Genesis of Cu-Sn Mineralization in the Shuangjianzishan Super-Large Silver Deposit, Inner Mongolia: Trace Element Constraints from Chalcopyrite and Cassiterite
Abstract
:1. Introduction
2. Regional Geology
3. Deposit Geology
4. Characteristics of Copper–Tin Mineralization
5. Sampling and Analytical Methods
6. Result
6.1. Geochemical Characteristics of Trace Elements in Chalcopyrite
- (1)
- Rich in Sn, Se, Ni, Pb, and Ag. Sn content ranged from 20.61 × 10−6 to 14,363.11 × 10−6, average 2710.5 × 10−6. Se content ranged from 0 × 10−6 to 4257.89 × 10−6, average 665.83 × 10−6. Ni content ranged between 0 × 10−6 and 2776.85 × 10−6, average 530.23 × 10−6. Pb content ranged between 3.17 × 10−6 and 3728.26 × 10−6, average 366.78 × 10−6. Ag content ranged between 6.15 × 10−6 and 703.47 × 10−6, average 193.33 × 10−6.
- (2)
- Less rich in Cr, Cu, As, Rb, Sr, Cd, and In. Cr content ranged between 0 × 10−6 and 101.01 × 10−6, average 26.34 × 10−6. Cu content ranged between 5.52 × 10−6 and 46.61 × 10−6, average 20.56 × 10−6. As content ranged between 0 × 10−6 and 59.73 × 10−6, average 14.53 × 10−6. Rb content ranged between 0 × 10−6 and 82.66 × 10−6, average 15.09 × 10−6. Sr content ranged between 1 × 10−6 and 59.49 × 10−6, average 20.32 × 10−6. Cd content ranged between 0 × 10−6 and 394.91 × 10−6, average 63.24 × 10−6. In content ranged between 2.39 × 10−6 and 263.41 × 10−6, average 71.34 × 10−6.
- (3)
- Contains small amounts of Co, Sb, Ge, Mn, and Ba. Co content ranged between 0 × 10−6 and 7.66 × 10−6, average 1.85 × 10−6. Ge content ranged between 0 × 10−6 and 22.94 × 10−6, average 4.27 × 10−6. Sb content ranged between 0.22 × 10−6 and 6.94 × 10−6, average 1.93 × 10−6. Ge content ranged between 0 × 10−6 and 22.94 × 10−6, average 4.27 × 10−6. Mn content ranged between 0 × 10−6 and 47.72 × 10−6, average 9.52 × 10−6. Ba content ranged between 0.1 × 10−6 and 67.53 × 10−6, average 10.88 × 10−6.
- (4)
- Poor in Zn, Cs, Hf, Ta, W, Tl, Ga, Nb, Mo, and Bi. Zn content ranged between 0 × 10−6 and 3.36 × 10−6, average 0.6 × 10−6. Cs content ranged between 0 × 10−6 and 1.02 × 10−6, average 0.15 × 10−6. Hf content ranged between 0.08 × 10−6 and 0.63 × 10−6, average 0.25 × 10−6. Ta content ranged between 0 × 10−6 and 0.14 × 10−6, average 0.01 × 10−6. W content ranged between 0 × 10−6 and 3.21 × 10−6, average 0.27 × 10−6. Tl content ranged between 0 × 10−6 and 0.3 × 10−6, average 0.09 × 10−6. Ga content ranged between 0 × 10−6 and 4.78 × 10−6, average 0.85 × 10−6. Nb content ranged between 0 × 10−6 and 4.2 × 10−6, average 0.85 × 10−6. Mo content ranged between 0 × 10−6 and 2.63 × 10−6, average 0.54 × 10−6. Bi content ranged between 0 × 10−6 and 10.66 × 10−6, average 0.74 × 10−6.
