Alteration of the Antifungal Action Mechanism Due to Structural Changes in the Antimicrobial Peptide, HnMc
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fungal Cells and Culture Conditions
2.3. Peptide Synthesis
2.4. Antifungal Assay
2.5. Confocal Laser Scanning Microscopy (CLSM) Analysis
2.6. SYTOX Green Uptake
2.7. Intercellular ROS and Superoxide Levels
2.8. Induction Assay of Drug Resistance
3. Results and Discussion
3.1. Designation and Antifungal Effects of HnMc Variants
3.2. Localization of AlexaFluor 488-Labeled Peptides in C. albicans Cells
3.3. Membrane-Permeable Effects of Peptides
3.4. Intracellular Reactive Oxygen Species (ROS) and Mitochondrial Superoxide Generations
3.5. Induction of Drug Resistance in C. albicans Cells
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Garg, V.K.; Joshi, H.; Sharma, A.K.; Yadav, K.; Yadav, V. Host defense peptides at the crossroad of endothelial cell physiology: Insight into mechanistic and pharmacological implications. Peptides 2024, 182, 171320. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Wang, J.; Li, X.; Zhang, Y.; Xian, J.; Wang, C.; Zhang, J.; Wu, C. Amphiphilic small molecule antimicrobials: From cationic antimicrobial peptides (CAMPs) to mechanism-related, structurally-diverse antimicrobials. Eur. J. Med. Chem. 2023, 262, 115896. [Google Scholar] [CrossRef] [PubMed]
- Kuchay, R.A.H. Novel and emerging therapeutics for antimicrobial resistance: A brief review. Drug Discov. Ther. 2024, 18, 269–276. [Google Scholar] [CrossRef]
- Gagat, P.; Ostrówka, M.; Duda-Madej, A.; Mackiewicz, P. Enhancing Antimicrobial Peptide Activity through Modifications of Charge, Hydrophobicity, and Structure. Int. J. Mol. Sci. 2024, 25, 10821. [Google Scholar] [CrossRef] [PubMed]
- Min, K.H.; Kim, K.H.; Ki, M.R.; Pack, S.P. Antimicrobial Peptides and Their Biomedical Applications: A Review. Antibiotics 2024, 13, 794. [Google Scholar] [CrossRef]
- Weaver, D.F. Endogenous Antimicrobial-Immunomodulatory Molecules: Networking Biomolecules of Innate Immunity. Chembiochem 2024, 25, e202400089. [Google Scholar] [CrossRef] [PubMed]
- Mercer, D.K.; O’Neil, D.A. Innate Inspiration: Antifungal Peptides and Other Immunotherapeutics From the Host Immune Response. Front. Immunol. 2020, 11, 2177. [Google Scholar] [CrossRef]
- Canè, C.; Tammaro, L.; Duilio, A.; Di Somma, A. Investigation of the Mechanism of Action of AMPs from Amphibians to Identify Bacterial Protein Targets for Therapeutic Applications. Antibiotics 2024, 13, 1076. [Google Scholar] [CrossRef] [PubMed]
- Yeaman, M.R.; Yount, N.Y. Mechanisms of Antimicrobial Peptide Action and Resistance. Pharmacol. Rev. 2003, 55, 27–55. [Google Scholar] [CrossRef]
- Fang, Y.; Ma, Y.; Yu, K.; Dong, J.; Zeng, W. Integrated computational approaches for advancing antimicrobial peptide development. Trends Pharmacol. Sci. 2024, 45, 1046–1060. [Google Scholar] [CrossRef] [PubMed]
- Odunitan, T.T.; Apanisile, B.T.; Afolabi, J.A.; Adeniwura, P.O.; Akinboade, M.W.; Ibrahim, N.O.; Alare, K.P.; Saibu, O.A.; Adeosun, O.A.; Opeyemi, H.S.; et al. Beyond Conventional Drug Design: Exploring the Broad-Spectrum Efficacy of Antimicrobial Peptides. Chem. Biodivers 2024. [Google Scholar] [CrossRef] [PubMed]
- Goki, N.H.; Tehranizadeh, Z.A.; Saberi, M.R.; Khameneh, B.; Bazzaz, B.S.F. Structure, Function, and Physicochemical Properties of Pore-forming Antimicrobial Peptides. Curr. Pharm. Biotechnol. 2024, 25, 1041–1057. [Google Scholar] [CrossRef] [PubMed]
