Functional and Antimicrobial Properties of Propolis from Different Areas of Romania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Land Use
2.2. Propolis Sampling and Storage
2.3. Methodologies and Reagents
2.4. Propolis Ethanolic Extracts (PEE) and Balsam Percentage (Evaluation of Dry Extract)
2.5. Wax Content in Raw Propolis (Petroleum Ether Extractables)
2.6. Total Phenolics (TPC) and Flavone/Flavonol (TFC) Content
2.7. Antioxidant Activity Assays
2.7.1. ABTS·+ Assay
2.7.2. DPPH·Assay
2.7.3. FRAP Assay
2.8. Chromatographical Conditions
2.9. Antimicrobial Activity
2.10. Minimum Inhibitory Concentration (MIC)
2.11. Statistical Analysis
3. Results
3.1. Landscape Complexity
3.2. Wax and Balsam
3.3. TPC and TFC
3.4. Phenolic Profiles of PEEs
3.5. Antioxidant Activity
3.6. Antimicrobial Activity and MIC
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bobiş, O. Plants: Sources of Diversity in Propolis Properties. Plants 2022, 11, 2298. [Google Scholar] [CrossRef]
- Balica, G.; Vostinaru, O.; Stefanescu, C.; Mogosan, C.; Iaru, I.; Cristina, A.; Pop, C.E. Potential Role of Propolis in the Prevention and Treatment of Metabolic Diseases. Plants 2021, 10, 883. [Google Scholar] [CrossRef]
- Bankova, V.; Bertelli, D.; Borba, R.; Conti, B.J.; da Silva Cunha, I.B.; Danert, C.; Eberlin, M.N.; Falcão, S.I.; Isla, M.I.; Moreno, M.I.N.; et al. Standard Methods for Apis Mellifera Propolis Research. J. Apic. Res. 2019, 58, 1–49. [Google Scholar] [CrossRef]
- Bankova, V.S.; de Castro, S.L.; Marcucci, M.C. Propolis: Recent Advances in Chemistry and Plant Origin. Apidologie 2000, 31, 3–15. [Google Scholar] [CrossRef]
- Simone-Finstrom, M.; Spivak, M. Propolis and Bee Health: The Natural History and Significance of Resin Use by Honey Bees. Apidologie 2010, 41, 295–311. [Google Scholar] [CrossRef]
- Drescher, N.; Wallace, H.M.; Katouli, M.; Massaro, C.F.; Leonhardt, S.D. Diversity Matters: How Bees Benefit from Different Resin Sources. Oecologia 2014, 176, 943–953. [Google Scholar] [CrossRef]
- Agüero, M.B.; Svetaz, L.; Baroni, V.; Lima, B.; Luna, L.; Zacchino, S.; Saavedra, P.; Wunderlin, D.; Feresin, G.E.; Tapia, A. Urban Propolis from San Juan Province (Argentina): Ethnopharmacological Uses and Antifungal Activity against Candida and Dermatophytes. Ind. Crop. Prod. 2014, 57, 166–173. [Google Scholar] [CrossRef]
- Pobiega, K.; Kot, A.M.; Przybył, J.L.; Synowiec, A.; Gniewosz, M. Comparison of the Chemical Composition and Antioxidant Properties of Propolis from Urban Apiaries. Molecules 2023, 28, 6744. [Google Scholar] [CrossRef] [PubMed]
- Kujumgiev, A.; Tsvetkova, I.; Serkedjieva, Y.; Bankova, V.; Christov, R.; Popov, S. Antibacterial, Antifungal and Antiviral Activity of Propolis of Different Geographic Origin. J. Ethnopharmacol. 1999, 64, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Šturm, L.; Ulrih, N.P. Advances in the Propolis Chemical Composition between 2013 and 2018: A Review. eFood 2020, 1, 24–37. [Google Scholar] [CrossRef]
- Kasote, D.M.; Sharbidre, A.A.; Kalyani, D.C.; Nandre, V.S.; Lee, J.H.J.; Ahmad, A.; Telke, A.A. Propolis: A Natural Antibiotic to Combat Multidrug-Resistant Bacteria. In Non-Traditional Approaches to Combat Antimicrobial Drug Resistance; Wani, M.Y., Ahmad, A., Eds.; Springer Nature: Singapore, 2023; pp. 281–296. ISBN 978-981-19916-7-7. [Google Scholar]
- World Health Organization. WHO Traditional Medicine Strategy: 2014–2023—PAHO/WHO|Pan American Health Organization. Available online: https://www.paho.org/en/documents/who-traditional-medicine-strategy-2014-2023 (accessed on 10 September 2024).