6.2. Geochemical Characteristics of Trace Elements in Cassiterite
- (1)
- Rich in Fe, Cd, Ni, In, Co, and W. Fe content ranged between 1272.46 × 10−6 and 36,766.47 × 10−6, average 7405.76 × 10−6. Cd content ranged between 28,522.69 × 10−6 and 31,034.52 × 10−6, average 29,820.29 × 10−6. Ni content ranged between 6944.71 × 10−6 and 7731.47 × 10−6, average 7337.13 × 10−6. In content ranged between 2475.65 × 10−6 and 2536.9 × 10−6, average 2651.89 × 10−6. Co content ranged between 1153.17 × 10−6 and 1274.97 × 10−6, average 1205.67 × 10−6. W content ranged between 0 × 10−6 and 9952.13 × 10−6, average 1193.93 × 10−6.
- (2)
- Less rich in Mn, Zn, Pb, and Sb. Sb content ranged between 0 × 10−6 and 802.1 × 10−6, average 73.89 × 10−6. Mn content ranged between 0 × 10−6 and 185.46 × 10−6, average 18.42 × 10−6. Pb content ranged between 0 × 10−6 and 225.18 × 10−6, average 9.08 × 10−6. Zn content ranged between 0 × 10−6 and 117.03 × 10−6, average 7.43 × 10−6.
- (3)
- Contains small amounts of Cu, Ga, Ge, Sr, Nb, Ba, and As. Cu content ranged between 0 × 10−6 and 2.49 × 10−6, average 0.2 × 10−6. Ga content ranged between 0 × 10−6 and 36.61 × 10−6, average 7.08 × 10−6. Ge content ranged between 0 × 10−6 and 3.59 × 10−6, average 0.56 × 10−6. Sr content ranged between 0 × 10−6 and 28.83 × 10−6, average 2.18 × 10−6. Nb content ranged between 0 × 10−6 and 5.64 × 10−6, average 1.02 × 10−6. Ba content ranged between 0 × 10−6 and 17.25 × 10−6, average 1.01 × 10−6. As content ranged between 0 × 10−6 and 51.73 × 10−6, average 4.46 × 10−6.
- (4)
- Poor in Cr, Rb, Mo, Cs, Hf, Ta, Tl, and Bi. The contents of Cr, Rb and Cs in all cassiterite samples were lower than the detection limit, and the contents were very low. Mo content ranged between 0 × 10−6 and 2.89 × 10−6, average 0.31 × 10−6. Hf content ranged between 0 × 10−6 and 2.22 × 10−6, average 0.21 × 10−6. Ta content ranged between 0 × 10−6 and 0.11 × 10−6, average 0.02 × 10−6. Tl content ranged between 0 × 10−6 and 0.06 × 10−6, average 0.01 × 10−6. Bi content ranged between 0 × 10−6 and 0.08 × 10−6, average 0.01 × 10−6.
6.3. Cassiterite Electron Microprobe Analysis Results
7. Discussion
7.1. Occurrence State of Trace Elements in Chalcopyrite and Its Indicating Significance
7.2. Occurrence State of Trace Elements in Cassiterite and Its Indicating Significance
7.3. Genesis of Cu-Sn Mineralization
7.4. Discussion of the Relationship between Tin and Silver Mineralization
8. Conclusions
- Chalcopyrite is rich in medium–high-temperature elements such as Sn, In, and Se, but poor in low-temperature elements such as Ga and Sb, which indicates that chalcopyrite has a high formation temperature, and the early ore-forming fluid is rich in Sn, while Pb, Bi, Ni, and other elements mostly exist in chalcopyrite as inclusions.
- Cassiterite is rich in Fe, W, and In but poor in U and Sb, indicating that cassiterite was formed in a medium–high-temperature oxidation environment, and the early ore-forming fluid was rich in W. Because there are wolframite inclusions in cassiterite, and the W content changes greatly, it is considered that the cassiterite in the Shuangjianzishan deposit mainly has the element replacement mechanism of Fe3+ + OH−↔Sn4+ + O2−, followed by W6+ + Fe2+↔2Sn4+.
- Cassiterite is rich in Fe and Mn, but relatively poor in Nb and Ta, indicating that it was formed in a relatively high-temperature hydrothermal environment, and tin mineralization belongs to the cassiterite–sulfide type.
