Three-Dimensional Printed Attachments: Analysis of Reproduction Accuracy Compared to Traditional Attachments
Abstract
:1. Introduction
2. Materials and Methods
- -
- Permanent dentition.
- -
- Patients with Class I malocclusion.
- -
- Patients with dental caries.
- -
- Gingival recessions.
- -
- Crown or periodontal abnormalities.
- -
- Presence of dental crowding.
2.1. Attachment Transfer: Operating Procedure
- -
- Bonding of 3D-printed attachments (CA)
- -
- Bonding of traditional attachment (TA)
- -
- Vertical (following the long axis of the tooth).
- -
- Horizontal (perpendicular to the long axis of the tooth) (Figure 5).
- -
- Puff analysis
- -
- Shape analysis
- Puff Analysis
- Shape Analysis
2.2. Statistical Analysis
- Methodological Error Assessment:
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barrera-Chaparro, J.P.; Plaza-Ruíz, S.P.; Parra, K.L.; Quintero, M.; Velasco, M.D.P.; Molinares, M.C.; Álvarez, C. Orthodontic treatment need, the types of brackets and the oral health-related quality of life. Dent. Med. Probl. 2023, 60, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Putrino, A.; Barbato, E.; Galluccio, G. Clear Aligners: Between Evolution and Efficiency—A Scoping Review. Int. J. Environ. Res. Public Health 2021, 18, 2870. [Google Scholar] [CrossRef] [PubMed]
- Muro, M.P.; Caracciolo, A.C.A.; Patel, M.P.; Feres, M.F.N.; Roscoe, M.G. Effectiveness and predictability of treatment with clear orthodontic aligners: A scoping review. Int. Orthod. 2023, 21, 100755. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Qi, R.; Liu, C. Root resorption in orthodontic treatment with clear aligners: A systematic review and meta-analysis. Orthod. Craniofacial Res. 2019, 22, 259–269. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Deng, S.; Mei, L.; Li, Z.; Zhang, X.; Yang, C.; Li, Y. Prevalence and severity of apical root resorption during orthodontic treatment with clear aligners and fixed appliances: A cone beam computed tomography study. Prog. Orthod. 2020, 21, 1. [Google Scholar] [CrossRef] [PubMed]
- Nucera, R.; Giudice, A.L.; Matarese, G.; Artemisia, A.; Bramanti, E.; Crupi, P.; Cordasco, G. Analysis of the characteristics of slot design affecting resistance to sliding during active archwire configurations. Prog. Orthod. 2013, 14, 35. [Google Scholar] [CrossRef]
- Cordasco, G.; Farronato, G.; Festa, F.; Nucera, R.; Parazzoli, E.; Grossi, G.B. In vitro evaluation of the frictional forces between brackets and archwire with three passive self-ligating brackets. Eur. J. Orthod. 2009, 31, 643–646. [Google Scholar] [CrossRef]
- Rouzi, M.; Zhang, X.; Jiang, Q.; Long, H.; Lai, W.; Li, X. Impact of Clear Aligners on Oral Health and Oral Microbiome during Orthodontic Treatment. Int. Dent. J. 2023, 73, 603–611. [Google Scholar] [CrossRef]
- Kravitz, N.D.; Kusnoto, B.; BeGole, E.; Obrez, A.; Agran, B. How well does Invisalign work? A prospective clinical study evaluating the efficacy of tooth movement with Invisalign. Am. J. Orthod. Dentofac. Orthop. 2009, 135, 27–35. [Google Scholar] [CrossRef]
