Impact of Various Cavity-Preparation Designs on Fracture Resistance and Failure Mode of CAD/CAM Fabricated Ceramic Inlays and Onlays
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Utilized in the Current Study
2.2. Study Design
2.3. Specimens’ Preparation
2.4. Preparation Procedure
- Group 1 inlays had a 75% ICD cavity width from the buccal to the palatal cusp tips.
- Group 2 inlays were 100% of the ICD’s width.
- Group 3 onlays had a 75% ICD width and a functional cusp decrease of 2.0 mm in the palatal cusp.
- Group 4 onlays had a 100% ICD width and a functional cusp decrease of 2.0 mm in the palatal cusp.
- Group 5 had a 75% width of ICD, a 2.0 mm functional palatal cusp reduction, and a 1.5 mm nonfunctional buccal cusp reduction.
- Group 6 had a 100% width of ICD, a 2.0 mm functional palatal cusp reduction, and a 1.5 mm nonfunctional buccal cusp reduction.
2.5. Digital Impression
2.6. Fabrication of Inlay and Onlay Restorations
2.7. Try-In of Onlay and Inlay Restorations
2.8. Cementation
2.9. Thermomechanical Cyclic Loading (Chewing Simulator)
2.10. Compressive Fracture Resistance Test
2.11. Failure Mode
2.12. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Clinical Relevance
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sadowsky, S.J. An overview of treatment considerations for esthetic restorations: A review of the literature. J. Prosthet. Dent. 2006, 96, 433–442. [Google Scholar] [CrossRef] [PubMed]
- Tagtekin, D.A.; Ozyoney, G.; Yanikoglu, F. Two-year clinical evaluation of IPS Empress II ceramic onlays/inlays. Oper. Dent. 2009, 34, 369–378. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Suarez, C.; Tobar, C.; Sola-Ruiz, M.F.; Pelaez, J.; Suarez, M.J. Effect of thermomechanical and static loading on the load to fracture of metal-ceramic, monolithic, and veneered zirconia posterior fixed partial dentures. J. Prosthodont. 2019, 28, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Denry, I.; Kelly, J.R. State of the art of zirconia for dental applications. Dent. Mater. 2008, 24, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.Y.; Park, J.H.; Kim, J.H.; Kim, W.C. Three-dimensional trueness analysis of ceramic crowns fabricated using a chairside computer-aided design/manufacturing system: An in vitro study. J. Prosthodont. Res. 2020, 64, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Thongthammachat, S.; Moore, B.K.; Barco, M.T.; Hovijitra, S.; Brown, D.T. Dimensional accuracy of dental casts: Influence of tray material, impression material, and time. J. Prosthodont. 2002, 11, 98–108. [Google Scholar] [CrossRef]
- Homaei, E.; Farhangdoost, K.; Tsoi, J.K.H.; Matinlinna, J.P.; Pow, E.H. Static and fatigue mechanical behavior of three dental CAD/CAM ceramics. J. Mech. Behav. Biomed. Mater. 2016, 59, 304–313. [Google Scholar] [CrossRef] [PubMed]
- Dejak, B.; Mlotkowski, A.; Romanowicz, M. Strength estimation of different designs of ceramic inlays and onlays in molars based on the Tsai-Wu failure criterion. J. Prosthet. Dent. 2007, 98, 89–100. [Google Scholar] [CrossRef]
- Yamanel, K.; Caglar, A.; Gülsahi, K.; Ozden, U.A. Effects of different ceramic and composite materials on stress distribution in inlay and onlay cavities: 3-D finite element analysis. Dent. Mater. J. 2009, 28, 661–670. [Google Scholar] [CrossRef]
- Magne, P.; Belser, U.C. Porcelain versus composite inlays/onlays: Effects of mechanical loads on stress distribution, adhesion, and crown flexure. Int. J. Periodontics Restor. Dent. 2003, 23, 543–555. [Google Scholar]
