Resilience of Machine Learning Models in Anxiety Detection: Assessing the Impact of Gaussian Noise on Wearable Sensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of WESAD Dataset
2.2. Data Preprocessing
2.3. Feature Extraction
2.4. ML Models
2.5. Simulating Real-World Data Using Noise
2.6. Feature and Modality Analysis
2.7. Comparative Model Analysis
3. Results
3.1. Feature-Based Models
3.2. End-to-End Models
3.3. Feature-Based Models with Gaussian Noise
3.4. End-to-End Models with Gaussian Noise
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Correction Collins, P.Y.; Patel, V.; Joestl, S.S.; March, D.; Insel, T.R.; Daar, A.S.; Bordin, I.A.; Costello, E.J.; Durkin, M.; Fairburn, C.; et al. Grand Challenges in Global Mental Health. Nature 2011, 475, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Kessler, R.C.; Avenevoli, S.; Costello, E.J.; Green, J.G.; Gruber, M.J.; Heeringa, S.; Merikangas, K.R.; Pennell, B.E.; Sampson, N.A.; Zaslavsky, A.M. Design and Field Procedures in the US National Comorbidity Survey Replication Adolescent Supplement (NCS-A). Int. J. Methods Psychiatr. Res. 2009, 18, 69–83. [Google Scholar] [CrossRef] [PubMed]
- Canals, J.; Voltas, N.; Hernández-Martínez, C.; Cosi, S.; Arija, V. Prevalence of DSM-5 Anxiety Disorders, Comorbidity, and Persistence of Symptoms in Spanish Early Adolescents. Eur. Child. Adolesc. Psychiatry 2019, 28, 131–143. [Google Scholar] [CrossRef] [PubMed]
- Wittchen, H.U.; Jacobi, F.; Rehm, J.; Gustavsson, A.; Svensson, M.; Jönsson, B.; Olesen, J.; Allgulander, C.; Alonso, J.; Faravelli, C.; et al. The Size and Burden of Mental Disorders and Other Disorders of the Brain in Europe 2010. Eur. Neuropsychopharmacol. 2011, 21, 655–679. [Google Scholar] [CrossRef]
- Healey, J.A.; Picard, R.W. Detecting Stress during Real-World Driving Tasks Using Physiological Sensors. IEEE Trans. Intell. Transp. Syst. 2005, 6, 156–166. [Google Scholar] [CrossRef]
- Elgendi, M.; Galli, V.; Ahmadizadeh, C.; Menon, C. Dataset of Psychological Scales and Physiological Signals Collected for Anxiety Assessment Using a Portable Device. Data 2022, 7, 132. [Google Scholar] [CrossRef]
- Haouij, N.E.; Poggi, J.M.; Sevestre-Ghalila, S.; Ghozi, R.; Jadane, M. AffectiveROAD System and Database to Assess Driver’s Attention. In Proceedings of the ACM Symposium on Applied Computing, New York, NY, USA, 9–13 April 2018; pp. 800–803. [Google Scholar] [CrossRef]
- Schmidt, P.; Reiss, A.; Duerichen, R.; Laerhoven, K. Van Introducing WeSAD, a Multimodal Dataset for Wearable Stress and Affect Detection. In Proceedings of the ICMI 2018—Proceedings of the 2018 International Conference on Multimodal Interaction, Boulder, CO, USA, 16–20 October 2018; pp. 400–408. [Google Scholar] [CrossRef]
- Feng, T.; Ling, D.; Li, C.; Zheng, W.; Zhang, S.; Li, C.; Emel’yanov, A.; Pozdnyakov, A.S.; Lu, L.; Mao, Y. Stretchable On-Skin Touchless Screen Sensor Enabled by Ionic Hydrogel. Nano Res. 2024, 17, 4462–4470. [Google Scholar] [CrossRef]
- Li, J.; Carlos, C.; Zhou, H.; Sui, J.; Wang, Y.; Silva-Pedraza, Z.; Yang, F.; Dong, Y.; Zhang, Z.; Hacker, T.A.; et al. Stretchable Piezoelectric Biocrystal Thin Films. Nat. Commun. 2023, 14, 6562. [Google Scholar] [CrossRef]
- Kulkarni, M.B.; Rajagopal, S.; Prieto-Simón, B.; Pogue, B.W. Recent Advances in Smart Wearable Sensors for Continuous Human Health Monitoring. Talanta 2024, 272, 125817. [Google Scholar] [CrossRef]
- Kazanskiy, N.L.; Khonina, S.N.; Butt, M.A. A Review on Flexible Wearables-Recent Developments in Non-Invasive Continuous Health Monitoring. Sens. Actuators A Phys. 2024, 366, 114993. [Google Scholar] [CrossRef]
- Garg, M.; Parihar, A.; Rahman, M.S. Advanced and Personalized Healthcare through Integrated Wearable Sensors (Versatile). Mater. Adv. 2024, 5, 432–452. [Google Scholar] [CrossRef]