- Przybyłek, I.; Karpiński, T.M. Antibacterial Properties of Propolis. Molecules 2019, 24, 2047. [Google Scholar] [CrossRef] [PubMed]
- Diniz, D.P.; Lorencini, D.A.; Berretta, A.A.; Cintra, M.A.C.T.; Lia, E.N.; Jordão, A.A.; Coelho, E.B. Antioxidant Effect of Standardized Extract of Propolis (EPP-AF®) in Healthy Volunteers: A “Before and After” Clinical Study. Evid. Based Complement. Altern. Med. 2020, 2020, 7538232. [Google Scholar] [CrossRef] [PubMed]
- Simões, L.M.C.; Gregório, L.E.; Da Silva Filho, A.A.; de Souza, M.L.; Azzolini, A.E.C.S.; Bastos, J.K.; Lucisano-Valim, Y.M. Effect of Brazilian Green Propolis on the Production of Reactive Oxygen Species by Stimulated Neutrophils. J. Ethnopharmacol. 2004, 94, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Pujirahayu, N.; Ritonga, H.; Uslinawaty, Z. Properties and Flavonoids Content in Propolis of Some Extraction Method of Raw Propolis. Int. J. Pharm. Pharm. Sci. 2014, 6, 338–340. [Google Scholar]
- Qiao, J.; Wang, Y.; Zhang, Y.; Kong, L.; Zhang, H. Botanical Origins and Antioxidant Activities of Two Types of Flavonoid-Rich Poplar-Type Propolis. Foods 2023, 12, 2304. [Google Scholar] [CrossRef] [PubMed]
- Degirmencioglu, H.T.; Guzelmeric, E.; Yuksel, P.I.; Kırmızıbekmez, H.; Deniz, I.; Yesilada, E. A New Type of Anatolian Propolis: Evaluation of Its Chemical Composition, Activity Profile and Botanical Origin. Chem. Biodivers. 2019, 16, e1900492. [Google Scholar] [CrossRef]
- Idris, L.; Adli, M.A.; Yaacop, N.N.; Zohdi, R.M. Phytochemical Screening and Antioxidant Activities of Geniotrigona Thoracica Propolis Extracts Derived from Different Locations in Malaysia. Malays. J. Fundam. Appl. Sci. 2023, 19, 1023–1032. [Google Scholar] [CrossRef]
- Silva, J.C.; Rodrigues, S.; Feás, X.; Estevinho, L.M. Antimicrobial Activity, Phenolic Profile and Role in the Inflammation of Propolis. Food Chem. Toxicol. 2012, 50, 1790–1795. [Google Scholar] [CrossRef]
- Alvear, M.; Santos, E.; Cabezas, F.; Pérez-SanMartín, A.; Lespinasse, M.; Veloz, J. Geographic Area of Collection Determines the Chemical Composition and Antimicrobial Potential of Three Extracts of Chilean Propolis. Plants 2021, 10, 1543. [Google Scholar] [CrossRef] [PubMed]
- Oroian, M.; Ursachi, F.; Dranca, F. Influence of Ultrasonic Amplitude, Temperature, Time and Solvent Concentration on Bioactive Compounds Extraction from Propolis. Ultrason. Sonochem. 2020, 64, 105021. [Google Scholar] [CrossRef]
- Al Mărghitaş, L.; Dezmirean, D.S.; Bobiş, O. Important Developments in Romanian Propolis Research. Evid.-Based Complement. Alternat. Med. 2013, 2013, 159392. [Google Scholar] [CrossRef] [PubMed]
- Marghitas, L.A. Albinele și Produsele Lor (Honey Bees and Their Products); Editura Ceres: Bucurest, Romania, 2008. [Google Scholar]
- Petrus, V.; Oprișan, I. Apicultura si Baza Melifera; Agro-Silvica: Bucharest, Romania, 1964. [Google Scholar]
- ISO 24381:2023; Bee Propolis—Specifications. The International Organization for Standardization: Geneva, Switzerland, 2023. Available online: https://www.iso.org/standard/78543.html (accessed on 9 January 2025).
- Mărgăoan, R.; Özkök, A.; Keskin, Ş.; Mayda, N.; Urcan, A.C.; Cornea-Cipcigan, M. Bee Collected Pollen as a Value-Added Product Rich in Bioactive Compounds and Unsaturated Fatty Acids: A Comparative Study from Turkey and Romania. LWT 2021, 149, 111925. [Google Scholar] [CrossRef]
- Urcan, A.C.; Criste, A.D.; Dezmirean, D.S.; Mărgăoan, R.; Caeiro, A.; Campos, M.G. Similarity of Data from Bee Bread with the Same Taxa Collected in India and Romania. Molecules 2018, 23, 2491. [Google Scholar] [CrossRef]
