Kinetic Comparison between Drop Jumps and Horizontal Drop Jumps in Elite Jumpers and Sprinters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Approach to the Problem
2.2. Subjects
2.3. Testing Procedures
2.4. Instrumentation and Data Processing
2.5. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jarvis, M.M.; Graham-Smith, P.; Comfort, P. A Methodological Approach to Quantifying Plyometric Intensity. J. Strength Cond. Res. 2016, 30, 2522–2532. [Google Scholar] [CrossRef]
- Jensen, R.L.; Ebben, W.P. Quantifying plyometric intensity via rate of force development, knee joint, and ground reaction forces. J. Strength Cond. Res. 2007, 21, 763–767. [Google Scholar]
- Wallace, B.J.; Kernozek, T.W.; White, J.M.; Kline, D.E.; Wright, G.A.; Peng, H.T.; Huang, C.F. Quantification of vertical ground reaction forces of popular bilateral plyometric exercises. J. Strength Cond. Res. 2010, 24, 207–212. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.T.; Khuat, C.T.; Kernozek, T.W.; Wallace, B.J.; Lo, S.L.; Song, C.Y. Optimum Drop Jump Height in Division III Athletes: Under 75% of Vertical Jump Height. Int. J. Sports Med. 2017, 38, 842–846. [Google Scholar] [CrossRef]
- Walsh, M.; Arampatzis, A.; Schade, F.; Brüggemann, G.P. The effect of drop jump starting height and contact time on power, work performed, and moment of force. J. Strength Cond. Res. 2004, 18, 561–566. [Google Scholar] [CrossRef] [PubMed]
- Ramos, C.D.; Ramey, M.; Wilcox, R.R.; McNitt-Gray, J.L. Generation of Linear Impulse During the Takeoff of the Long Jump. J. Appl. Biomech. 2019, 35, 52–60. [Google Scholar] [CrossRef]
- Ruan, M.; Li, L. Influence of a horizontal approach on the mechanical output during drop jumps. Res. Q. Exerc. Sport 2008, 79, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Dello Iacono, A.; Martone, D.; Milic, M.; Padulo, J. Vertical- vs. Horizontal-Oriented Drop Jump Training: Chronic Effects on Explosive Performances of Elite Handball Players. J. Strength Cond. Res. 2017, 31, 921–931. [Google Scholar] [CrossRef] [PubMed]
- Andrade, D.C.; Manzo, O.; Beltran, A.R.; Alvarez, C.; Del Rio, R.; Toledo, C.; Moran, J.; Ramirez-Campillo, R. Kinematic and Neuromuscular Measures of Intensity During Plyometric Jumps. J. Strength Cond. Res. 2020, 34, 3395–3402. [Google Scholar] [CrossRef]
- Di Giminiani, R.; Petricola, S. The power output-drop height relationship to determine the optimal dropping intensity and to monitor the training intervention. J. Strength Cond. Res. 2016, 30, 117–125. [Google Scholar] [CrossRef]
- Torres-Banduc, M.; Ramirez-Campillo, R.; Andrade, D.C.; Calleja-Gonzalez, J.; Nikolaidis, P.T.; McMahon, J.J.; Comfort, P. Kinematic and Neuromuscular Measures of Intensity During Drop Jumps in Female Volleyball Players. Front. Psychol. 2021, 12, 724070. [Google Scholar] [CrossRef] [PubMed]
- Ebben, W.P.; Fauth, M.L.; Garceau, L.R.; Petushek, E.J. Kinetic quantification of plyometric exercise intensity. J. Strength Cond. Res. 2011, 25, 3288–3298. [Google Scholar] [CrossRef]