- The metallogenic sequence of the Shuangjianzishan deposit is Sn→Cu→Pb-Zn-Ag, and the copper–tin mineralization is closely related.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhai, D.; Liu, J.; Zhang, A.; Sun, Y. U-Pb, Re-Os and 40Ar/39Ar Geochronology of porphyry Sn ± Cu ± Mo and polymetallic (Ag-Pb-Zn-Cu) vein mineralization at Bianjiadayuan, Inner Mongolia, NE China: Implications for discrete mineralization events. Econ. Geol. 2017, 112, 2041–2059. [Google Scholar] [CrossRef]
- Wang, C.N.; Wang, Q.M.; Yu, X.F. Metallognetic characteristics of tin and ore-search prospect in the southern part of Da Hinggan Mountains. Geol. Explor. 2016, 52, 220–227. [Google Scholar]
- Sillitoe, R.H. Porphyry copper systems. Econ. Geol. 2010, 105, 3–41. [Google Scholar] [CrossRef]
- Criss, R.E.; Eaton, G.F. Evidence for proterozoic and late cretaceous-early tertiary ore-forming events in the Coeur d’Alene district, Idaho and Montana-a discussion. Econ. Geol. 1998, 93, 1103–1109. [Google Scholar] [CrossRef]
- Zhu, J.; Duan, H.; Yang, L.; Chen, Q.; Liu, L.; Shi, K.; Qian, J.; Li, Q.; Hu, R. Genesis of the Baiyangping Cu–Co and Pb–Zn Mineralizations in Lanping Basin, SW China. Appl. Sci. 2022, 12, 2129. [Google Scholar] [CrossRef]
- Wu, G.B.; Liu, J.M.; Zeng, Q.D.; Sun, H.S.; Liu, M.H. Metallogenic Age of Shuangjianzishan Pb-Zn-Ag Deposit in Daxinganling, Inner Mongolia. Acta Mineral. Sin. 2013, 33, 619. [Google Scholar]
- Kuang, Y.S.; Zheng, G.R.; Lu, M.J.; Liu, Y.L.; Zhang, S.J.; Li, Y.; Cheng, W.J. Basic characteristics of Shuangjianzishan sliver polymetallic deposit in Chifeng City, Inner Mongolia. Miner. Depos. 2014, 33, 847–856. [Google Scholar]
- Ouyang, H.G.; Li, R.H.; Zhou, Z.H. The Jurassic Mineralization of the Shuangjianzisha Ag polymetallic Deposit and its Significance in Prospecting: Evidence from Geochronology. Acta Geol. Sin. 2016, 90, 1835–1845. [Google Scholar]
- Jiang, B.; Wu, G.; Chen, Y.C.; Zhang, T.; Liu, W.Y.; Zhang, T.; Li, X.J. Constraint on the Genesis of the Shuangjianzishan Silver Polymetallic Deposit, Balinzuo Qi, Inner Mongolia: Evidence from Trace and Rare Earth Elements. Acta Geol. Sin. 2018, 92, 769–786. [Google Scholar]
- Wu, X.L.; Zhao, J.F.; Liu, W.Y.; Wu, G.; Jiang, B.; Li, Z.Y.; Sun, H.J. New discovery of tin mineralization in Shuangjianzishan A g polymetallic deposit, Inner Mongolia and its significance. Miner. Depos. 2021, 40, 631–635. [Google Scholar]
- Ma, W.W.; Jiang, B.; Chen, Y.C.; Gong, Q.J.; Yin, Z.W.; Sun, H.J.; Li, Z.Y.; Wu, L.W.; Zuo, Y.S.; Li, Z. Discovery and Significance of Large-scale Copper Mineralization in Shuangjianzishan Silver-polymetallic Deposit, Inner Mongolia. Acta Geosci. Sin. 2022, 43, 521–526. [Google Scholar]
- Ahmad, A.; Hafeez, M.; Abbasi, S.A.; Khan, T.M.; Faruque, M.R.I.; Khandaker, M.U.; Ahmad, P.; Rafique, M.; Haleem, N. Compositional Analysis of Chalcopyrite Using Calibration-Free Laser-Induced Breakdown Spectroscopy. Appl. Sci. 2020, 10, 6848. [Google Scholar] [CrossRef]