- Urcan, A.C.; Criste, A.D.; Bobiș, O.; Cornea-Cipcigan, M.; Giurgiu, A.-I.; Dezmirean, D.S. Evaluation of Functional Properties of Some Lactic Acid Bacteria Strains for Probiotic Applications in Apiculture. Microorganisms 2024, 12, 1249. [Google Scholar] [CrossRef]
- Cucu, A.-A.; Urcan, A.C.; Bobiș, O.; Bonta, V.; Cornea-Cipcigan, M.; Moise, A.R.; Dezsi, Ș.; Pașca, C.; Baci, G.-M.; Dezmirean, D.S. Preliminary Identification and Quantification of Individual Polyphenols in Fallopia Japonica Plants and Honey and Their Influence on Antimicrobial and Antibiofilm Activities. Plants 2024, 13, 1883. [Google Scholar] [CrossRef]
- Haghi, G.; Hatami, A.; Safaei, A.; Mehran, M. Analysis of Phenolic Compounds in Matricaria Chamomilla and Its Extracts by UPLC-UV. Res. Pharm. Sci. 2014, 9, 31–37. [Google Scholar]
- Iorizzo, M.; Ganassi, S.; Albanese, G.; Letizia, F.; Testa, B.; Tedino, C.; Petrarca, S.; Mutinelli, F.; Mazzeo, A.; De Cristofaro, A. Antimicrobial Activity from Putative Probiotic Lactic Acid Bacteria for the Biological Control of American and European Foulbrood Diseases. Veter. Sci. 2022, 9, 236. [Google Scholar] [CrossRef]
- Cockerill, F.R. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically: Approved Standard, 9th ed.; CLSI document; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2012; ISBN 978-1-56238-784-6. [Google Scholar]
- Torres, A.; Sandjo, L.; Friedemann, M.; Tomazzoli, M.; Maraschin, M.; Mello, C.; Santos, A. Chemical Characterization, Antioxidant and Antimicrobial Activity of Propolis Obtained from Melipona Quadrifasciata Quadrifasciata and Tetragonisca Angustula Stingless Bees. Braz. J. Med. Biol. Res. 2018, 51, e7118. [Google Scholar] [CrossRef]
- Pereira, G.C.O.R.; Barchuk, A.R.; Teixeira, I.R.D.V. Environmental Factors Influencing Propolis Production by the Honey Bee Apis Mellifera in Minas Gerais State, Brazil. J. Apic. Res. 2009, 48, 176–180. [Google Scholar] [CrossRef]
- Orth, A.J.; Curran, E.H.; Haas, E.J.; Kraemer, A.C.; Anderson, A.M.; Mason, N.J.; Fassbinder-Orth, C.A. Land Use Influences the Composition and Antimicrobial Effects of Propolis. Insects 2022, 13, 239. [Google Scholar] [CrossRef]
- Dolezal, A.G.; St. Clair, A.L.; Zhang, G.; Toth, A.L.; O’neal, M.E. Native Habitat Mitigates Feast–Famine Conditions Faced by Honey Bees in an Agricultural Landscape. Proc. Natl. Acad. Sci. USA 2019, 116, 25147–25155. [Google Scholar] [CrossRef]
- Hogendoorn, E.A.; Sommeijer, M.J.; Vredenbregt, M.J. Alternative method for measuring beeswax content in propolis from the Netherlands. J. Apic. Sci. 2013, 57, 81–90. [Google Scholar] [CrossRef]
- Dezmirean, D.S.; Mărghitaş, L.A.; Chirilă, F.; Copaciu, F.; Simonca, V.; Bobiş, O.; Erler, S. Influence of Geographic Origin, Plant Source and Polyphenolic Substances on Antimicrobial Properties of Propolis against Human and Honey Bee Pathogens. J. Apic. Res. 2017, 56, 588–597. [Google Scholar] [CrossRef]
- Evran, E.; Durakli-Velioglu, S.; Velioglu, H.M.; Boyaci, I.H. Effect of Wax Separation on Macro- and Micro-Elements, Phenolic Compounds, Pesticide Residues, and Toxic Elements in Propolis. Food Sci. Nutr. 2024, 12, 1736–1748. [Google Scholar] [CrossRef] [PubMed]
- El Menyiy, N.; Bakour, M.; El Ghouizi, A.; El Guendouz, S.; Lyoussi, B. Influence of Geographic Origin and Plant Source on Physicochemical Properties, Mineral Content, and Antioxidant and Antibacterial Activities of Moroccan Propolis. Int. J. Food Sci. 2021, 2021, 5570224. [Google Scholar] [CrossRef]
- Patel, J.; Ketkar, S.; Patil, S.; Fearnley, J.; Mahadik, K.R.; Paradkar, A.R. Potentiating Antimicrobial Efficacy of Propolis through Niosomal-Based System for Administration. Integr. Med. Res. 2015, 4, 94–101. [Google Scholar] [CrossRef]
- Bojić, M.; Antolić, A.; Tomičić, M.; Debeljak, Ž.; Maleš, Ž. Propolis Ethanolic Extracts Reduce Adenosine Diphosphate Induced Platelet Aggregation Determined on Whole Blood. Nutr. J. 2018, 17, 52. [Google Scholar] [CrossRef] [PubMed]