- Kossow, A.J.; Ebben, W.P. Kinetic Analysis of Horizontal Plyometric Exercise Intensity. J. Strength Cond. Res. 2018, 32, 1222–1229. [Google Scholar] [CrossRef] [PubMed]
- Ball, N.B.; Zanetti, S. Relationship between reactive strength variables in horizontal and vertical drop jumps. J. Strength Cond. Res. 2012, 26, 1407–1412. [Google Scholar] [CrossRef] [PubMed]
- Bobbert, M.F.; Huijing, P.A.; van Ingen Schenau, G.J. Drop jumping. I. The influence of jumping technique on the biomechanics of jumping. Med. Sci. Sports Exerc. 1987, 19, 332–338. [Google Scholar] [CrossRef]
- Dobbs, C.W.; Gill, N.D.; Smart, D.J.; McGuigan, M.R. Relationship between vertical and horizontal jump variables and muscular performance in athletes. J. Strength Cond. Res. 2015, 29, 661–671. [Google Scholar] [CrossRef] [PubMed]
- Montoro-Bombu, R.; Miranda-Oliveira, P.; Valamatos, M.; João, F.; Buurke, B.; Santos, A.; Rama, L. Spatiotemporal variables comparison between drop jump and horizontal drop jump in elite jumpers and sprinters. PeerJ 2024, 12, e5937. [Google Scholar] [CrossRef]
- Haff, G.G.; Nimphius, S. Training Principles for Power. Strength Cond. J. 2012, 34, 2–12. [Google Scholar] [CrossRef]
- Matic, M.S.; Pazin, N.R.; Mrdakovic, V.D.; Jankovic, N.N.; Ilic, D.B.; Stefanovic, D.L.J. Optimum Drop Height for Maximizing Power Output in Drop Jump: The Effect of Maximal Muscle Strength. J. Strength Cond. Res. 2015, 29, 3300–3310. [Google Scholar] [CrossRef]
- D’Emanuele, S.; Maffiuletti, N.A.; Tarperi, C.; Rainoldi, A.; Schena, F.; Boccia, G. Rate of Force Development as an Indicator of Neuromuscular Fatigue: A Scoping Review. Front. Hum. Neurosci. 2021, 15, 701916. [Google Scholar] [CrossRef]
- Rodriguez-Rosell, D.; Pareja-Blanco, F.; Aagaard, P.; Gonzalez-Badillo, J.J. Physiological and methodological aspects of rate of force development assessment in human skeletal muscle. Clin. Physiol. Funct. Imaging 2018, 38, 743–762. [Google Scholar] [CrossRef] [PubMed]
- Aagaard, P.; Simonsen, E.B.; Andersen, J.L.; Magnusson, P.; Dyhre-Poulsen, P. Increased rate of force development and neural drive of human skeletal muscle following resistance training. J. Appl. Physiol. 2002, 93, 1318–1326. [Google Scholar] [CrossRef] [PubMed]
- Buckthorpe, M.W.; Hannah, R.; Pain, T.G.; Folland, J.P. Reliability of neuromuscular measurements during explosive isometric contractions, with special reference to electromyography normalization techniques. Muscle Nerve 2012, 46, 566–576. [Google Scholar] [CrossRef] [PubMed]
- Tillin, N.A.; Jimenez-Reyes, P.; Pain, M.T.G.; Folland, J.P. Neuromuscular Performance of Explosive Power Athletes versus Untrained Individuals. Med. Sci. Sports Exerc. 2010, 42, 781–790. [Google Scholar] [CrossRef] [PubMed]
- Cronin, J.B.; Hansen, K.T. Strength and power predictors of sports speed. J. Strength Cond. Res. 2005, 19, 349–357. [Google Scholar] [PubMed]