- Paradowska-Stolarz, A.; Wezgowiec, J.; Malysa, A.; Wieckiewicz, M. Effects of Polishing and Artificial Aging on Mechanical Properties of Dental LT Clear® Resin. J. Funct. Biomater. 2023, 14, 295. [Google Scholar] [CrossRef]
- Barreda, G.J.; Dzierewianko, E.A.; Muñoz, K.A.; Piccoli, G.I. Surface wear of resin composites used for Invisalign® attachments. Acta Odontol. Latinoam. 2017, 30, 90–95. [Google Scholar] [PubMed]
- Jedliński, M.; Mazur, M.; Greco, M.; Belfus, J.; Grocholewicz, K.; Janiszewska-Olszowska, J. Attachments for the Orthodontic Aligner Treatment—State of the Art—A Comprehensive Systematic Review. Int. J. Environ. Res. Public Health 2023, 20, 4481. [Google Scholar] [CrossRef] [PubMed]
- Gomez, J.P.; Peña, F.M.; Martínez, V.; Giraldo, D.C.; Cardona, C.I. Initial force systems during bodily tooth movement with plastic aligners and composite attachments: A three-dimensional finite element analysis. Angle Orthod. 2015, 85, 454–460. [Google Scholar] [CrossRef] [PubMed]
- Nucera, R.; Dolci, C.; Bellocchio, A.M.; Costa, S.; Barbera, S.; Rustico, L.; Farronato, M.; Militi, A.; Portelli, M. Effects of Composite Attachments on Orthodontic Clear Aligners Therapy: A Systematic Review. Materials 2022, 15, 533. [Google Scholar] [CrossRef] [PubMed]
- Weckmann, J.; Scharf, S.; Graf, I.; Schwarze, J.; Keilig, L.; Bourauel, C.; Braumann, B. Influence of attachment bonding protocol on precision of the attachment in aligner treatments. J. Orofac. Orthop. 2020, 81, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Valeri, C.; Aloisio, A.; Mummolo, S.; Quinzi, V. Performance of Rigid and Soft Transfer Templates Using Viscous and Fluid Resin-Based Composites in the Attachment Bonding Process of Clear Aligners. Int. J. Dent. 2022, 2022, 1637594. [Google Scholar] [CrossRef] [PubMed]
- D’antò, V.; Muraglie, S.; Castellano, B.; Candida, E.; Sfondrini, M.F.; Scribante, A.; Grippaudo, C. Influence of Dental Composite Viscosity in Attachment Reproduction: An Experimental in Vitro Study. Materials 2019, 12, 4001. [Google Scholar] [CrossRef] [PubMed]
- Gazzani, F.; Bellisario, D.; Quadrini, F.; Danesi, C.; Alberti, A.; Cozza, P.; Pavoni, C. Light-curing process for clear aligners’ attachment reproduction: Comparison between two nanocomposites cured by the auxiliary of a new tool. BMC Oral Health 2022, 22, 376. [Google Scholar] [CrossRef] [PubMed]
- Bellocchio, A.M.; Portelli, M.; Ciraolo, L.; Ciancio, E.; Militi, A.; Peditto, M.; Barbera, S.; Nucera, R. Evaluation of the Clinical Variables Affecting Attachment Reproduction Accuracy during Clear Aligner Therapy. Materials 2023, 16, 6811. [Google Scholar] [CrossRef] [PubMed]
- Ferlias, N.; Dalstra, M.; Cornelis, M.A.; Cattaneo, P.M. In Vitro Comparison of Different Invisalign® and 3Shape® Attachment Shapes to Control Premolar Rotation. Front. Bioeng. Biotechnol. 2022, 10, 840622. [Google Scholar] [CrossRef]