- Devequi-Nunes, D.; Machado, B.A.S.; de Abreu Barreto, G.; Rebouças Silva, J.; da Silva, D.F.; da Rocha, J.L.C.; Brandão, H.N.; Borges, V.M.; Umsza-Guez, M.A. Chemical Characterization and Biological Activity of Six Different Extracts of Propolis through Conventional Methods and Supercritical Extraction. PLoS ONE 2018, 13, e0207676. [Google Scholar] [CrossRef]
- Salleh, S.N.A.S.; Hanapiah, N.A.M.; Ahmad, H.; Johari, W.L.W.; Osman, N.H.; Mamat, M.R. Determination of Total Phenolics, Flavonoids, and Antioxidant Activity and GC-MS Analysis of Malaysian Stingless Bee Propolis Water Extracts. Scientifica 2021, 2021, 3789351. [Google Scholar] [CrossRef]
- Jiang, X.; Tian, J.; Zheng, Y.; Zhang, Y.; Wu, Y.; Zhang, C.; Zheng, H.; Hu, F. A New Propolis Type from Changbai Mountains in North-East China: Chemical Composition, Botanical Origin and Biological Activity. Molecules 2019, 24, 1369. [Google Scholar] [CrossRef]
- Elbatreek, M.H.; Mahdi, I.; Ouchari, W.; Mahmoud, M.F.; Sobeh, M. Current Advances on the Therapeutic Potential of Pinocembrin: An Updated Review. Biomed. Pharmacother. 2023, 157, 114032. [Google Scholar] [CrossRef]
- Zhao, L.; Pu, L.; Wei, J.; Li, J.; Wu, J.; Xin, Z.; Gao, W.; Guo, C. Brazilian Green Propolis Improves Antioxidant Function in Patients with Type 2 Diabetes Mellitus. Int. J. Environ. Res. Public Health 2016, 13, 498. [Google Scholar] [CrossRef]
- Karagecili, H.; Yılmaz, M.A.; Ertürk, A.; Kiziltas, H.; Güven, L.; Alwasel, S.H.; Gulcin, İ. Comprehensive Metabolite Profiling of Berdav Propolis Using LC-MS/MS: Determination of Antioxidant, Anticholinergic, Antiglaucoma, and Antidiabetic Effects. Molecules 2023, 28, 1739. [Google Scholar] [CrossRef] [PubMed]
- Silva, V.; Genta, G.; Möller, M.N.; Masner, M.; Thomson, L.; Romero, N.; Radi, R.; Fernandes, D.C.; Laurindo, F.R.M.; Heinzen, H.; et al. Antioxidant Activity of Uruguayan Propolis. In Vitro and Cellular Assays. J. Agric. Food Chem. 2011, 59, 6430–6437. [Google Scholar] [CrossRef]
- Barbarić, M.; Mišković, K.; Bojić, M.; Lončar, M.B.; Smolčić-Bubalo, A.; Debeljak, Ž.; Medić-Šarić, M. Chemical Composition of the Ethanolic Propolis Extracts and Its Effect on HeLa Cells. J. Ethnopharmacol. 2011, 135, 772–778. [Google Scholar] [CrossRef]
- Duca, A.; Sturza, A.; Moacă, E.-A.; Negrea, M.; Lalescu, V.-D.; Lungeanu, D.; Dehelean, C.-A.; Muntean, D.-M.; Alexa, E. Identification of Resveratrol as Bioactive Compound of Propolis from Western Romania and Characterization of Phenolic Profile and Antioxidant Activity of Ethanolic Extracts. Molecules 2019, 24, 3368. [Google Scholar] [CrossRef]
- Mello, B.C.B.S.; Hubinger, M.D. Antioxidant Activity and Polyphenol Contents in Brazilian Green Propolis Extracts Prepared with the Use of Ethanol and Water as Solvents in Different pH Values. Int. J. Food Sci. Technol. 2012, 47, 2510–2518. [Google Scholar] [CrossRef]
- Silva, R.P.D.; Machado, B.A.S.; de Abreu Barreto, G.; Costa, S.S.; Andrade, L.N.; Amaral, R.G.; Carvalho, A.A.; Padilha, F.F.; Barbosa, J.D.V.; Umsza-Guez, M.A. Antioxidant, Antimicrobial, Antiparasitic, and Cytotoxic Properties of Various Brazilian Propolis Extracts. PLoS ONE 2017, 12, e0172585. [Google Scholar] [CrossRef]
- Kamel, A.A.; Marzouk, W.M.; Hashish, M.E.; Abd El Dayem, M.R. Synergistic Antioxidant Activity of Honey Bee Products and Their Mixtures. Plant Arch. 2023, 23, 81–89. [Google Scholar]
- Pratami, D.K.; Eksadita, N.E.; Sahlan, M.; Mun’im, A.; Bayu, A.; Mahira, K.F. Comparison of Total Phenolic Content and Antioxidant Activity of Indonesian Propolis Extracted with Various Solvents. J. Ilmu Kefarmasian Indones. 2023, 21, 121–129. [Google Scholar] [CrossRef]