- Salami, S.; Wei, J.; Regan, M.; Scherr, D.; Siddiqui, J.; Kearney, M.; Eyre, R.; Dewolf, W.; Rubin, M.; Sanda, M. Body Mass Index and Prostate Size Improve Performance of a Prostate Cancer Risk Calculator at High Levels of Sensitivity for Predicting Prostate Cancer at Initial Prostate Biopsy: Results from a Prospective, Multi-Center Cohort. J. Urol. 2010, 183, E818–E819. [Google Scholar] [CrossRef]
- Almuzaini, K.S.; Fleck, S.J. Modification of the Standing Long Jump Test Enhances Ability to Predict Anaerobic Performance. J. Strength Cond. Res. 2008, 22, 1265–1272. [Google Scholar] [CrossRef] [PubMed]
- Simpson, J.D.; Miller, B.L.; O’Neal, E.K.; Chander, H.; Knight, A.C. Ground reaction forces during a drop vertical jump: Impact of external load training. Hum. Mov. Sci. 2018, 59, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Hori, N.; Newton, R.U.; Kawamori, N.; McGuigan, M.R.; Kraemer, W.J.; Nosaka, K. Reliability of Performance Measurements Derived from Ground Reaction Force Data during Countermovement Jump and the Influence of Sampling Frequency. J. Strength Cond. Res. 2009, 23, 874–882. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Tesch, P.A.; Fernandez-Gonzalo, R.; Lundberg, T.R. Clinical Applications of Iso-Inertial, Eccentric-Overload (YoYo™) Resistance Exercise. Front. Physiol. 2017, 8, 241. [Google Scholar] [CrossRef] [PubMed]
- Cormie, P.; McGuigan, M.R.; Newton, R.U. Changes in the eccentric phase contribute to improved stretch-shorten cycle performance after training. Med. Sci. Sports Exerc. 2010, 42, 1731–1744. [Google Scholar] [CrossRef] [PubMed]
- Makaruk, H.; Sacewicz, T. The Effect of Drop Height and Body Mass on Drop Jump Intensity. Biol. Sport 2011, 28, 63–67. [Google Scholar] [CrossRef]
- Bobbert, M.F.; Huijing, P.A.; van Ingen Schenau, G.J. Drop jumping. II. The influence of dropping height on the biomechanics of drop jumping. Med. Sci. Sports Exerc. 1987, 19, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Young, W.B.; Pryor, J.F.; Wilson, G.J. Effect of Instructions on characteristics of Countermovement and Drop Jump Performance. J. Strength Cond. Res. 1995, 9, 232–236. [Google Scholar]
- Moran, J.; Ramirez-Campillo, R.; Liew, B.; Chaabene, H.; Behm, D.G.; Garcia-Hermoso, A.; Izquierdo, M.; Granacher, U. Effects of Vertically and Horizontally Orientated Plyometric Training on Physical Performance: A Meta-analytical Comparison. Sports Med. 2021, 51, 65–79. [Google Scholar] [CrossRef] [PubMed]
- Nagano, A.; Komura, T.; Fukashiro, S. Optimal coordination of maximal-effort horizontal and vertical jump motions—A computer simulation study. Biomed. Eng. Online 2007, 6, 20. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, M.; Komi, P.V. Effects of different dropping intensities on fascicle and tendinous tissue behavior during stretch-shortening cycle exercise. J. Appl. Physiol 2004, 96, 848–852. [Google Scholar] [CrossRef] [PubMed]
- Hay, J.G. Citius, altius, longius (faster, higher, longer): The biomechanics of jumping for distance. J. Biomech. 1993, 26 (Suppl. S1), 7–21. [Google Scholar] [CrossRef]