- Homsy, F.; Eid, R.; El Ghoul, W.; Chidiac, J. Considerations for Altering Preparation Designs of Porcelain Inlay/Onlay Restorations for Nonvital Teeth. J. Prosthodont. 2015, 24, 457–462. [Google Scholar] [CrossRef] [PubMed]
- Soares, C.; Martins, L.; Fonseca, R.; Correr-Sobrinho, L.; Fernandes Neto, A. Influence of cavity preparation design on fracture resistance of posterior Leucite-reinforced ceramic restorations. J. Prosthet. Dent. 2006, 95, 421–429. [Google Scholar] [CrossRef]
- Liu, X.; Fok, A.; Li, H. Influence of restorative material and proximal cavity design on the fracture resistance of MOD inlay restoration. Dent. Mater. 2014, 30, 327–333. [Google Scholar] [CrossRef]
- Federlin, M.; Sipos, C.; Hiller, K.; Thonemann, B.; Schmalz, G. Partial ceramic crowns. Influence of preparation design and luting material on margin integrity a scanning electron microscopic study. Clin. Oral. Investig. 2005, 9, 8–17. [Google Scholar] [CrossRef]
- Vianna, A.; Prado, C.; Bicalho, A.; Pereira, R.; Neves, F. Effect of cavity preparation design and ceramic type on the stress distribution, strain and fracture resistance of CAD/CAM onlays in molars. J. Appl. Oral. Sci. 2018, 26, 2018–2024. [Google Scholar] [CrossRef]
- Anand, V.; Kavitha, C.; Subbarao, C. Effect of Cavity Design on the Strength of Direct Posterior Composite Restorations: An Empirical and FEM Analysis. Int. J. Dent. 2011, 2011, 214–751. [Google Scholar] [CrossRef]
- Saridag, S.; Sevimay, M.; Pekkan, G.Ü. Fracture resistance of teeth restored with all-ceramic inlays and onlays: An in vitro study. Oper. Dent. 2013, 38, 626–634. [Google Scholar] [CrossRef]
- Mondelli, J.; Steagall, L.; Ishikiriama, A.; de Lima Navarro, M.; Soares, F. Fracture strength of human teeth with cavity preparations. J. Prosthet. Dent. 1980, 43, 419–422. [Google Scholar] [CrossRef]
- Sheth, J.; Fuller, J.; Jensen, M. Cuspal deformation and fracture resistance of teeth with dentin adhesives and composites. J. Prosthet. Dent. 1988, 60, 560–569. [Google Scholar] [CrossRef]
- Morin, D.; DeLong, R.; Douglas, W. Cusp reinforcement by the acid-etch technique. J. Dent. Res. 1984, 63, 1075–1080. [Google Scholar] [CrossRef]
- St-Georges, A.; Sturdevant, J.; Swift, E.; Thompson, J. Fracture resistance of prepared teeth restored with bonded inlay restorations. J. Prosthet. Dent. 2003, 89, 551–557. [Google Scholar] [CrossRef]
- Stappert, C.; Guess, P.; Chitmongkolsuk, S.; Gerds, T.; Strub, J. Partial coverage restoration systems on molars--comparison of failure load after exposure to a mastication simulator. J. Oral. Rehab. 2006, 33, 698–705. [Google Scholar] [CrossRef] [PubMed]
- Hondrum, S. A review of the strength properties of dental ceramics. J. Prosthet. Dent. 1992, 67, 859–865. [Google Scholar] [CrossRef]
- Kelly, J.; Nishimura, I.; Campbell, S. Ceramics in dentistry: Historical roots and current perspectives. J. Prosthet Dent. 1996, 75, 18–32. [Google Scholar] [CrossRef] [PubMed]
- Eakle, W.; Staninec, M. Effect of bonded gold inlays on fracture resistance of teeth. Quintessence Int. 1992, 23, 421–425. [Google Scholar] [PubMed]
- Borges, G.; Sophr, A.; de Goes, M.F.; Sobrinho, L.; Chan, D. Effect of etching and airborne particle abrasion on the microstructure of different dental ceramics. J. Prosthet. Dent. 2003, 89, 479–488. [Google Scholar] [CrossRef]
