Relationships between the size and spatial morphology of human masseter and medial pterygoid muscles, the craniofacial skeleton, and jaw biomechanics. Am. J. Biol. Anthropol. 1989, 80, 429–445. [Google Scholar] [CrossRef]
- Hamma, A.; Boisson, J.; Serantoni, V.; Dallard, J. Identification of a visco-hyperelastic model for mandibular periosteum. J. Mech. Behav. Biomed. Mater. 2022, 133, 105323. [Google Scholar] [CrossRef]
- Kulkarni, S.G.; Gao, X.L.; Horner, S.E.; Mortlock, R.F.; Zheng, J.Q. A transversely isotropic visco-hyperelastic constitutive model for soft tissues. Math. Mech. Solids 2014, 21, 748–770. [Google Scholar] [CrossRef]
- Limbert, G.; Middleton, J. A transversely isotropic viscohyperelastic material: Application to the modeling of biological soft connective tissues. Int. J. Solids Struct. 2004, 41, 4237–4260. [Google Scholar] [CrossRef]
- Chaimoon, K.; Chindaprasirt, P. An anisotropic hyperelastic model with an application to soft tissues. Eur. J. Mech.-A/Solids 2019, 78, 103845. [Google Scholar] [CrossRef]
- Castillo-Méndez, C.; Ortiz, A. Role of anisotropic invariants in numerically modeling soft biological tissues as transversely isotropic hyperelastic materials: A comparative study. Int. J. Non-Linear Mech. 2022, 138, 103833. [Google Scholar] [CrossRef]
- Nolan, D.R.; Gower, A.L.; Destrade, M.; Ogden, R.W.; McGarry, J.P. A robust anisotropic hyperelastic formulation for the modelling of soft tissue. J. Mech. Behav. Biomed. Mater. 2014, 39, 48–60. [Google Scholar] [CrossRef]
- Ferreira, J.P.S.; Parente, M.P.L.; Jabareen, M.; Jorge, R.M.N. A general framework for the numerical implementation of anisotropic hyperelastic material models including non-local damage. Biomech. Model. Mechanobiol. 2017, 16, 1119–1140. [Google Scholar] [CrossRef] [PubMed]
- Choy, S.E.M.; Lenz, J.; Schweizerhof, K.; Schmitter, M.; Schindler, H.J. Realistic kinetic loading of the jaw system during single chewing cycles: A finite element study. J. Oral Rehabil. 2017, 44, 375–384. [Google Scholar] [CrossRef]
- Röhrle, O.; Pullan, A.J. Three-dimensional finite element modelling of muscle forces during mastication. J. Biomech. 2007, 40, 3363–3372. [Google Scholar] [CrossRef]
- Aoun, M.; Mesnard, M.; Monède-Hocquard, L.; Ramos, A. Stress Analysis of Temporomandibular Joint Disc During Maintained Clenching Using a Viscohyperelastic Finite Element Model. J. Oral Maxillofac. Surg. 2014, 72, 1070–1077. [Google Scholar] [CrossRef] [PubMed]
- Korioth, W.T.; Hannam, A.G. Effect of bilateral asymmetric tooth clenching on load distribution at the mandibular condyles. J. Prosthet. Dent. 1990, 64, 62–73. [Google Scholar] [CrossRef]
- Ferrario, V.F.; Sforza, C. Biomechanical model of the human mandible in unilateral clench: Distribution of temporomandibular joint reaction forces between working and balancing sides. J. Prosthet. Dent. 1994, 72, 169–176. [Google Scholar] [CrossRef]
- Koolstra, J.H.; Eijden, T.M. Dynamics of the human masticatory muscles during a jaw open-close movement. J. Biomech. 1997, 30, 883–889. [Google Scholar] [CrossRef]
- Langenbach, G.E.J.; Hannam, A.G. The role of passive muscle tensions in a three-dimensional dynamic model of the human jaw. Arch. Oral Biol. 1999, 44, 557–573. [Google Scholar] [CrossRef]
- Peck, C.C.; Langenbach, G.E.; Hannam, A.G. Dynamic simulation of muscle and articular properties during human wide jaw opening. Arch. Oral Biol. 2000, 45, 963–982. [Google Scholar] [CrossRef] [PubMed]
- Kuboki, T.; Takenami, Y.; Maekawa, K.; Shinoda, M.; Yamashita, A.; Clark, G.T. Biomechanical calculation of human TM joint loading with jaw opening. J. Oral Rehabil. 2000, 27, 940–951. [Google Scholar] [CrossRef] [PubMed]
- Koolstra, J.H.; Eijden, T.M.G.J. Combined finite-element and rigid-body analysis of human jaw joint dynamics. J. Biomech. 2005, 38, 2431–2439. [Google Scholar] [CrossRef] [PubMed]