- Stone, M.H.; O’Bryant, H.S.; McCoy, L.; Coglianese, R.; Lehmkuhl, M.; Schilling, B. Power and maximum strength relationships during performance of dynamic and static weighted jumps. J. Strength Cond. Res. 2003, 17, 140–147. [Google Scholar] [CrossRef]
- Gillen, Z.M.; Shoemaker, M.E.; Bohannon, N.A.; Gibson, S.M.; Cramer, J.T. Effects of Eccentric Pre-loading on Concentric Vertical Jump Performance in Young Female Athletes. J. Sci. Sport Exerc. 2021, 3, 98–106. [Google Scholar] [CrossRef]
- Gillen, Z.M.; Jahn, L.E.; Shoemaker, M.E.; McKay, B.D.; Mendez, A.I.; Bohannon, N.A.; Cramer, J.T. Effects of Eccentric Preloading on Concentric Vertical Jump Performance in Youth Athletes. J. Appl. Biomech. 2019, 35, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Ebben, W.P.; Flanagan, E.P.; Jensen, R.L. Jaw Clenching Results in Concurrent Activation Potentiation During the Countermovement Jump. J. Strength Cond. Res. 2008, 22, 1850–1854. [Google Scholar] [CrossRef] [PubMed]
- McLellan, C.P.; Lovell, D.I.; Gass, G.C. The role of rate of force development on vertical jump performance. J. Strength Cond. Res. 2011, 25, 379–385. [Google Scholar] [CrossRef]
- Moir, G.L.; Garcia, A.; Dwyer, G.B. Intersession reliability of kinematic and kinetic variables during vertical jumps in men and women. Int. J. Sports Physiol. Perform. 2009, 4, 317–330. [Google Scholar] [CrossRef] [PubMed]
- Thorlund, J.B.; Michalsik, L.B.; Madsen, K.; Aagaard, P. Acute fatigue-induced changes in muscle mechanical properties and neuromuscular activity in elite handball players following a handball match. Scand. J. Med. Sci. Sports 2008, 18, 462–472. [Google Scholar] [CrossRef]
- Cormie, P.; McBride, J.M.; McCaulley, G.O. Power-time, force-time, and velocity-time curve analysis during the jump squat: Impact of load. J. Appl. Biomech. 2008, 24, 112–120. [Google Scholar] [CrossRef]
- Maffiuletti, N.A.; Aagaard, P.; Blazevich, A.J.; Folland, J.; Tillin, N.; Duchateau, J. Rate of force development: Physiological and methodological considerations. Eur. J. Appl. Physiol. 2016, 116, 1091–1116. [Google Scholar] [CrossRef]
DJ30 | HDJ30v | DJ40 | HDJ40v | DJ50 | HDJ50v | HDJ30a | HDJ40a | HDJ50a | |
---|---|---|---|---|---|---|---|---|---|
PE (N.s) | 264.57 ± 27.31 | 298.03 ± 34.34 | 283.17 ± 29.79 | 310.90 ± 40.71 | 315.78 ± 43.47 | 345.23 ± 58.50 | |||
PC (N.s) | 345.63 ± 27.31 | 307.79 ± 27.31 | 329.63 ± 62.40 | 278.76 ± 60.52 | 348.86 ± 89.45 | 297.38 ± 55.37 | 106.90 ± 36.03 | 102.83 ± 35.09 | 134.21 ± 65.63 |
GRFE (N) | 4613.5 ± 1132.1 | 3019.3 ± 463.71 | 5288.1 ± 683.95 | 3510.1 ± 524.14 | 5574.0 ± 695.70 | 3492.3 ± 470.59 | - | - | - |
GRFC (N) | 3892.3 ± 710.23 | 2634.4 ± 427.45 | 3942.1 ± 683.83 | 2971.4 ± 409.50 | 3693.6 ± 600.34 | 2700.3 ± 736.37 | 877.2 ± 223.06 | 960.05 ± 249.46 | 1074.8 ± 453.60 |
Pw (W) | 7159.9 ± 2009.3 | 6706.8 ± 1248.2 | 10,840.6 ± 1820 | 8171.5 ± 459.5 | 10,526.7 ± 1253 | 7696.06 ± 1424 | - | - | - |