- Stergiou, C.L.; Melfos, V.; Voudouris, P.; Papadopoulou, L.; Spry, P.G.; Peytcheva, I.; Dimitrova, D.; Stefanova, E. A Fluid Inclusion and Critical/Rare Metal Study of Epithermal Quartz-Stibnite Veins Associated with the Gerakario Porphyry Deposit, Northern Greece. Appl. Sci. 2022, 12, 909. [Google Scholar] [CrossRef]
- Bi, R.; Wang, F.; Zhang, W. Whole Rock, Mineral Chemistry during Skarn Mineralization-Case Study from Tongshan Cu-Mo Skarn Profile. Appl. Sci. 2023, 13, 8118. [Google Scholar] [CrossRef]
- Czapowski, G.; Tomassi-Morawiec, H.; Handke, B.; Wachowiak, J.; Peryt, T.M. Trace Elements and Mineralogy of Upper Permian (Zechstein) Potash Deposits in Poland. Appl. Sci. 2022, 12, 7183. [Google Scholar] [CrossRef]
- Stergiou, C.L.; Melfos, V.; Voudouris, P.; Spry, P.G.; Papadopoulou, L.; Chatzipetros, A.; Giouri, K.; Mavrogonatos, C.; Filippidis, A. The Geology, Geochemistry, and Origin of the Porphyry Cu-Au-(Mo) System at Vathi, Serbo-Macedonian Massif, Greece. Appl. Sci. 2021, 11, 479. [Google Scholar] [CrossRef]
- Robinson, P.T.; Zhou, M.F.; Hu, X.F.; Reynolds, P.; Bai, W.J.; Yang, J.S. Geochemical constraints on the origin of the Hegenshan Ophiolite, Inner Mongolia, China. J. Asian Earth Sci. 1999, 17, 423–442. [Google Scholar] [CrossRef]
- Xiao, W.J.; Windley, B.F.; Hao, J.; Zhai, M.G. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt. Tectonics 2003, 22, 1069. [Google Scholar] [CrossRef]
- Windley, B.F.; Alexeiev, D.; Xiao, W.J.; Kroner, A.; Badarch, G. Tectonic models for accretion of the Central Asian Orogenic Belt. J. Geol. Soc. 2007, 164, 31–47. [Google Scholar] [CrossRef]
- Jiang, B.; Zhang, T.; Chen, Y.C.; Huang, F.; Wu, G.; Sun, H.J.; Li, Z.Y.; Li, X.J.; Yan, J. The source of ore forming fluid and mechanism of metal precipitation in the Shuangjianzishan Ag polymetallic deposit in Chifeng, Inner Mongolia. Acta Geol. Sin. 2019, 93, 3166–3182. [Google Scholar]
- Sun, K.W.; Yang, S.S.; Liu, Y.L. Exploration Report of Silver-Lead Ore in Shuangjianzishan Mining Area, Balinzuoqi, Inner Mongolia Autonomous Region (Mine Exploration Report); Chifeng Tiantong Geological Exploration Co., LTD.: Beijing, China, 2013; pp. 1–96. [Google Scholar]
- Wu, X.; Zhao, J.; Liu, W.; Xie, G.; Ye, Z.; Li, Z.; Sun, H. Tin mineralization in the giant Shuangjianzishan Ag-Pb-Zn deposit, Inner Mongolia. Ore Geol. Rev. 2023, 152, 105241. [Google Scholar] [CrossRef]
- Yuan, J.H.; Zhan, X.C.; Hu, M.Y.; Zhao, L.H.; Sun, D.Y. Characterization of Matrix Effects in Microanalysis of Sulfide Minerals by Laser Ablation Inductively Coupled Plasma-Mass Spectrometry Based on An Element Pair Method. Spectrosc. Spectr. Anal. 2015, 35, 512–518. [Google Scholar]
- Pauling, L.; Brockway, L.O. The crystal structure of chalcopyrite CuFeS2. Z. Krist. Cryst. Mater. 1932, 82, 188–194. [Google Scholar] [CrossRef]