- Yang, H.; Dong, Y.; Du, H.; Shi, H.; Peng, Y.; Li, X. Antioxidant Compounds from Propolis Collected in Anhui, China. Molecules 2011, 16, 3444–3455. [Google Scholar] [CrossRef]
- Resa, P.N.; Lia, U.F.N.; Edna, A.B.; Bruno, A.R.; Mirela, M.d.O.L.L.V.; Resa, A.B. Methodologies for the Evaluation of the Antibacterial Activity of Propolis. Afr. J. Microbiol. Res. 2013, 7, 2344–2350. [Google Scholar] [CrossRef]
- Kayaoglu, G.; Ömürlü, H.; Akca, G.; Gürel, M.; Gençay, Ö.; Sorkun, K.; Salih, B. Antibacterial Activity of Propolis versus Conventional Endodontic Disinfectants against Enterococcus Faecalis in Infected Dentinal Tubules. J. Endod. 2011, 37, 376–381. [Google Scholar] [CrossRef] [PubMed]
- Kubiliene, L.; Laugaliene, V.; Pavilonis, A.; Maruska, A.; Majiene, D.; Barcauskaite, K.; Kubilius, R.; Kasparaviciene, G.; Savickas, A. Alternative Preparation of Propolis Extracts: Comparison of Their Composition and Biological Activities. BMC Complement. Altern. Med. 2015, 15, 156. [Google Scholar] [CrossRef]
- Machado, B.A.S.; Silva, R.P.D.; Barreto, G.d.A.; Costa, S.S.; da Silva, D.F.; Brandão, H.N.; da Rocha, J.L.C.; Dellagostin, O.A.; Henriques, J.A.P.; Umsza-Guez, M.A.; et al. Chemical Composition and Biological Activity of Extracts Obtained by Supercritical Extraction and Ethanolic Extraction of Brown, Green and Red Propolis Derived from Different Geographic Regions in Brazil. PLoS ONE 2016, 11, e0145954. [Google Scholar] [CrossRef]
- Gülbandilar, A. Antimicrobial Activities of Propolis Samples Collected From Different Provinces of Turkey. MAS J. Appl. Sci. 2022, 7, 433–442. [Google Scholar] [CrossRef]
- AL-Ani, I.; Zimmermann, S.; Reichling, J.; Wink, M. Antimicrobial Activities of European Propolis Collected from Various Geographic Origins Alone and in Combination with Antibiotics. Medicines 2018, 5, 2. [Google Scholar] [CrossRef] [PubMed]
- Mattigatti, S.; Jain, D.; Ratnakar, P.; Moturi, S.; Varma, S.; Rairam, S. Antimicrobial Effect of Conventional Root Canal Medicaments vs Propolis against Enterococcus Faecalis, Staphylococcus Aureus and Candida Albicans. J. Contemp. Dent. Pract. 2012, 13, 305–309. [Google Scholar] [CrossRef] [PubMed]
- Mascheroni, E.; Figoli, A.; Musatti, A.; Limbo, S.; Drioli, E.; Suevo, R.; Talarico, S.; Rollini, M. An Alternative Encapsulation Approach for Production of Active Chitosan–Propolis Beads. Int. J. Food Sci. Technol. 2014, 49, 1401–1407. [Google Scholar] [CrossRef]
- Tiveron, A.P.; Rosalen, P.L.; Franchin, M.; Lacerda, R.C.C.; Bueno-Silva, B.; Benso, B.; Denny, C.; Ikegaki, M.; de Alencar, S.M. Chemical Characterization and Antioxidant, Antimicrobial, and Anti-Inflammatory Activities of South Brazilian Organic Propolis. PLoS ONE 2016, 11, e0165588. [Google Scholar] [CrossRef]
- Miorin, P.L.; Levy Junior, N.C.; Custodio, A.R.; Bretz, W.A.; Marcucci, M.C. Antibacterial Activity of Honey and Propolis from Apis Mellifera and Tetragonisca Angustula against Staphylococcus Aureus. J. Appl. Microbiol. 2003, 95, 913–920. [Google Scholar] [CrossRef] [PubMed]
- Stepanović, S.; Antić, N.; Dakić, I.; Švabić-Vlahović, M. In Vitro Antimicrobial Activity of Propolis and Synergism between Propolis and Antimicrobial Drugs. Microbiol. Res. 2003, 158, 353–357. [Google Scholar] [CrossRef] [PubMed]
- Vardar-Ünlü, G.; Silici, S.; Ünlü, M. Composition and in Vitro Antimicrobial Activity of Populus Buds and Poplar-Type Propolis. World J. Microbiol. Biotechnol. 2008, 24, 1011–1017. [Google Scholar] [CrossRef]
- Nina, N.; Quispe, C.; Jiménez-Aspee, F.; Theoduloz, C.; Feresín, G.E.; Lima, B.; Leiva, E.; Schmeda-Hirschmann, G. Antibacterial Activity, Antioxidant Effect and Chemical Composition of Propolis from the Región Del Maule, Central Chile. Molecules 2015, 20, 18144–18167. [Google Scholar] [CrossRef]