- Razavi, M.; Ziyadidegan, S.; Mahmoudzadeh, A.; Kazeminasab, S.; Baharlouei, E.; Janfaza, V.; Jahromi, R.; Sasangohar, F. Machine Learning, Deep Learning, and Data Preprocessing Techniques for Detecting, Predicting, and Monitoring Stress and Stress-Related Mental Disorders: Scoping Review. JMIR Ment. Health 2024, 11, e53714. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Chen, J.; Hu, Y.; Liu, H.; Chen, J.; Gadekallu, T.R.; Garg, L.; Guizani, M.; Hu, X. Integration of Artificial Intelligence and Wearable Internet of Things for Mental Health Detection. Int. J. Cogn. Comput. Eng. 2024, 5, 307–315. [Google Scholar] [CrossRef]
- Gomes, N.; Pato, M.; Lourenco, A.R.; Datia, N. A Survey on Wearable Sensors for Mental Health Monitoring. Sensors 2023, 23, 1330. [Google Scholar] [CrossRef]
- Spielberger, C.D. Theory and Research on Anxiety; Spielberger, C.D., Ed.; Academic Press Inc.: Oxford, UK, 1966; ISBN 9781483258362. [Google Scholar]
- Spielberger, C.D. Notes and Comments Trait-State Anxiety and Motor Behavior. J. Mot. Behav. 1971, 3, 265–279. [Google Scholar] [CrossRef]
- Hackfort, D.; Spielberger, C.D. Sport-Related Anxiety: Current Trends in Theory and Research; Academic Press Inc.: Cambridge, MA, USA, 2021; ISBN 9781317705987. [Google Scholar]
- Thomas, C.R.; Holzer, C.E. The Continuing Shortage of Child and Adolescent Psychiatrists. J. Am. Acad. Child. Adolesc. Psychiatry 2006, 45, 1023–1031. [Google Scholar] [CrossRef]
- Thomas, K.C.; Ellis, A.R.; Konrad, T.R.; Holzer, C.E.; Morrissey, J.P. County-Level Estimates of Mental Health Professional Shortage in the United States. Psychiatr. Serv. 2009, 60, 1323–1328. [Google Scholar] [CrossRef]
- Kim, W.J. Child and Adolescent Psychiatry Workforce: A Critical Shortage and National Challenge. Acad. Psychiatry 2003, 27, 277–282. [Google Scholar] [CrossRef]
- Satiani, A.; Niedermier, J.; Satiani, B.; Svendsen, D.P. Projected Workforce of Psychiatrists in the United States: A Population Analysis. Psychiatr. Serv. 2018, 69, 710–713. [Google Scholar] [CrossRef]
- Segerstrom, S.C.; Miller, G.E. Psychological Stress and the Human Immune System: A Meta-Analytic Study of 30 Years of Inquiry. Psychol. Bull. 2004, 130, 601–630. [Google Scholar] [CrossRef]
- Vrijkotte, T.G.M.; Van Doornen, L.J.P.; De Geus, E.J.C. Effects of Work Stress on Ambulatory Blood Pressure, Heart Rate, and Heart Rate Variability. Hypertension 2000, 35, 880–886. [Google Scholar] [CrossRef] [PubMed]
- Celano, C.M.; Daunis, D.J.; Lokko, H.N.; Campbell, K.A.; Huffman, J.C. Anxiety Disorders and Cardiovascular Disease. Curr. Psychiatry Rep. 2016, 18, 101. [Google Scholar] [CrossRef] [PubMed]
- Wilson, G.F. An Analysis of Mental Workload in Pilots During Flight Using Multiple Psychophysiological Measures. Int. J. Aviat. Psychol. 2002, 12, 3–18. [Google Scholar] [CrossRef]
- Althubaiti, A. Information Bias in Health Research: Definition, Pitfalls, and Adjustment Methods. J. Multidiscip. Healthc. 2016, 9, 211–217. [Google Scholar] [CrossRef]
- Julian, L.J. Measures of Anxiety. Arthritis Care 2011, 63, 1–11. [Google Scholar] [CrossRef]
- Shiffman, S.; Stone, A.A.; Hufford, M.R. Ecological Momentary Assessment. Annu. Rev. Clin. Psychol. 2008, 4, 1–32. [Google Scholar] [CrossRef]
- Glick, G.; Braunwald, E. Relative Roles of the Sympathetic and Parasympathetic Nervous Systems in the Reflex Control of Heart Rate. Circ. Res. 1965, 16, 363–375. [Google Scholar] [CrossRef]
- Steptoe, A.; Marmot, M. Impaired Cardiovascular Recovery Following Stress Predicts 3-Year Increases in Blood Pressure. J. Hypertens. 2005, 23, 529–536. [Google Scholar] [CrossRef]
- Lundberg, U.; Kadefors, R.; Melin, B.; Palmerud, G.; Hassmén, P.; Engström, M.; Elfsberg Dohns, I. Psychophysiological Stress and Emg Activity of the Trapezius Muscle. Int. J. Behav. Med. 1994, 1, 354–370. [Google Scholar] [CrossRef]
- Waxenbaum, J.A.; Varacallo, M. Anatomy, Autonomic Nervous System. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://pubmed.ncbi.nlm.nih.gov/30969667/ (accessed on 24 December 2024).