RFDe (N/s) | 18,584.5 ± 7680 | 13,788.1 ± 4252 | 24,726.2 ± 7681 | 21,166.6 ± 7845 | 22,990.2 ± 9438 | 13,153.5 ± 4346 | - | - | - |
*→ | Groups | PE | ES | PC | ES | GRFE | ES | GRFC | ES | Pw | ES | RFDe | ES |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DJ30 vs. HDJ30v | A | ↓Y*** | >1.0 | ↑Y*** | >1.0 | ↑Y**** | >1.0 | ↑Y**** | >1.0 | ↑Y*** | 0.27 | ↑Y*** | >1.0 |
DJ40 vs. HDJ40v | ↓Y*** | 0.77 | ↑Y*** | 0.82 | ↑Y**** | >1.0 | ↑Y**** | >1.0 | ↑Y*** | 0.71 | ↑Y*** | 0.25 | |
DJ50 vs. HDJ50v | ↓Y*** | 0.57 | ↑Y*** | 0.69 | ↑Y**** | >1.0 | ↑Y**** | >1.0 | ↑Y**** | >1.0 | ↑Y*** | >1.0 | |
DJ30 vs. HDJ40v | ↓Y*** | >1.0 | ↑Y*** | >1.0 | ↑Y**** | >1.0 | ↑Y**** | >1.0 | ↓Y**** | 0.69 | ↓Y*** | 0.18 | |
DJ30 vs. HDJ50v | ↓Y*** | >1.0 | ↑Y*** | >1.0 | ↑Y**** | >1.0 | ↑Y**** | >1.0 | ↓Y**** | 0.30 | ↑Y*** | 0.87 | |
DJ40 vs. HDJ50v | ↓Y*** | >1.0 | ↑Y*** | 0.54 | ↑Y**** | >1.0 | ↑Y**** | >1.0 | ↑Y**** | >1.0 | ↑Y*** | >1.0 | |
DJ30 vs. HDJ30a | B | - | ↑Y**** | >1.0 | - | ↑Y**** | >1.0 | - | - | ||||
DJ40 vs. HDJ40a | - | ↑Y**** | >1.0 | - | ↑Y*** | >1.0 | - | - | |||||
DJ50 vs. HDJ50a | - | ↑Y**** | >1.0 | - | ↑Y**** | >1.0 | - | - | |||||
DJ30 vs. HDJ40a | - | ↑Y**** | >1.0 | - | ↑Y**** | >1.0 | - | - | |||||
DJ30 vs. HDJ50a | - | ↑Y**** | >1.0 | - | ↑Y**** | >1.0 | - | - | |||||
DJ40 vs. HDJ50a | - | ↑Y*** | >1.0 | - | ↑Y**** | >1.0 | - | - | |||||
HDJ30v vs. HDJ30a | C | - | ↑Y**** | >1.0 | - | ↑Y**** | >1.0 | - | - | ||||
HDJ40v vs. HDJ40a | - | ↑Y**** | >1.0 | - | ↑Y**** | >1.0 | - | - | |||||
HDJ50v vs. HDJ50a | - | ↑Y**** | >1.0 | - | ↑Y**** | >1.0 | - | - | |||||
HDJ30v vs. HDJ40a | - | ↑Y**** | >1.0 | - | ↑Y**** | >1.0 | - | - | |||||
HDJ30v vs. HDJ50a | - | ↑Y**** | >1.0 | - | ↑Y**** | >1.0 | - | - | |||||
HDJ40v vs. HDJ50a | - | ↑Y**** | >1.0 | - | ↑Y**** | >1.0 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montoro-Bombú, R.; Miranda-Oliveira, P.; Valamatos, M.J.; João, F.; Buurke, T.J.W.; Cupido Santos, A.; Rama, L. Kinetic Comparison between Drop Jumps and Horizontal Drop Jumps in Elite Jumpers and Sprinters. Appl. Sci. 2024, 14, 3833. https://doi.org/10.3390/app14093833
Montoro-Bombú R, Miranda-Oliveira P, Valamatos MJ, João F, Buurke TJW, Cupido Santos A, Rama L. Kinetic Comparison between Drop Jumps and Horizontal Drop Jumps in Elite Jumpers and Sprinters. Applied Sciences. 2024; 14(9):3833. https://doi.org/10.3390/app14093833
Chicago/Turabian StyleMontoro-Bombú, Raynier, Paulo Miranda-Oliveira, Maria João Valamatos, Filipa João, Tom J. W. Buurke, Amândio Cupido Santos, and Luís Rama. 2024. "Kinetic Comparison between Drop Jumps and Horizontal Drop Jumps in Elite Jumpers and Sprinters" Applied Sciences 14, no. 9: 3833. https://doi.org/10.3390/app14093833
APA StyleMontoro-Bombú, R., Miranda-Oliveira, P., Valamatos, M. J., João, F., Buurke, T. J. W., Cupido Santos, A., & Rama, L. (2024). Kinetic Comparison between Drop Jumps and Horizontal Drop Jumps in Elite Jumpers and Sprinters. Applied Sciences, 14(9), 3833. https://doi.org/10.3390/app14093833