- Grecka, K.; Kuś, P.M.; Okińczyc, P.; Worobo, R.W.; Walkusz, J.; Szweda, P. The Anti-Staphylococcal Potential of Ethanolic Polish Propolis Extracts. Molecules 2019, 24, 1732. [Google Scholar] [CrossRef]
- AL-Waili, N.; Al-Ghamdi, A.; Ansari, M.J.; Al-Attal, Y.; Salom, K. Synergistic Effects of Honey and Propolis toward Drug Multi-Resistant Staphylococcus Aureus, Escherichia Coli and Candida Albicans Isolates in Single and Polymicrobial Cultures. Int. J. Med. Sci. 2012, 9, 793–800. [Google Scholar] [CrossRef] [PubMed]
- Janani, D.; Lad, S.S.; Rawson, A.; Sivanandham, V.; Rajamani, M. Effect of Microwave and Ultrasound-Assisted Extraction Methods on Phytochemical Extraction of Bee Propolis of Indian Origin and Its Antibacterial Activity. Int. J. Food Sci. Technol. 2022, 57, 7205–7213. [Google Scholar] [CrossRef]
- De Marco, S.; Piccioni, M.; Pagiotti, R.; Pietrella, D. Antibiofilm and Antioxidant Activity of Propolis and Bud Poplar Resins versus Pseudomonas Aeruginosa. Evid. Based Complement. Alternat. Med. 2017, 2017, 5163575. [Google Scholar] [CrossRef]
- Runyoro, D.K.B.; Ngassapa, O.D.; Kamugisha, A. Antimicrobial Activity of Propolis from Tabora and Iringa Regions, Tanzania and Synergism with Gentamicin. J. Appl. Pharm. Sci. 2017, 7, 171–176. [Google Scholar] [CrossRef]
- Veiko, A.G.; Olchowik-Grabarek, E.; Sekowski, S.; Roszkowska, A.; Lapshina, E.A.; Dobrzynska, I.; Zamaraeva, M.; Zavodnik, I.B. Antimicrobial Activity of Quercetin, Naringenin and Catechin: Flavonoids Inhibit Staphylococcus Aureus-Induced Hemolysis and Modify Membranes of Bacteria and Erythrocytes. Molecules 2023, 28, 1252. [Google Scholar] [CrossRef] [PubMed]
Sample ID | County | Apiary | Coordinates |
---|---|---|---|
C1 | Cluj | USAMV apiary | 46°45′37.16″ N; 23°34′13.47″ E |
C2 | Cluj | Palocsay apiary | 46°45′35.83″ N; 23°37′22.57″ E |
A | Alba | Alba apiary | 46°20′31.68″ N; 24°1′23.13″ E |
S | Sălaj | Sălaj apiary | 46°58′0.3″ N; 23°1′0.4″ E |
H | Harghita | Corund apiary | 46°27′27.3″N; 25°16′11.8″ E |
Locations | |||||||
---|---|---|---|---|---|---|---|
CLC ID | Land Class Description | C1 | C2 | A | S | H | |
Economically viable flight area (1200 m radius) | 112 | Discontinuous urban fabric | 76.73 | 27.82 | 6.13 | 18.53 | 0.00 |
121 | Industrial or commercial units | 0.00 | 48.86 | 0.00 | 0.00 | 0.00 | |
133 | Construction sites | 0.00 | 2.09 | 0.00 | 0.00 | 0.00 | |
211 | Non-irrigated arable land | 20.71 | 7.83 | 0.00 | 5.32 | 0.00 | |
222 | Fruit trees and berry plantations | 0.00 | 3.50 | 8.65 | 0.00 | 0.00 | |
231 | Pastures | 2.56 | 0.00 | 27.68 | 24.46 | 27.40 | |
242 | Complex cultivation patterns | 0.00 | 9.90 | 19.49 | 29.96 | 0.00 | |
243 | Land principally occupied by agriculture, with significant areas of natural vegetation | 0.00 | 0.00 | 16.30 | 15.84 | 0.00 | |
311 | Broad-leaved forest | 0.00 | 0.00 | 6.39 | 5.89 | 29.05 | |
312 | Coniferous forest | 0.00 | 0.00 | 3.43 | 0.00 | 0.00 | |
313 | Mixed forest | 0.00 | 0.00 | 0.00 | 0.00 | 28.39 | |
321 | Natural grasslands | 0.00 | 0.00 | 0.00 | 0.00 | 13.98 | |
324 | Transitional woodland-shrub | 0.00 | 0.00 | 0.00 | 0.00 | 1.17 | |
411 | Inland marshes | 0.00 | 0.00 | 11.93 | 0.00 | 0.00 | |
Maximum flight area (3000 m radius) | 112 | Discontinuous urban fabric | 61.82 | 46.20 | 4.56 | 5.15 | 0.00 |
121 | Industrial or commercial units | 4.47 | 13.36 | 0.00 | 1.11 | 0.00 | |
133 | Construction sites | 0.01 | 3.42 | 0.00 | 0.00 | 0.00 | |
141 | Green urban areas | 7.17 | 0.90 | 0.00 | 0.00 | 0.00 | |
211 | Non-irrigated arable land | 0.99 | 12.12 | 27.27 | 9.89 | 0.00 | |
222 | Fruit trees and berry plantations | 0.02 | 16.19 | 1.40 | 0.34 | 0.00 | |