- Critchley, H.D. Study of the Stress Response: Role of Anxiety, Cortisol and DHEAs. Neuroscientist 2002, 8, 132–142. [Google Scholar] [CrossRef]
- Kirschbaum, C.; Pirke, K.M.; Hellhammer, D.H. The “Trier Social Stress Test”—A Tool for Investigating Psychobiological Stress Responses in a Laboratory Setting. Neuropsychobiology 1993, 28, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Koelstra, S.; Muhl, C.; Soleymani, M.; Lee, J.S.; Yazdani, A.; Ebrahimi, T.; Pun, T.; Nijholt, A.; Patras, I. DEAP: A Database for Emotion Analysis; Using Physiological Signals. IEEE Trans. Affect. Comput. 2012, 3, 18–31. [Google Scholar] [CrossRef]
- Lovallo, W. The Cold Pressor Test and Autonomic Function: A Review and Integration. Psychophysiology 1975, 12, 268–282. [Google Scholar] [CrossRef] [PubMed]
- Dziezyc, M.; Gjoreski, M.; Kazienko, P.; Saganowski, S.; Gams, M. Can We Ditch Feature Engineering? End-to-End Deep Learning for Affect Recognition from Physiological Sensor Data. Sensors 2020, 20, 6535. [Google Scholar] [CrossRef]
- Ancillon, L.; Elgendi, M.; Menon, C. Machine Learning for Anxiety Detection Using Biosignals: A Review. Diagnostics 2022, 12, 1794. [Google Scholar] [CrossRef]
- Giannakakis, G.; Grigoriadis, D.; Giannakaki, K.; Simantiraki, O.; Roniotis, A.; Tsiknakis, M. Review on Psychological Stress Detection Using Biosignals. IEEE Trans. Affect. Comput. 2022, 13, 440–460. [Google Scholar] [CrossRef]
- Kreibig, S.D. Autonomic Nervous System Activity in Emotion: A Review. Biol. Psychol. 2010, 84, 394–421. [Google Scholar] [CrossRef]
- Shatte, A.B.R.; Hutchinson, D.M.; Teague, S.J. Machine Learning in Mental Health: A Scoping Review of Methods and Applications. Psychol. Med. 2019, 49, 1426–1448. [Google Scholar] [CrossRef]
- Watson, D.; Clark, L.A.; Tellegen, A. Development and Validation of Brief Measures of Positive and Negative Affect: The PANAS Scales. J. Pers. Soc. Psychol. 1988, 54, 1063–1070. [Google Scholar] [CrossRef]
- Spielberger, C.D.; Gonzalez-Reigosa, F.; Martinez-Urrutia, A.; Natalicio, L.F.S.; Natalicio, D.S. The State-Trait Anxiety Inventory. Rev. Interam. De Psicol. /Interam. J. Psychol. 1971, 5, 3–4. [Google Scholar] [CrossRef]
- Helton, W.S. Validation of a Short Stress State Questionnaire. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting; Sage Publications: Los Angeles, CA, USA, 2004; Volume 48, pp. 1238–1242. [Google Scholar] [CrossRef]
- Samson, A.C.; Kreibig, S.D.; Soderstrom, B.; Wade, A.A.; Gross, J.J. Eliciting Positive, Negative and Mixed Emotional States: A Film Library for Affective Scientists. Cogn. Emot. 2016, 30, 827–856. [Google Scholar] [CrossRef] [PubMed]
- Scholkmann, F.; Boss, J.; Wolf, M. An Efficient Algorithm for Automatic Peak Detection in Noisy Periodic and Quasi-Periodic Signals. Algorithms 2012, 5, 588–603. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; ACM: New York, NY, USA, 2016; pp. 785–794. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Bengio, Y.; Courville, A.; Vincent, P. Representation Learning: A Review and New Perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 1798–1828. [Google Scholar] [CrossRef]