- Choi, A.H.; Ben-Nissan, B.; Conway, R.C. Three-dimensional modelling and finite element analysis of the human mandible during clenching. Aust. Dent. J. 2005, 50, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Hannam, A.G.; Stavness, I.; Lloyd, J.E.; Fels, S. A dynamic model of jaw and hyoid biomechanics during chewing. J. Biomech. 2008, 41, 1069–1076. [Google Scholar] [CrossRef] [PubMed]
- Bonnet, A.S.; Postaire, M.; Lipinski, P. Biomechanical study of mandible bone supporting a four-implant retained bridge Finite element analysis of the influence of bone anisotropy and foodstuff position. Med. Eng. Phys. 2009, 31, 806–815. [Google Scholar] [CrossRef] [PubMed]
- Tuijt, M.; Koolstra, J.H.; Lobbezoo, F.; Naeije, M. Differences in loading of the temporomandibular joint during opening and closing of the jaw. J. Biomech. 2010, 43, 1048–1054. [Google Scholar] [CrossRef] [PubMed]
- Xiangdong, Q.I.; Limin, M.A.; Shizhen, Z. The influence of the closing and opening muscle groups of jaw condyle biomechanics after mandible bilateral sagittal split ramus osteotomy. J. Craniomaxillofac. Surg. 2012, 40, e159–e164. [Google Scholar] [CrossRef] [PubMed]
- Ahn, S.J.; Tsou, L.; Sánchez, C.A.; Fels, S.; Kwon, H.B. Analyzing center of rotation during opening and closing movements of the mandible using computer simulations. J. Biomech. 2015, 48, 666–671. [Google Scholar] [CrossRef]
- Commisso, M.S.; Martínez-Reina, J.; Ojeda, J.; Mayo, J. Finite element analysis of the human mastication cycle. J. Mech. Behav. Biomed. Mater. 2015, 41, 23–35. [Google Scholar] [CrossRef]
- Pinheiro, M.; Alves, J.L. The feasibility of a custom-made endoprosthesis in mandibular reconstruction: Implant design and finite element analysis. J. Craniomaxillofac. Surg. 2015, 43, 2116–2128. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.F.; Fan, Y.Y.; Dong, H.Y.; Zhang, J.X. An Investigation of Two Finite Element Modeling Solutions for Biomechanical Simulation Using a Case Study of a Mandibular Bone. J. Biomech. Eng. 2017, 139, 121006. [Google Scholar] [CrossRef] [PubMed]
- Andersen, M.S.; Zee, M.; Damsgaard, M.; Nolte, D.; Rasmussen, J. Introduction to Force-Dependent Kinematics: Theory and Application to Mandible Modeling. J. Biomech. Eng. 2017, 139, 091001. [Google Scholar]
- Kober, C.; Kjeller, G.; Hellmich, C.; Sader, R.A.; Berg, B.I. Mandibular biomechanics after marginal resection: Correspondences of simulated volumetric strain and skeletal resorption. J. Biomech. 2019, 95, 109320. [Google Scholar] [CrossRef] [PubMed]
- García, M.; Cabrera, J.A.; Bataller, A.; Postigo, S.; Castillo, J.J. 3D kinematic mandible model to design mandibular advancement devices for the treatment of obstructive sleep apnea. Bio-Des. Manuf. 2021, 4, 22–32. [Google Scholar] [CrossRef]
- Dutta, A.; Mukherjee, K.; Seesala, V.S.; Dutta, K.; Paul, R.R.; Dhara, S.; Gupta, S. Load transfer across a mandible during a mastication cycle: The effects of odontogenic tumour. Proc. Inst. Mech. Eng. Part H 2020, 234, 486–495. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Chen, J.; Wang, J.; Ren, G.; Tian, Q.; Guo, C. EMG-assisted forward dynamics simulation of subject-specific mandible musculoskeletal system. J. Biomech. 2022, 139, 111143. [Google Scholar] [CrossRef] [PubMed]
- Sagl, B.; Schmid-Schwap, M.; Piehslinger, E.; Yao, H.; Rausch-Fan, X.; Stavness, I. The effect of bolus properties on muscle activation patterns and TMJ loading during unilateral chewing. J. Mech. Behav. Biomed. Mater. 2024, 151, 106401. [Google Scholar] [CrossRef] [PubMed]
- Weijs, W.A.; Hillen, B. Relationship between the physiological cross-section of the human jaw muscles and their cross-sectional area in computer tomograms. Acta Anat. 1984, 118, 129–138. [Google Scholar] [CrossRef]
- Hansson, T.; Oberg, T.; Carlsson, G.E.; Kopp, S. Thickness of the soft tissue layers and the articular disk in the temporomandibular joint. Acta Odontol. Scand. 1977, 35, 77–83. [Google Scholar] [CrossRef]