231 | Pastures | 5.51 | 1.38 | 47.65 | 31.32 | 20.51 | |
242 | Complex cultivation patterns | 4.14 | 5.57 | 4.15 | 17.04 | 6.38 | |
243 | Land principally occupied by agriculture, with significant areas of natural vegetation | 0.00 | 0.19 | 6.05 | 6.42 | 0.00 | |
311 | Broad-leaved forest | 14.80 | 0.27 | 2.53 | 23.92 | 26.90 | |
312 | Coniferous forest | 0.80 | 0.00 | 1.62 | 0.00 | 1.86 | |
313 | Mixed forest | 0.00 | 0.38 | 0.00 | 0.00 | 14.29 | |
321 | Natural grasslands | 0.00 | 0.00 | 0.00 | 0.00 | 25.94 | |
324 | Transitional woodland-shrub | 0.00 | 0.00 | 0.00 | 4.80 | 4.12 | |
411 | Inland marshes | 0.00 | 0.00 | 4.78 | 0.00 | 0.00 | |
511 | Water courses | 0.27 | 0.00 | 0.00 | 0.00 | 0.00 |
Quality Parameter (%) | Propolis Extracts | ||||
---|---|---|---|---|---|
C1 | C2 | A | S | H | |
Wax | 41.2 ± 0.2 b | 47.2 ± 0.6 a | 20.0 ± 0.3 e | 31.9 ± 0.3 d | 39.5 ± 0.7 c |
Balsam 1% | 49.4 ± 0.5 c | 44.7 ± 0.9 d | 61.6 ± 0.6 a | 51.9 ± 0.8 b | 51.6 ± 0.9 b |
Balsam 10% | 50.0 ± 0.9 c | 41.0 ± 0.9 d | 64.8 ± 0.2 a | 54.8 ± 0.5 b | 54.1 ± 0.5 b |
C1 | C2 | A | S | H | |
---|---|---|---|---|---|
TPC | 149.8 ± 0.8 a | 125.4 ± 1.0 c | 150.0 ± 0.4 a | 146.3 ± 0.6 b | 149.7 ± 0.6 a |
TFC | 16.9 ± 0.5 a | 9.8 ± 0.8 c | 13.0 ± 0.8 b | 5.9 ± 0.5 d | 1.5 ± 0.01 e |
Propolis Extracts | |||||
---|---|---|---|---|---|
Phenolic Compounds (µg/g) | C1 | C2 | A | S | H |
Protocatechuic acid | 0.40 ± 0.02 | 0.37 ± 0.04 | 0.41 ± 0.2 | 0.62 ± 0.04 | 0.20 ± 0.03 |
p-OH-benzoic | 3.76 ± 0.4 | 3.20 ± 0.2 | 9.15 ± 1.1 | 5.76 ± 1.1 | 7.16 ± 1.2 |
Catechin | n.d. | n.d. | 0.24 ± 0.1 | n.d. | 1.60 ± 0.08 |
Vanillic acid | 0.50 ± 0.02 | 0.61 ± 0.03 | 0.85 ± 0.2 | 1.3 ± 0.05 | n.d. |
Clorogenic acid | n.d. | n.d. | n.d. | 0.54 ± 0.02 | n.d. |
Caffeic acid | 42.41 ± 2.1 | 22.93 ± 1.6 | 77.95 ± 0.7 | 20.76 ± 0.6 | 28.15 ± 2.1 |
Vanillin | 6.58 ± 1.7 | 8.84 ± 0.7 | 18.69 ± 1.8 | 27.26 ± 1.9 | 22.80 ± 2.9 |
p-cumaric acid | 64.12 ± 2.6 | 57.76 ± 1.5 | 148.41 ± 6.1 | 188.33 ± 3.0 | 295.08 ± 3.9 |
Ferulic acid | 31.12 ± 1.1 | 66.51 ± 3.6 | 96.90 ± 2.9 | 214.13 ± 2.71 | 330.40 ± 4.8 |
Naringin | 1.62 ± 0.1 | n.d. | n.d. | n.d. | n.d. |
Rosmarinic acid | 0.85 ± 0.03 | n.d. | 0.98 ± 0.2 | 6.85 ± 1.3 | 2.76 ± 0.3 |
Quercitrin | 0.45 ± 0.02 | n.d. | 1.19 ± 0.1 | n.d. | 2.27 ± 0.1 |
Quercetin | 11.13 ± 1.0 | 4.25 ± 0.2 | n.d. | n.d. | n.d. |
Naringenin | 55.41 ± 1.9 | 17.20 ± 2.2 | 21.19 ± 1.10 | 8.84 ± 0.7 | n.d. |
Apigenin | 22.46 ± 2.6 | 9.77 ± 0.6 | 15.89 ± 1.67 | 13.48 ± 1.2 | 4.41 ± 0.8 |
Kaempferol | 7.97 ± 1.4 | n.d. | n.d. | n.d. | n.d. |
CAPE | 116.77 ± 2.2 | n.d. | 180.61 ± 5.1 | 44.15 ± 0.9 | n.d. |
Chrysin | 188.48 ± 3.9 | 83.22 ± 3.0 | 158.61 ± 3.7 | 38.2 ± 2.3 | 9.27 ± 1.1 |
Pinocembrin | 357.86 ± 3.7 | 208.13 ± 2.8 | 180.31 ± 4.1 | n.d. | n.d. |
Galangin | 43.07 ± 2.1 | 19.80 ± 1.7 | 29.43 ± 2.83 | 3.65 ± 0.2 | n.d. |
Propolis Extracts | |||||
---|---|---|---|---|---|
C1 | C2 | A | S | H | |
Phenolic acids | 259.9 ± 41.5 | 151.38 ± 29.9 | 515.2 ± 72.7 | 482.45 ± 88.4 | 663.7 ± 157.2 |
Flavonoids | 688.5 ± 120.6 | 342.37 ± 79.3 | 406.6 ± 79.6 | 61.18 ± 15.3 | 15.95 ± 3.5 |
Flavonoids + Phenolic acids | 948.4 ± 92.4 | 493.75 ± 59.5 | 921.91 ± 72.7 | 546.63 ± 72.1 | 679.7 ± 135.0 |
Antioxidant Assay | Propolis Extracts | |||||
---|---|---|---|---|---|---|
C1 | C2 | A | S | H | PC | |
FRAP | 5.4 ± 0.1 d | 4.8 ± 0.09 d | 7.4 ± 0.2 b | 5.4 ± 0.3 d | 6.2 ± 0.2 c | 58.3 ± 1.0 a |
DPPH | 29.8 ± 0.8 c | 24.9 ± 0.5 e | 31.6 ± 0.3 b | 26.4 ± 0.6 d | 28.8 ± 0.5 c | 79.6 ± 0.4 a |
ABTS | 34.0 ± 0.3 b | 25.2 ± 1.90 e | 33.4 ± 0.2 b | 29.2 ± 0.3 d | 31.0 ± 0.2 c | 49.5 ± 0.7 a |
Propolis Extracts | Gram-positive Indicator Strains | ||||
---|---|---|---|---|---|