- George, L.L.; Cook, N.J.; Crowe, B.B.; Ciobanu, C.L. Trace Elem Hydrothermal Chalcopyrite. Mineral. Mag. 2018, 82, 59–88. [Google Scholar] [CrossRef]
- Goldschmidt, V.M. Geochemistry. Soil Sci. 1954, 78, 156. [Google Scholar] [CrossRef]
- George, L.L.; Cook, N.J.; Ciobanu, C.L. Partitioning of trace elements in co-crystallized sphalerite–galena–chalcopyrite hydrothermal ores. Ore Geol. Rev. 2016, 77, 97–116. [Google Scholar] [CrossRef]
- Eugster, H.P. Minerals in hot water. Am. Mineral. 1986, 71, 655–673. [Google Scholar]
- Wang, Q.L.; Zhang, J.Y.; Yan, D.T.; Min, H.; Liu, S.; Li, C. Genesis type of ore deposits indicated by trace elements of chalcopyrite. Bull. Geol. Sci. Technol. 2023, 42, 126–143. [Google Scholar]
- Butler, I.B.; Nesbitt, R.W. Trace element distributions in the chalcopyrite wall of ablack smoker chimney:Insights from laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Earth Planet. Sci. Lett. 1999, 167, 335–345. [Google Scholar] [CrossRef]
- Bethke, P.M.; Barton, P.B. Distribution of some minor elements between coexisting sulphide minerals. Econ. Geol. 1971, 66, 140–163. [Google Scholar] [CrossRef]
- Taylor, R.G. Geology of Tin Deposits; Elsevier Scientific Publishing Company: Amsterdam, The Netherlands, 1979. [Google Scholar]
- Wang, P.; Pan, Z.L.; Weng, L.B. Systematic Mineralogy; Geological Publishing House: Beijing, China, 1982; pp. 541–544. [Google Scholar]
- Huang, P.Y.; Wang, X.; Chen, J.; Ren, M.H.; Lai, G.B. Morphological and Geochemical Studies of the Cassiterite in Taoxikeng Tin Deposit, Southern Jiangxi, China. Geol. Rev. 2012, 58, 987–1000. [Google Scholar]
- Tan, S.C.; Guo, X.Y.; He, X.H.; Xie, Z.P.; Zhang, Y.H.; Li, H.M.; Hao, S. Mineral Chemical Characteristics and Genesis of Cassiterite in Gejiu Tin-Polymetallic Deposit, Y unnan Province. J. Jilin Univ. Earth Sci. Ed. 2018, 48, 736–753. [Google Scholar]
- Möller, P.; Dulski, P.; Szacki, W.; Malow, G.; Riedel, E. Substitution of tin in cassiterite by tantalum, niobium, tungsten, iron and manganese. Geochim. Cosmochim. Acta 1988, 52, 1497–1503. [Google Scholar] [CrossRef]
- Wu, X.L. Mineralogical Constraints on the Ag-Sn Mineralization Relationship of Shuangjianzishan Ag-Polymetallic Deposit, Inner Mongolia; Fuzhou University: Fuzhou, China, 2023. [Google Scholar]
- Cheng, Y.; Spandler, C.; Kemp, A.; Mao, J.; Rusk, B.; Hu, Y.; Blake, K. Controls on cassiterite (SnO2) crystallization: Evidence from cathodoluminescence, trace-element chemistry, and geochronology at the Gejiu Tin District. Am. Mineral. 2019, 104, 118–129. [Google Scholar] [CrossRef]
- Pavlova, G.G.; Palessky, S.V.; Borisenko, A.S.; Vladimirov, A.G.; Seifert, T.; Phan, L.A. Indium in cassiterite and ores of tin deposits. Ore Geol. Rev. 2015, 66, 99–113. [Google Scholar] [CrossRef]