- Barbenel, J.C. The biomechanics of the temporomandibular joint: A theoretical study. J. Biomech. 1972, 5, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Throckmorton, G.S. Quantitative calculations of temporomandibular joint reaction forces—II. The importance of the direction of the jaw muscle forces. J. Biomech. 1985, 18, 453–461. [Google Scholar] [CrossRef]
- Pruim, G.J.; Jongh, H.J.; Bosch, J.J. Forces acting on the mandible during bilateral static bite at different bite force levels. J. Biomech. 1980, 13, 755–763. [Google Scholar] [CrossRef] [PubMed]
- Daas, M.; Dubois, G.; Bonnet, A.S.; Lipinski, P.; Rignon-Bret, C. A complete finite element model of a mandibular implant-retained overdenture with two implants: Comparison between rigid and resilient attachment configurations. Med. Eng. Phys. 2008, 30, 218–225. [Google Scholar] [CrossRef] [PubMed]
- Koolstra, J.H.; Eijden, T.M. Biomechanical analysis of jaw-closing movements. J. Dent. Res. 1995, 74, 1564–1570. [Google Scholar] [CrossRef]
- Koolstra, J.H.; Eijden, T.M.G.v. Prediction of volumetric strain in the human temporomandibular joint cartilage during jaw movement. J. Anat. 2006, 209, 369–380. [Google Scholar] [CrossRef]
- Zajac, F.E. Muscle and tendon: Properties, models, scaling, and application to biomechanics and motor control. Crit. Rev. Biomed. Eng. 1989, 17, 359–411. [Google Scholar]
- Osborn, J.W. A model to describe how ligaments may control symmetrical jaw opening movements in man. J. Oral Rehabil. 1993, 20, 585–604. [Google Scholar] [CrossRef] [PubMed]
- Thelen, D.G. Adjustment of muscle mechanics model parameters to simulate dynamic contractions in older adults. J. Biomech. Eng. 2003, 125, 70–77. [Google Scholar] [CrossRef]
- Commisso, M.S.; Martínez-Reina, J.; Mayo, J. A study of the temporomandibular joint during bruxism. Int. J. Oral Sci. 2014, 6, 116–123. [Google Scholar] [CrossRef]
- Ferrario, V.F.; Sforza, C.; Serrao, G.; Dellavia, C.; Tartaglia, G.M. Single tooth bite forces in healthy young adults. J. Oral Rehabil. 2004, 31, 18–22. [Google Scholar] [CrossRef] [PubMed]
- Hart, R.T.; Hennebel, V.V.; Thongpreda, N.; Buskirk, W.C.V.; Anderson, R.C. Modeling the biomechanics of the mandible: A three-dimensional finite element study. J. Biomech. 1992, 25, 261–286. [Google Scholar] [CrossRef] [PubMed]
- Korioth, T.W.; Hannam, A.G. Mandibular forces during simulated tooth clenching. J. Orofac. Pain 1994, 8, 178–189. [Google Scholar] [PubMed]
- Hijazi, L.; Hejazi, W.; Darwich, M.A.; Darwich, K. Finite element analysis of stress distribution on the mandible and condylar fracture osteosynthesis during various clenching tasks. Oral Maxillofac. Surg. 2016, 20, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Blankevoort, L.; Kuiper, J.H.; Huiskes, R.; Grootenboer, H.J. Articular contact in a three-dimensional model of the knee. J. Biomech. 1991, 24, 1019–1031. [Google Scholar] [CrossRef] [PubMed]
- Weng, Y.; Cao, Y.; Arevalo, C.; Vacanti, M.P.; Vacanti, C.A. Tissue-engineered composites of bone and cartilage for mandible condylar reconstruction. J. Oral Maxillofac. Surg. 2001, 59, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Lanza, A.; Ruggiero, A.; Sbordone, L. Tribology and dentistry: A commentary. Lubricants 2019, 7, 52. [Google Scholar]
- Lee, J.S.; Choi, H.I.; Lee, H.; Ahn, S.J.; Noh, G. Biomechanical effect of mandibular advancement device with different protrusion positions for treatment of obstructive sleep apnoea on tooth and facial bone: A finite element study. J. Oral Rehabil. 2018, 45, 948–958. [Google Scholar] [CrossRef]
- Fernández-Rubio, E.M.; Radlanski, R.J. Development of the human primary and secondary jaw joints. Ann. Anat.-Anat. Anz. 2024, 251, 152169. [Google Scholar] [CrossRef] [PubMed]
- Baragar, F.A.; Osborn, J.W. A model relating patterns of human jaw movement to biomechanical constraints. J. Biomech. 1984, 17, 757–767. [Google Scholar] [CrossRef]
- Gregolin, R.F.; Zavaglia, C.A.d.C.; Tokimatsu, R.C.; Pereira, J.A. Biomechanical Stress and Strain Analysis of Mandibular Human Region from Computed Tomography to Custom Implant Development. Adv. Mater. Sci. Eng. 2017, 2017, 7525897. [Google Scholar] [CrossRef]