- Ou, G.; Murphey, Y.L. Multi-Class Pattern Classification Using Neural Networks. Pattern Recognit. 2007, 40, 4–18. [Google Scholar] [CrossRef]
- Rifkin, R.; Klautau, A. In Defense of One-vs-All Classification. J. Mach. Learn. Res. 2004, 5, 101–141. [Google Scholar]
- Hsu, C.-W.; Lin, C.-J. A Comparison of Methods for Multiclass Support Vector Machines. IEEE Trans. Neural Netw. 2002, 13, 415–425. [Google Scholar] [CrossRef]
- Zaman, M.S.; Morshed, B.I. Estimating Reliability of Signal Quality of Physiological Data from Data Statistics Itself for Real-Time Wearables. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 5967–5970. [Google Scholar]
- Abd-Alrazaq, A.; AlSaad, R.; Harfouche, M.; Aziz, S.; Ahmed, A.; Damseh, R.; Sheikh, J. Wearable Artificial Intelligence for Detecting Anxiety: Systematic Review and Meta-Analysis. J. Med. Internet Res. 2023, 25, e48754. [Google Scholar] [CrossRef]
- Zhang, S.; Li, X.; Zong, M.; Zhu, X.; Wang, R. Efficient KNN Classification with Different Numbers of Nearest Neighbors. IEEE Trans. Neural Netw. Learn. Syst. 2017, 29, 1774–1785. [Google Scholar] [CrossRef]
ACC | Mean, stdv, min, max, abs integral of each x, y, z-axis and of norm. Peak freq of each axis | Stdv: Standard deviation, Min: minimum value, Max: maximum value, Net: Magnitude or length. Peak freq: highest freq domain component |
BVP | Mean, stdv, min, max, Peak freq | |
ECG | Mean, stdv, min, max. bpm, ibi, sdnn, sdsd, rmssd, pnn20, pnn50 | bpm: beat per min; ibi: interbeat interval, sdnn: stdv of ibi, sdsd: stdv of ibi diff, rmssd: rms of ibi, pnn20: % of successive beats with more than 20 ms diff, |
EDA | Mean, stdv, min, max of each signal, SCL, and SLR. Slope, and drange | SCL: Skin Conductance Level, SLR: Skin Conductance Responses, drange: dynamic range. |
EMG | Mean, stdv, min, max, drange, abs integral | |
RESP | Mean, stdv, of each signal, inhalation, and exhalation. i/e ratio, and resp rate | i/e: inhalation to exhalation ratio. Resp rate: respiration rate. |
TEMP | Mean, std, min, max, drange, slope |
Architecture | Description |
---|---|
FCN | N1 × [CL2 − CL − CL] – FC3 |
ResNet | N × [ResBloc4 − … − ResBloc] − FC |
MLP | N × [FC − … − FC] − FC |
Encoder | N × [CL − CL − CL – Att5] − FC |
Time-CNN | N × [CL − CL] − FC |
CNN-LSTM | N × [CL − CL – LSTM6] − FC |
MLP-LSTM | N × [FC − … − FC − LSTM] − FC |
MC-DCNN | N × [CL − CL] − FC − FC |
Inception | N × [Inc7] − FC |
Model | Accuracy |
---|---|
DT | 0.99 |
RF | 0.91 |
LDA | 0.93 |
KNN | 0.94 |
AB | 0.81 |
SVM | 0.95 |
XGB | 0.99 |
Modality | Feature | Weighted Average | DT | kNN | LDA | XGB | SVM | RF | AB |
---|---|---|---|---|---|---|---|---|---|
ACC | ACCx C mean | 0.06 | 0.03 | ||||||
ACCx min | 0.03 | 0.07 | 0.12 | ||||||
ACCx std | 0.05 | ||||||||