E. faecalis ATCC 29212 | S. aureus ATCC 25923 | S. aureus MRSA ATCC 43300 | S. epidermidis ATCC 12228 | L. monocytogenes ATCC 35152 | |
C1 | 10.4 ± 0.3 b | 12.8 ± 0.2 b | 9.4 ± 0.4 b | 11.1 ± 0.2 b | 10.4 ± 0.4 b |
C2 | 5.4 ± 0.3 d | 12.2 ± 0.2 c | 9.0 ± 0.3 bc | 8.1 ± 0.2 d | 8.1 ± 0.1 d |
A | 5.3 ± 0.1 c | 11.0 ± 0.2 d | 8.5 ± 0.4 c | 8.8 ± 0.2 c | 9.2 ± 0.2 c |
S | 8.4 ± 0.3 d | 7.3 ± 0.3 f | 6.7 ± 0.2 d | 6.9 ± 0.1 e | 7.5 ± 0.4 d |
H | 5.9 ± 0.2 d | 8.2 ± 0.2 e | 7.2 ± 0.2 d | 8.1 ± 0.3 d | 6.5 ± 0.3 e |
Vancomycin (30 µg) | 15.3 ± 0.9 a | 19.0 ± 0.08 a | 18.0 ± 0.08 a | 20.0 ± 0.1 a | 17.0 ± 0.1 a |
Propolis Extracts | Gram-negative and Yeast Indicator Strains | |||||
---|---|---|---|---|---|---|
S. enterica ATCC 25928 | K. pneumoniae ATCC 13883 | P. aeruginosa ATCC 27853 | E. coli ATCC 25922 | A. baumanii ATCC 19606 | C. albicans ATCC 10231 | |
C1 | 7.4 ± 0.2 d | 3.1 ± 0.1 d | 10.5 ± 0.3 a | 4.9 ± 0.1 d | 7.5 ± 0.4 b | 12.5 ± 0.6 b |
C2 | 11.1 ± 0.2 b | 5.7 ± 0.2 c | 9.1 ± 0.3 c | 6.1 ± 0.1 c | 7.5 ± 0.4 b | 8.1 ± 0.2 d |
A | 11.5 ± 0.4 b | 5.5 ± 0.1 c | 9.4 ± 0.4 bc | 4.9 ± 0.05 d | 6.5 ± 0.2 c | 8.9 ± 0.2 c |
S | 8.3 ± 0.2 c | 7.2 ± 0.3 b | 8.3 ± 0.2 d | 7.1 ± 0.2 b | 7.9 ± 0.1 b | 7.1 ± 0.3 e |
H | 3.8 ± 0.1 e | 0 ± 0 e | 7.1 ± 0.1 e | 4.2 ± 0.2 e | 3.2 ± 0.1 d | 7.3 ± 0.3 e |
Gentamycin (10 µg) | 19.0 ± 0.2 a | 18.0 ± 0.08 a | 10.0 ± 0.08 ab | 20.0 ± 0.1 a | 16.0 ± 0.08 a | - |
Fluconazole (25 µg) | - | - | - | - | - | 28.0 ± 0.2 a |
C1 | C2 | A | S | H | PC | ||
---|---|---|---|---|---|---|---|
Gram-positive strains | E. faecalis ATCC 29212 | 0.75 | 1.00 | 1.78 | 3.12 | 4.06 | 1.56 × 10−3 |
S. aureus ATCC 25923 | 0.45 | 0.25 | 0.45 | 0.78 | 0.78 | 6.25 × 10−3 | |
S. aureusMRSA ATCC 43300 | 1.00 | 0.59 | 0.89 | 2.56 | 4.06 | 12.5 × 10−3 | |
S. epidermidis ATCC 12228 | 0.59 | 1.28 | 1.00 | 3.12 | 4.06 | 6.25 × 10−3 | |
L. monocytogenes ATCC 35152 | 0.50 | 1.28 | 1.78 | 4.69 | 5.63 | 3.12 × 10−3 | |
Gram-negative strains | K. pneumoniae ATCC 13883 | 12.50 | 12.50 | 8.13 | 8.13 | R | 6.25 × 10−3 |
E. coli ATCC 25922 | 1.56 | 0.78 | 3.12 | 5.63 | 11.25 | 1.56 × 10−3 | |
P. aeruginosa ATCC 27853 | 5.63 | 2.56 | 8.13 | 12.50 | 18.75 | 6.25 × 10−3 | |
S. enterica ATCC 25928 | 2.56 | 1.28 | 3.12 | 5.63 | 5.63 | 3.12 × 10−3 | |
A. baumanii ATCC 19606 | 6.25 | 8.13 | 11.25 | 11.25 | 12.50 | 6.25 × 10−3 | |
Yeast strain | C. albicans ATCC 10231 | 0.39 | 0.39 | 1.03 | 1.28 | 1.50 | 3.12 × 10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albanese, G.; Giurgiu, A.I.; Bobiș, O.; Urcan, A.C.; Botezan, S.; Bonta, V.; Ternar, T.N.; Pașca, C.; Iorizzo, M.; De Cristofaro, A.; et al. Functional and Antimicrobial Properties of Propolis from Different Areas of Romania. Appl. Sci. 2025, 15, 898. https://doi.org/10.3390/app15020898
Albanese G, Giurgiu AI, Bobiș O, Urcan AC, Botezan S, Bonta V, Ternar TN, Pașca C, Iorizzo M, De Cristofaro A, et al. Functional and Antimicrobial Properties of Propolis from Different Areas of Romania. Applied Sciences. 2025; 15(2):898. https://doi.org/10.3390/app15020898
Chicago/Turabian StyleAlbanese, Gianluca, Alexandru Ioan Giurgiu, Otilia Bobiș, Adriana Cristina Urcan, Sara Botezan, Victorița Bonta, Tudor Nicolas Ternar, Claudia Pașca, Massimo Iorizzo, Antonio De Cristofaro, and et al. 2025. "Functional and Antimicrobial Properties of Propolis from Different Areas of Romania" Applied Sciences 15, no. 2: 898. https://doi.org/10.3390/app15020898
APA StyleAlbanese, G., Giurgiu, A. I., Bobiș, O., Urcan, A. C., Botezan, S., Bonta, V., Ternar, T. N., Pașca, C., Iorizzo, M., De Cristofaro, A., Caprio, E., & Dezmirean, D. S. (2025). Functional and Antimicrobial Properties of Propolis from Different Areas of Romania. Applied Sciences, 15(2), 898. https://doi.org/10.3390/app15020898