- Koolstra, J.H. Biomechanical analysis of the influence of friction in jaw joint disorders. Osteoarthr. Cartil. 2012, 20, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Prado, F.B.; Rossi, A.C.; Freire, A.R.; Caria, P.H.F. The application of finite element analysis in the skull biomechanics and dentistry. Indian J. Dent. Res. 2014, 25, 390–397. [Google Scholar] [CrossRef] [PubMed]
- Peck, C.C. Biomechanics of occlusion—Implications for oral rehabilitation. J. Oral Rehabil. 2016, 43, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Peck, C.C.; Hannam, A.G. Human jaw and muscle modelling. Arch. Oral Biol. 2007, 52, 300–304. [Google Scholar] [CrossRef] [PubMed]
- Stavness, I.; Nazari, M.A.; Flynn, C.; Perrier, P.; Payan, Y.; Lloyd, J.E.; Fels, S. Coupled Biomechanical Modeling of the Face, Jaw, Skull, Tongue, and Hyoid Bone. In 3D Multiscale Physiological Human; Springer: London, UK, 2013; pp. 253–274. [Google Scholar]
- Eijden, T.M.G.J.; Korfage, J.A.M.; Brugman, P. Architecture of the human jaw-closing and jaw-opening muscles. Anat. Rec. 1997, 248, 464–474. [Google Scholar] [CrossRef]
- Sagl, B.; Dickerson, C.R.; Stavness, I. Fast Forward-Dynamics Tracking Simulation: Application to Upper Limb and Shoulder Modeling. IEEE Trans. Biomed. Eng. 2019, 66, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Garcia, E.; Leal, M.M.; Villamil, M.B. Modeling and Simulation of Masticatory Muscles. Procedia Comput. Sci. 2015, 51, 2878–2882. [Google Scholar] [CrossRef]
- Wang, X.; Xu, P.; Potgieter, J.; Diegel, O. Review of the biomechanics of TMJ. In Proceedings of the 19th International Conference on Mechatronics and Machine Vision in Practice (M2VIP), Auckland, New Zealand, 28–30 November 2012. [Google Scholar]
- Daegling, D.J.; Hylander, W.L. Experimental observation, theoretical models, and biomechanical inference in the study of mandibular form. Am. J. Biol. Anthropol. 2000, 112, 541–551. [Google Scholar] [CrossRef]
Number | Authors | Title | Kind of Analysis | Aim | Year |
---|---|---|---|---|---|
1 | Korioth and Hannam [91] | Effect of bilateral asymmetric tooth clenching on load distribution at the mandibular condyles | Dynamics analysis | Evaluation of temporomandibular reaction forces in clenching | 1990 |
2 | Ferrario and Sforza [92] | Biomechanical model of the human mandible in unilateral clench: distribution of temporomandibular joint reaction forces between working and balancing sides | Dynamics analysis | Calculation of temporomandibular reaction forces in unilateral clenching | 1994 |
3 | Koolstra and Eijden [93] | Dynamics of the human masticatory muscles during a jaw open-close movement | Dynamics model | Analysis of muscle length, velocity and force during mandible opening and closing | 1997 |
4 | Langenbach and Hannam [94] | The role of passive muscle tensions in a three-dimensional dynamic model of the human jaw | Dynamics model | Forecast of active and passive jaw muscles | 1999 |
5 | Peck et al. [95] | Dynamic simulation of muscle and articular properties during human wide jaw opening | Dynamics model | Analysis of jaw dynamics during a wide opening task | 2000 |
6 | Kuboki et al. [96] | Biomechanical calculation of human TM joint loading with jaw opening | Dynamics model | Calculation of muscular and TMJ forces during jaw opening | 2000 |
7 | Koolstra and Eijden [97] | Combined finite-element and rigid-body analysis of human jaw joint dynamics | Rigid-body and finite element analysis | Study of stress and deformations of the jaw’s cartilaginous structures | 2005 |
8 | Choi et al. [98] | Three-dimensional modelling and finite element analysis of the human mandible during clenching | Finite element analysis | Development of a 3D mandible model | 2005 |
9 | Hannam et al. [99] | A dynamic model of jaw and hyoid biomechanics during chewing | Forward dynamics analysis of jaw | Prediction of the activation profiles of muscle forces, the loads and the jaw gapes of the condyles during unilateral chewing | 2008 |