- Roggendorf, M.; Krämer, N.; Dippold, C.; Vosen, V.; Naumann, M. Effect of proximal box elevation with resin composite on marginal quality of resin composite inlays in vitro. J. Dent. 2012, 40, 1068–1073. [Google Scholar] [CrossRef] [PubMed]
- Magne, P.; Belser, U.C. Bonded Porcelain Restorations in the Anterior Dentition: A Biomimetic Approach; Quintessence International: Batavia, IL, USA, 2002; pp. 45–150. [Google Scholar]
- Manhart, J.; Chen, H.; Hamm, G.; Hickel, R. Buonocore Memorial Lecture. Review of the clinical survival of direct and indirect restorations in posterior teeth of the permanent dentition. Oper. Dent. 2004, 29, 481–508. [Google Scholar] [PubMed]
- Soares, C.; Martins, L.; Pfeifer, J.; Giannini, M. Fracture resistance of teeth restored with indirect-composite and ceramic inlay systems. Quintessence Int. 2004, 35, 281–286. [Google Scholar] [PubMed]
- Taha, D.; Abdel-Samad, A.; Mahmoud, S. Fracture resistance of maxillary premolars with class II MOD cavities restored with Ormocer, Nanofilled, and Nanoceramic composite restorative systems. Quintessence Int. 2011, 42, 579–587. [Google Scholar]
- Esquivel-Upshaw, J.; Anusavice, K. Ceramic design concepts based on stress distribution analysis. Compend. Contin. Educ. Dent. 2000, 21, 649–656. [Google Scholar]
- Aydın, B.; Pamir, T.; Baltaci, A.; Orman, M.; Turk, T. Effect of storage solutions on microhardness of crown enamel and dentin. Eur. J. Dent. 2015, 9, 262–266. [Google Scholar] [CrossRef] [PubMed]
- El Ghoul, W.; Özcan, M.; Silwadi, M.; Salameh, Z. Fracture resistance and failure modes of endocrowns manufactured with different CAD/CAM materials under axial and lateral loading. J. Esthet. Restor. Dent. 2019, 31, 378–387. [Google Scholar] [CrossRef] [PubMed]
- Christensen, G. Longevity of posterior tooth dental restorations. J. Am. Dent. Assoc. 2005, 136, 201–203. [Google Scholar] [CrossRef] [PubMed]
- Singhal, S. IPS e. max® ZirCAD® Prime: A new era in dental ceramics. Esthet. Dent. 2020, 1, 34–37. [Google Scholar]
- Shelar, P.; Abdolvand, H.; Butler, S. On the behaviour of zirconia-based dental materials: A review. J. Mech. Behav. Biomed. Mater. 2021, 124, 104–861. [Google Scholar] [CrossRef] [PubMed]
- Burke, F.; Wilson, N.; Watts, D. The effect of cavity wall tapers on fracture resistance of teeth restored with resin composite inlays. Oper. Dent. 1993, 18, 230–236. [Google Scholar]
- Zandsparsa, R.; Talua, N.A.; Finkelman, M.D.; Schaus, S.E. An in vitro comparison of shear bond strength of zirconia to enamel using different surface treatments. J. Prosthodont. 2013, 23, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Chen, C.; Dai, W.; Chen, G.; Zhang, F. In vitro short-term bonding performance of zirconia treated with hot acid etching and primer conditioning. Dental. Mater. J. 2013, 32, 928–938. [Google Scholar] [CrossRef]
- Guess, P.C.; Schultheis, S.; Wolkewitz, M. Influence of preparation design and ceramic thicknesses on fracture resistance and failure modes of premolar partial coverage restorations. J. Prosthet. Dent. 2013, 110, 264–273. [Google Scholar] [CrossRef]
- Yoon, H.I.; Sohn, P.J.; Jin, S.; Elani, H.; Lee, S.J. Fracture resistance of CAD/CAM-fabricated lithium disilicate MOD inlays and onlays with various cavity preparation designs. J. Prosthodont. 2019, 28, e524–e529. [Google Scholar] [CrossRef] [PubMed]
Material | Description | Composition | Manufacturer | Batch Number | Step by Step Guideline | |
---|---|---|---|---|---|---|