ACCnet w min | 0.04 | 0.06 | |||||||
ACCnet w max | 0.05 | ||||||||
BVP | BVPmax | 0.15 | 0.39 | ||||||
BVPmin | 0.38 | ||||||||
BVPstd | 0.14 | ||||||||
ECG | ECGbpm | 0.10 | 0.09 | 0.14 | 0.07 | 0.05 | 0.26 | ||
ECGpnn50 | 0.05 | ||||||||
ECGrmssd | 0.10 | ||||||||
ECGsdnn | 0.11 | ||||||||
ECGsdsd | 0.03 | ||||||||
ECGstd | 0.13 | 0.06 | 0.04 | 0.06 | 0.10 | ||||
EDA | EDASCL_max | 0.18 | 0.43 | 0.15 | 0.15 | 0.21 | 0.15 | 0.30 | |
EDASCR_max | 0.06 | 0.06 | 0.02 | ||||||
EDASCR_min | 0.06 | 0.06 | |||||||
EDASCR_std | 0.08 | 0.08 | |||||||
EDAstd | 0.04 | 0.02 | |||||||
RESP | RespC_Exhal_std | 0.08 | 0.08 | 0.10 | 0.08 | ||||
RespC_Inhal_std | 0.06 | 0.09 | 0.06 | ||||||
TEMP | TEMPmean | 0.08 | 0.11 | 0.05 | 0.04 |
E2E Model | Average Accuracy (std) | Average F1-Score (std) | Accuracy (max) |
---|---|---|---|
FCN | 0.79 (0.03) | 0.75 (0.04) | 0.95 |
ResNet | 0.80 (0.05) | 0.74 (0.07) | 0.96 |
Time-CNN | 0.76 (0.03) | 0.67 (0.04) | 0.89 |
MCDCNN | 0.74 (0.03) | 0.65 (0.05) | 0.89 |
MLP-LSTM | 0.72 (0.02) | 0.60 (0.03) | 0.89 |
Encoder | 0.69 (0.04) | 0.59 (0.05) | 0.89 |
MLP | 0.69 (0.01) | 0.59 (0.02) | 0.93 |
CNN-LSTM | 0.69 (0.02) | 0.54 (0.02) | 0.85 |
Inception | 0.65 (0.07) | 0.52 (0.07) | 0.91 |
Random guess | 0.50 | 0.50 | |
Majority class | 0.53 | 0.23 |
Architecture | SNR = 0.01 | SNR = 0.1 | SNR = 0.15 | SNR = 0.4 | Baseline |
---|---|---|---|---|---|
FCN | 0.19 | 0.46 | 0.49 | 0.65 | 0.75 |
ResNet | 0.14 | 0.36 | 0.41 | 0.70 | 0.74 |
Time-CNN | 0.01 | 0.09 | 0.09 | 0.27 | 0.67 |
MCDCNN | 0.01 | 0.07 | 0.10 | 0.17 | 0.65 |
MLP-LSTM | 0.01 | 0.01 | 0.08 | 0.28 | 0.60 |
Encoder | 0.04 | 0.08 | 0.08 | 0.20 | 0.59 |
MLP | 0.01 | 0.01 | 0.06 | 0.17 | 0.59 |
CNN-LSTM | 0.00 | 0.02 | 0.13 | 0.35 | 0.54 |
Inception | 0.19 | 0.32 | 0.36 | 0.61 | 0.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alkurdi, A.; Clore, J.; Sowers, R.; Hsiao-Wecksler, E.T.; Hernandez, M.E. Resilience of Machine Learning Models in Anxiety Detection: Assessing the Impact of Gaussian Noise on Wearable Sensors. Appl. Sci. 2025, 15, 88. https://doi.org/10.3390/app15010088
Alkurdi A, Clore J, Sowers R, Hsiao-Wecksler ET, Hernandez ME. Resilience of Machine Learning Models in Anxiety Detection: Assessing the Impact of Gaussian Noise on Wearable Sensors. Applied Sciences. 2025; 15(1):88. https://doi.org/10.3390/app15010088
Chicago/Turabian StyleAlkurdi, Abdulrahman, Jean Clore, Richard Sowers, Elizabeth T. Hsiao-Wecksler, and Manuel E. Hernandez. 2025. "Resilience of Machine Learning Models in Anxiety Detection: Assessing the Impact of Gaussian Noise on Wearable Sensors" Applied Sciences 15, no. 1: 88. https://doi.org/10.3390/app15010088
APA StyleAlkurdi, A., Clore, J., Sowers, R., Hsiao-Wecksler, E. T., & Hernandez, M. E. (2025). Resilience of Machine Learning Models in Anxiety Detection: Assessing the Impact of Gaussian Noise on Wearable Sensors. Applied Sciences, 15(1), 88. https://doi.org/10.3390/app15010088