- Zhu, X.Q.; Zhang, Q.; He, Y.L.; Zhu, C.H. Relationships between indium and tin, zinc and lead in ore-forming fluid from the indium-rich and -poor deposits in China. Geochimica 2006, 35, 6–12. [Google Scholar]
- Xu, J.; Li, X.F. Spatial and temporal distributions, metallogenic backgrounds and processes of indium deposits. Acta Petrol. Sin. 2018, 34, 3611–3626. [Google Scholar]
- Murciego, A.; Sanchez, A.G.; Dusausoy, Y.; Pozas, J.M.; Ruck, R. Geochemistry and EPR of cassiterites from the Iberian Hercynian Massif. Mineral. Mag. 1997, 61, 357–365. [Google Scholar] [CrossRef]
- Chen, J.; Wang, R.C.; Zhou, J.P. Geochemistry of Tin; Nanjing University Press: Nanjing, China, 1990. [Google Scholar]
- Tindle, A.G.; Breaks, F.W. Oxide minerals of the Separation Rapids rare-element granitic pegmatite group, northwestern Ontario. Can. Mineral. 1998, 36, 609–635. [Google Scholar]
- Lehmann, B. Metallogeny of Tin; Springer: Berlin/Heidelberg, Germany, 1990. [Google Scholar]
- Heinrich, C.A. The chemistry of tin (-tungsten) ore deposition. Econ. Geol. 1990, 85, 529–550. [Google Scholar] [CrossRef]
- Chen, D.F. Characteristics of Main Meta llic Minerals in Some Copper-Nickel Sulfide Deposits of China. Acta Petrol. Mineral. 1995, 14, 345–354. [Google Scholar]
- Wei, W. Genetic Mineralogy and Metallogenesis of Shuangjianzishan Ag Pb-Zn Polymetallic Deposit, Inner Mongolia; China University of Geosciences: Beijing, China, 2021. [Google Scholar]
- Sun, Y.L.; Xu, H.; Zhu, X.Y.; Liu, X.; Jiang, B.B. Characteristics of fluid inclusion and its geological significance in the Weilasituo tin polymetallic deposit, Inner Mongolia. Miner. Explor. 2017, 8, 1044–1053. [Google Scholar]
- Wang, J.B.; Wang, Y.W.; Wang, L.J. Tin-polymetallic metallogenic series in the southern part of Da Hinggan Mountains, China. Geol. Explor. 2005, 6, 18–23. [Google Scholar]
- Wang, L.J.; Wang, J.B.; Wang, Y.W. Metallogenic mechanism of fluid and prospecting forecast of Dajing Sn-Cu polymetallic deposit, Inner Mongolia. Acta Petrol. Sin. 2015, 31, 991–1001. [Google Scholar]
Sample No. | Mineral | Sampling Location | Description |
---|---|---|---|
ZK0403-61 | Ccp | ZK0403 at 171 m depth | Quartz–sphalerite veins with chalcopyrite dotted among them |
ZK2203-19 | Ccp | ZK2203 at 396 m depth | Vein chalcopyrite ore, gangue minerals are mainly quartz |
ZK2203-20 | Ccp | ZK2203 at 445 m depth | Vein chalcopyrite ore |
ZK2203-21 | Ccp | ZK2203 at 498 m depth | Vein-like sphalerite ore with chalcopyrite is sparsely disseminated in it |
ZK2203-23 | Ccp | ZK2203 at 594 m depth | Chlorite-dense disseminated chalcopyrite ore |
ZK2203-29 | Ccp | ZK2203 at 993 m depth | Quartz–chalcopyrite–sphalerite veins |
ZK2203-33 | Ccp | ZK2203 at 1172 m depth | The vented galena ore and chalcopyrite are distributed in disseminated form |
ZK2204-7 | Ccp | ZK2204 at 280 m depth | Striped galena–sphalerite ore with chalcopyrite dots in it |
ZK2204-9 | Ccp | ZK2204 at 298 m depth | Chalcopyrite ore with quartz and calcite veins |