IPS e.max ZirCAD Prime | Yttrium-stabilized zirconium oxide (Hybrid 3Y-TZP and 5Y-TZP). | Matrix | Matrix degree | Vivadent, Ivoclar, Amherst, NY, USA | X41232 | 1. Al2O3 has been blasted at 1 bar on the internal surface of every onlay, ranging from 25 to 70 μm. 2. Then treated with Monobond N for 60 s. 3. Then bonded by G-Cem Capsule. |
ZrO2 Y2O3 HfO2 Al2O3 | >87 wt.% 4.5–7% ≤5% 0.03–0.35% |
Material | Description | Manufacturer | Batch Number | Steps of Application |
---|---|---|---|---|
Try-In Paste | Glycerin, mineral fillers, and dyes. | Schaan, Liechtenstein, Ivoclar Vivadent | 7402213 | 1. First the paste was spread on the fitting surface of ceramic restoration. 2. Then, the ceramic was positioned in the correct position. |
Liquid Strip | Glycerin gel. | 740122 | 1. Spread the coating throughout the whole margin prior to light polymerization. 2. Apply a light cure for 10 s on each part. 3. Then rinse and dry. | |
Monobond N | Ethanol, 3-trimethoxysilyl propyl, methacrylate silane, methacrylated phosphoric acid ester, sulfide methacrylate. | Z01CTK | 1. With a brush and a gentle scrubbing motion, apply one layer of the bond. 2. Let 5 s for a gentle air drying. 3. Light curing for 10 s. | |
G-Cem Capsule | Powder and liquid: initiator, pigment, silica powder, dimethacrylate, phosphoric acid ester, fluoroaluminosilicate glass, initiator, trimellitic acid, monomer, water, urethane dimethacrylate, stabilizer 65–70%wt, 4-methacryloxyethyl. | Hasunuma-cho Itabashi-ku Tokyo, Japan | 129921 | 1. First the capsule is activated. 2. Then mix for 10 s using an amalgamator. 3. Spread cement within the ceramic. 4. Secure the ceramic. 5. Brush excess cement. 6. Light cure each surface for 40 s. |
Group 1 | Group 2 | Group 3 | Group 4 | Group 5 | Group 6 | ANOVA p Value | |
---|---|---|---|---|---|---|---|
Fracture Resistance Mean ± SD | 1950 ± 405 | 2522 ± 789 | 2590 ± 930 | 2130 ± 321 | 2410 ± 523 | 2900 ± 770 | 0.04 |
Post hoc Tukey | P1 = 0.42 | P1 = 0.34 P2 = 0.94 | P1 = 0.91 P2 = 0.93 P3 = 0.91 | P1 = 0.65 P2 = 0.99 P3 = 0.99 P4 = 0.99 | P1 = 0.01 * P2 = 0.54 P3 = 0.59 P4 = 0.12 P5 = 0.29 |
Preparation Design Group | Mode of Fracture (Number of Specimens) | |||
---|---|---|---|---|
I | II | III | IV | |
1 | - | - | 5 | 5 |
2 | - | - | 6 | 4 |
3 | - | - | 4 | 6 |
4 | - | - | 2 | 8 |
5 | - | 1 | 7 | 2 |
6 | 1 | - | 8 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elkaffas, A.A.; Alshehri, A.M.; Alqahtani, A.R.; Albaijan, R.S.; Soliman, T.A. Impact of Various Cavity-Preparation Designs on Fracture Resistance and Failure Mode of CAD/CAM Fabricated Ceramic Inlays and Onlays. Appl. Sci. 2024, 14, 3816. https://doi.org/10.3390/app14093816
Elkaffas AA, Alshehri AM, Alqahtani AR, Albaijan RS, Soliman TA. Impact of Various Cavity-Preparation Designs on Fracture Resistance and Failure Mode of CAD/CAM Fabricated Ceramic Inlays and Onlays. Applied Sciences. 2024; 14(9):3816. https://doi.org/10.3390/app14093816
Chicago/Turabian StyleElkaffas, Ali Atef, Abdullah Mohammed Alshehri, Ali Robaian Alqahtani, Refal Saad Albaijan, and Tarek Ahmed Soliman. 2024. "Impact of Various Cavity-Preparation Designs on Fracture Resistance and Failure Mode of CAD/CAM Fabricated Ceramic Inlays and Onlays" Applied Sciences 14, no. 9: 3816. https://doi.org/10.3390/app14093816
APA StyleElkaffas, A. A., Alshehri, A. M., Alqahtani, A. R., Albaijan, R. S., & Soliman, T. A. (2024). Impact of Various Cavity-Preparation Designs on Fracture Resistance and Failure Mode of CAD/CAM Fabricated Ceramic Inlays and Onlays. Applied Sciences, 14(9), 3816. https://doi.org/10.3390/app14093816