- Laohachaiaroon, P.; Samruajbenjakun, B.; Chaichanasiri, E. Initial Displacement and Stress Distribution of Upper Central Incisor Extrusion with Clear Aligners and Various Shapes of Composite Attachments Using the Finite Element Method. Dent. J. 2022, 10, 114. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Huang, L.; Li, J.; Wen, J.; Mei, L.; Xu, H.; Zhang, L.; Li, H. Assessment of preparation time and 1-year Invisalign aligner attachment survival using flowable and packable composites. Angle Orthod. 2021, 91, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Cole, D.; Bencharit, S.; Carrico, C.K.; Arias, A.; Tüfekçi, E. Evaluation of fit for 3D-printed retainers compared with thermoform retainers. Am. J. Orthod. Dentofac. Orthop. 2019, 155, 592–599. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, M.; Satoh, Y.; Iwasaki, S. Effect of thermal shrinkage during thermoforming on the thickness of fabricated mouthguards: Part 2 pressure formation. Dent. Traumatol. 2017, 33, 106–109. [Google Scholar] [CrossRef]
- Park, S.Y.; Choi, S.-H.; Yu, H.-S.; Kim, S.-J.; Kim, H.; Kim, K.B.; Cha, J.-Y. Comparison of translucency, thickness, and gap width of thermoformed and 3D-printed clear aligners using micro-CT and spectrophotometer. Sci. Rep. 2023, 13, 10921. [Google Scholar] [CrossRef]
Materials | Tooth | GverShapePoint | CverShapePoint | OverShapePoint | |||||||
Vertical Cutting Plane | Mean ± SD | Min | Max | Mean ± SD | Min | Max | Mean ± SD | Min | Max | ||
(mm) | (mm) | (mm) | (mm) | (mm) | (mm) | (mm) | (mm) | (mm) | |||
MM-TA | 2.6 | 0.53 ± 0.24 | 0.15 | 0.85 | 0.19 ± 0.1 | 0.09 | 0.35 | 0.19 ± 0.03 | 0.15 | 0.22 | |
MM-TA | 2.1 | 0.44 ± 0.23 | 0.07 | 0.65 | 0.22 ± 0.17 | 0.04 | 0.51 | 0.14 ± 0.15 | 0.04 | 0.39 | |
MM-TA | 1.1 | 0.71 ± 0.04 | 0.68 | 0.78 | 0.15 ± 0.06 | 0.04 | 0.2 | 0.09 ± 0.08 | 0.04 | 0.24 | |
MM-TA | 1.6 | 0.36 ± 0.16 | 0.16 | 0.57 | 0.26 ± 0.15 | 0.13 | 0.44 | 0.15 ± 0.05 | 0.08 | 0.19 | |
MM-CA | 2.6 | 0.13 ± 0.06 | 0.06 | 0.22 | 0.05 ± 0.03 | 0.02 | 0.1 | 0.14 ± 0.07 | 0.06 | 0.21 | |
MM-CA | 2.1 | 0.13 ± 0.04 | 0.07 | 0.17 | 0.06 ± 0.04 | 0.01 | 0.13 | 0.23 ± 0.05 | 0.17 | 0.3 | |
MM-CA | 1.1 | 0.09 ± 0.07 | 0.02 | 0.2 | 0.08 ± 0.05 | 0.02 | 0.13 | 0.20 ± 0.1 | 0.05 | 0.3 | |
MM-CA | 1.6 | 0.19 ± 0.11 | 0.09 | 0.32 | 0.23 ± 0.21 | 0.04 | 0.5 | 0.20 ± 0.13 | 0.05 | 0.4 | |
Materials | Tooth | MhorShapePoint | ChorShapePoint | DhorShapePoint | |||||||
Horizontal Cutting Plane | Mean ± SD | Min | Max | Mean ± SD | Min | Max | Mean ± SD | Min | Max | ||
(mm) | (mm) | (mm) | (mm) | (mm) | (mm) | (mm) | (mm) | (mm) | |||
MM-TA | 2.6 | 0.25 ± 0.12 | 0.12 | 0.43 | 0.17 ± 0.09 | 0.07 | 0.29 | 0.22 ± 0.1 | 0.11 | 0.35 | |
MM-TA | 2.1 | 0.08 ± 0.05 | 0.03 | 0.14 | 0.15 ± 0.05 | 0.1 | 0.22 | 0.14 ± 0.05 | 0.09 | 0.22 | |
MM-TA | 1.1 | 0.15 ± 0.06 | 0.11 | 0.24 | 0.15 ± 0.06 | 0.05 | 0.2 | 0.08 ± 0.03 | 0.06 | 0.14 | |
MM-TA | 1.6 | 0.38 ± 0.32 | 0.1 | 0.9 | 0.28 ± 0.15 | 0.1 | 0.47 | 0.31 ± 0.11 | 0.16 | 0.46 | |
MM-CA | 2.6 | 0.16 ± 0.07 | 0.06 | 0.23 | 0.05 ± 0.03 | 0.01 | 0.07 | 0.08 ± 0.04 | 0.03 | 0.14 | |
MM-CA | 2.1 | 0.08 ± 0.03 | 0.05 | 0.12 | 0.05 ± 0.04 | 0.02 | 0.11 | 0.13 ± 0.08 | 0.04 | 0.23 | |
MM-CA | 1.1 | 0.21 ± 0.17 | 0.07 | 0.43 | 0.07 ± 0.03 | 0.03 | 0.09 | 0.17 ± 0.11 | 0.01 | 0.29 | |
MM-CA | 1.6 | 0.19 ± 0.08 | 0.11 | 0.32 | 0.22 ± 0.2 | 0.04 | 0.45 | 0.12 ± 0.11 | 0.02 | 0.5 |