10 | Bonnet et al. [100] | Biomechanical study of mandible bone supporting a four-implant retained bridge Finite element analysis of the influence of bone anisotropy and foodstuff position | Finite element analysis | Investigation of the biomechanical response of an “All-on-Four” structure | 2009 |
11 | Tuijt et al. [101] | Differences in loading of the temporomandibular joint during opening and closing of the jaw | Dynamics analysis | Calculation of reaction forces during opening and closing of the jaw | 2010 |
12 | Xiangdong et al. [102] | The influence of the closing and opening muscle groups of jaw condyle biomechanics after mandible bilateral sagittal split ramus osteotomy | Finite Element Analysis | Study of the stress/strain field to assess the impact of jaw opening/closing muscles | 2012 |
13 | Ahn et al. [103] | Analyzing center of rotation during opening and closing movements of the mandible using computer simulations | Kinematics analysis | Evaluation of the position of the center of rotation | 2015 |
14 | Commisso et al. [104] | Finite element analysis of the human mastication cycle | Finite element analysis | Analysis of stress in the TMJ and of mandible movement for different lateral pterygoid activation patterns | 2015 |
15 | Pinheiro and Alves [105] | The feasibility of a custom-made endoprosthesis in mandibular reconstruction: Implant design and finite element analysis | Finite element analysis | Validation of a custom-made endoprosthesis | 2015 |
16 | Liu et al. [106] | An Investigation of Two Finite Element Modeling Solutions for Biomechanical Simulation Using a Case Study of a Mandibular Bone | Finite element analysis | Comparison of two different solutions for a mandible stress–strain regime | 2017 |
17 | Andersen et al. [107] | Introduction to Force-Dependent Kinematics: Theory and Application to Mandible Modeling | Force-dependent kinematics | Introduction to a novel musculoskeletal modeling approach | 2017 |
18 | Kober et al. [108] | Mandibular biomechanics after marginal resection: Correspondences of simulated volumetric strain and skeletal resorption | Finite element analysis | Investigation of mandibular biomechanics after marginal mandibulectomy | 2019 |
19 | García et al. [109] | 3D kinematic mandible model to design mandibular advancement devices for the treatment of obstructive sleep apnea | 3D kinematics analysis | Study of kinematic behavior of the mandible for obstructive sleep apnea issues | 2020 |
20 | Dutta et al. [110] | Load transfer across a mandible during a mastication cycle: The effects of odontogenic tumour | Finite element analysis | Comparison of stress–strain fields of healthy and diseased mandibles | 2020 |
21 | Guo et al. [111] | EMG-assisted forward dynamics simulation of subject-specific mandible musculoskeletal system | Forward-inverse dynamics analysis | Construction of a predictive model of mandible kinematics and dynamics | 2022 |
22 | Sagl et al. [112] | The effect of bolus properties on muscle activation patterns and TMJ loading during unilateral chewing | Forward dynamics analysis | Establishment of kinematics, muscle activations and TMJ stress | 2024 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Stefano, M.; Ruggiero, A. A Critical Review of Human Jaw Biomechanical Modeling. Appl. Sci. 2024, 14, 3813. https://doi.org/10.3390/app14093813
De Stefano M, Ruggiero A. A Critical Review of Human Jaw Biomechanical Modeling. Applied Sciences. 2024; 14(9):3813. https://doi.org/10.3390/app14093813
Chicago/Turabian StyleDe Stefano, Marco, and Alessandro Ruggiero. 2024. "A Critical Review of Human Jaw Biomechanical Modeling" Applied Sciences 14, no. 9: 3813. https://doi.org/10.3390/app14093813
APA StyleDe Stefano, M., & Ruggiero, A. (2024). A Critical Review of Human Jaw Biomechanical Modeling. Applied Sciences, 14(9), 3813. https://doi.org/10.3390/app14093813