ZK2204-10 | Ccp | ZK2204 at 308 m depth | Vein sphalerite ore, chalcopyrite sporadic distribution |
ZK2204-12 | Ccp | ZK2204 at 389 m depth | Chalcopyrite ore with quartz vein |
ZK2204-14 | Ccp | ZK2204 at 462 m depth | Quartz vein chalcopyrite ore |
ZK2204-17 | Ccp | ZK2204 at 625 m depth | Breccia chalcopyrite–sphalerite ore |
ZD5-02 | Cst | Level 5 elevation 625 m, vein 75 | Dense disseminated chalcopyrite ore with cassiterite |
ZK2204-B3 | Cst | ZK2204 at 1386 m depth | Vein sphalerite ore with cassiterite |
F | SiO2 | MgO | ZrO2 | CaO | FeO | HfO2 | SnO2 | SrO | ThO2 | Total | |
---|---|---|---|---|---|---|---|---|---|---|---|
ZK2204-17-01 | 0 | 1.098 | 0.227 | 0.033 | 0.506 | 1.564 | 0 | 96.252 | 0 | 0.038 | 99.718 |
ZK2204-17-02 | 0.131 | 1.769 | 0.166 | 0 | 0.527 | 1.706 | 0 | 95.086 | 0 | 0.022 | 99.407 |
ZK2204-17-03 | 0.058 | 1.271 | 0.15 | 0.056 | 0.548 | 2.188 | 0.15 | 95.853 | 0.032 | 0.019 | 100.325 |
ZK2204-17-04 | 0 | 1.207 | 0.152 | 0 | 0.384 | 1.332 | 0.156 | 96.38 | 0.024 | 0 | 99.635 |
ZK2204-17-05 | 0 | 2.693 | 0.42 | 0 | 0.498 | 4.158 | 0 | 91.456 | 0.071 | 0 | 99.296 |
ZK2204-17-06 | 0 | 1.844 | 0.216 | 0 | 0.488 | 3.093 | 0.388 | 94.169 | 0 | 0 | 100.198 |
ZK2204-17-07 | 0.101 | 0.993 | 0.122 | 0.098 | 0.407 | 1.629 | 0.058 | 96.288 | 0 | 0 | 99.696 |
KZ0001-05-01 | 0 | 0.571 | 0.076 | 0.033 | 0.535 | 0.393 | 0 | 98.272 | 0.008 | 0.008 | 99.896 |
KZ0001-05-02 | 0 | 0.641 | 0.115 | 0.056 | 0.484 | 1.111 | 0 | 96.667 | 0.031 | 0 | 99.105 |
KZ0001-05-03 | 0 | 1.605 | 0.162 | 0.089 | 0.61 | 0.99 | 0 | 96.381 | 0.013 | 0 | 99.85 |
KZ0001-05-04 | 0 | 0.989 | 0.157 | 0.005 | 0.565 | 0.904 | 0.063 | 97.805 | 0 | 0 | 100.488 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Jiang, B.; Chen, Y.; Wu, L.; Zuo, Y.; Liu, Z. Genesis of Cu-Sn Mineralization in the Shuangjianzishan Super-Large Silver Deposit, Inner Mongolia: Trace Element Constraints from Chalcopyrite and Cassiterite. Appl. Sci. 2024, 14, 3822. https://doi.org/10.3390/app14093822
Liu Y, Jiang B, Chen Y, Wu L, Zuo Y, Liu Z. Genesis of Cu-Sn Mineralization in the Shuangjianzishan Super-Large Silver Deposit, Inner Mongolia: Trace Element Constraints from Chalcopyrite and Cassiterite. Applied Sciences. 2024; 14(9):3822. https://doi.org/10.3390/app14093822
Chicago/Turabian StyleLiu, Yu, Biao Jiang, Yuchuan Chen, Liwen Wu, Yushan Zuo, and Zhao Liu. 2024. "Genesis of Cu-Sn Mineralization in the Shuangjianzishan Super-Large Silver Deposit, Inner Mongolia: Trace Element Constraints from Chalcopyrite and Cassiterite" Applied Sciences 14, no. 9: 3822. https://doi.org/10.3390/app14093822
APA StyleLiu, Y., Jiang, B., Chen, Y., Wu, L., Zuo, Y., & Liu, Z. (2024). Genesis of Cu-Sn Mineralization in the Shuangjianzishan Super-Large Silver Deposit, Inner Mongolia: Trace Element Constraints from Chalcopyrite and Cassiterite. Applied Sciences, 14(9), 3822. https://doi.org/10.3390/app14093822