Materials | Tooth | OverPuffPoint | GverPuffPoint | |||||
Vertical Cutting Plane | Mean ± SD | Min | Max | Mean ± SD | Min | Max | ||
(mm) | (mm) | (mm) | (mm) | (mm) | (mm) | |||
MM-TA | 2.6 | 0.39 ± 0.34 | 0.1 | 0.87 | 0.65 ± 0.42 | 0.05 | 1.02 | |
MM-TA | 2.1 | 0.29 ± 0.01 | 0.28 | 0.3 | 0.32 ± 0.08 | 0.21 | 0.42 | |
MM-TA | 1.1 | 0.34 ± 0.08 | 0.28 | 0.47 | 0.42 ± 0.22 | 0.27 | 0.8 | |
MM-TA | 1.6 | 0.27 ± 0.14 | 0.08 | 0.4 | 0.31 ± 0.14 | 0.2 | 0.55 | |
MM-CA | 2.6 | 0.28 ± 0.24 | 0.1 | 0.68 | 0.48 ± 0.35 | 0.08 | 0.92 | |
MM-CA | 2.1 | 0.34 ± 0.19 | 0.18 | 0.66 | 0.16 ± 0.1 | 0.09 | 0.32 | |
MM-CA | 1.1 | 0.28 ± 0.12 | 0.17 | 0.43 | 0.20 ± 0.07 | 0.11 | 0.29 | |
MM-CA | 1.6 | 0.26 ± 0.19 | 0.01 | 0.5 | 0.43 ± 0.27 | 0.15 | 0.74 | |
DhorPufPoint | MhorPuffPoint | |||||||
Horizontal Cutting Plane | Mean ± SD | Min | Max | Mean ± SD | Min | Max | ||
(mm) | (mm) | (mm) | (mm) | (mm) | (mm) | |||
MM-TA | 2.6 | 0.28 ± 0.13 | 0.09 | 0.44 | 0.35 ± 0.09 | 0.24 | 0.45 | |
MM-TA | 2.1 | 0.41 ± 0.05 | 0.34 | 0.47 | 0.26 ± 0.06 | 0.17 | 0.31 | |
MM-TA | 1.1 | 0.20 ± 0.06 | 0.15 | 0.3 | 0.43 ± 0.07 | 0.33 | 0.5 | |
MM-TA | 1.6 | 0.30 ± 0.17 | 0.14 | 0.5 | 0.24 ± 0.05 | 0.17 | 0.31 | |
MM-CA | 2.6 | 0.18 ± 0.07 | 0.1 | 0.29 | 0.21 ± 0.07 | 0.09 | 0.27 | |
MM-CA | 2.1 | 0.3 ± 0.06 | 0.24 | 0.38 | 0.24 ± 0.1 | 0.1 | 0.38 | |
MM-CA | 1.1 | 0.25 ± 0.19 | 0.09 | 0.58 | 0.34 ± 0.19 | 0.13 | 0.62 | |
MM-CA | 1.6 | 0.24 ± 0.2 | 0.02 | 0.5 | 0.29 ± 0.15 | 0.08 | 0.46 |
MM-TA vs. MM-CA | |||||
GverShape Point | CverShape Point | OverShape Point | OverPuff Point | GverPuff Point | |
VERTICAL CUTTING PLANE | 0.01 a | 0.02 a | 0.032 a | 0.47 b | 0.05 a |
Mhorshape Point | Chorshape Point | Dhorshape Point | Mhorshape Point | Dhorpuff Point | |
HORIZONTAL CUTTING PLANE | 0.432 b | 0.01 a | 0.07 a | 0.22 a | 0.083 b |
MM-TA vs. MM-CA | |||||
Vertical | Horizontal | ||||
Analysis of the Shape | 0.01 a | 0.01 a | |||
Analysis of the Puff | 0.031 a | 0.048 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bellocchio, A.M.; Ciancio, E.; Ciraolo, L.; Barbera, S.; Nucera, R. Three-Dimensional Printed Attachments: Analysis of Reproduction Accuracy Compared to Traditional Attachments. Appl. Sci. 2024, 14, 3837. https://doi.org/10.3390/app14093837
Bellocchio AM, Ciancio E, Ciraolo L, Barbera S, Nucera R. Three-Dimensional Printed Attachments: Analysis of Reproduction Accuracy Compared to Traditional Attachments. Applied Sciences. 2024; 14(9):3837. https://doi.org/10.3390/app14093837
Chicago/Turabian StyleBellocchio, Angela Mirea, Elia Ciancio, Ludovica Ciraolo, Serena Barbera, and Riccardo Nucera. 2024. "Three-Dimensional Printed Attachments: Analysis of Reproduction Accuracy Compared to Traditional Attachments" Applied Sciences 14, no. 9: 3837. https://doi.org/10.3390/app14093837
APA StyleBellocchio, A. M., Ciancio, E., Ciraolo, L., Barbera, S., & Nucera, R. (2024). Three-Dimensional Printed Attachments: Analysis of Reproduction Accuracy Compared to Traditional Attachments. Applied Sciences, 14(9), 3837. https://doi.org/10.3390/app14093837