- Juretić, D. Designed Multifunctional Peptides for Intracellular Targets. Antibiotics 2022, 11, 1196. [Google Scholar] [CrossRef]
- Wang, C.; Yang, C.; Chen, Y.C.; Ma, L.; Huang, K. Rational Design of Hybrid Peptides: A Novel Drug Design Approach. Curr. Med. Sci. 2019, 39, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Duclohier, H. Helical kink and channel behaviour: A comparative study with the peptaibols alamethicin, trichotoxin and antiamoebin. Eur. Biophys. J. 2004, 33, 169–174. [Google Scholar] [CrossRef]
- Xiao, Y.; Herrera, A.I.; Bommineni, Y.R.; Soulages, J.L.; Prakash, O.; Zhang, G. The central kink region of fowlicidin-2, an alpha-helical host defense peptide, is critically involved in bacterial killing and endotoxin neutralization. J. Innate Immun. 2009, 1, 268–280. [Google Scholar] [CrossRef]
- Song, Y.M.; Yang, S.T.; Lim, S.S.; Kim, Y.; Hahm, K.S.; Kim, J.I.; Shin, S.Y. Effects of L- or D-Pro Incorporation into Hydrophobic or Hydrophilic Helix Face of Amphipathic Alpha-helical Model Peptide on Structure and Cell Selectivity. Biochem. Biophys. Res. Commun. 2004, 314, 615–621. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, A.; Villegas, E.; Montoya-Rosales, A.; Rivas-Santiago, B.; Corzo, G. Characterization of antibacterial and hemolytic activity of synthetic pandinin 2 variants and their inhibition against Mycobacterium tuberculosis. PLoS ONE 2014, 9, e101742. [Google Scholar]
- Righino, B.; Pirolli, D.; Radicioni, G.; Marzano, V.; Longhi, R.; Arcovito, A.; Sanna, M.T.; De Rosa, M.C.; Paoluzi, S.; Cesareni, G.; et al. Structural studies and SH3 domain binding properties of a human antiviral salivary proline-rich peptide. Biopolymers 2016, 106, 714–725. [Google Scholar] [CrossRef] [PubMed]
- Park, S.C.; Lee, J.K.; Kim, Y.M.; Lee, J.R. Effects of structural changes on antibacterial activity and cytotoxicity due to proline substitutions in chimeric peptide HnMc. Biochem. Biophys. Res. Commun. 2023, 679, 139–144. [Google Scholar] [CrossRef]
- Kim, Y.M.; Son, H.; Park, S.C.; Lee, J.K.; Jang, M.K.; Lee, J.R. Anti-Biofilm Effects of Rationally Designed Peptides against Planktonic Cells and Pre-Formed Biofilm of Pseudomonas aeruginosa. Antibiotics 2023, 12, 349. [Google Scholar] [CrossRef]
- Kim, Y.M.; Kim, N.H.; Lee, J.W.; Jang, J.S.; Park, Y.H.; Park, S.C.; Jang, M.K. Novel chimeric peptide with enhanced cell specificity and anti-inflammatory activity. Biochem. Biophys. Res. Commun. 2015, 463, 322–328. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Park, S.C.; Noh, G.; Kim, H.; Yoo, S.H.; Kim, I.R.; Lee, J.R.; Jang, M.K. Antifungal Effect of a Chimeric Peptide Hn-Mc against Pathogenic Fungal Strains. Antibiotics 2020, 9, 454. [Google Scholar] [CrossRef] [PubMed]
- Dantas Ada, S.; Day, A.; Ikeh, M.; Kos, I.; Achan, B.; Quinn, J. Oxidative stress responses in the human fungal pathogen, Candida albicans. Biomolecules 2015, 5, 142–165. [Google Scholar] [CrossRef] [PubMed]
- Scherz-Shouval, R.; Elazar, Z. ROS, mitochondria and the regulation of autophagy. Trend Cell Biol. 2007, 7, 422–427. [Google Scholar] [CrossRef]
Fungal Cells | MIC (μM) | |||||
---|---|---|---|---|---|---|
HnMc | HnMc-W | HnMc-WP1 | HnMc-WP2 | Melittin | Fluconazole | |
Yeast | ||||||
C. albicans | 16 | 16 | 16 | 8 | 8 | 0.8 |
C. albicans CCARM 14001 | 16 | 16 | 16 | 8 | 4 | >128.0 |
C. albican CCARM 14004 | 16 | 16 | 16 | 8 | 4 | >128.0 |
C. albicans CCARM 14007 | 16 | 16 | 16 | 8 | 4 | >128.0 |
C. albicans CCARM 14020 | 16 | 16 | 16 | 8 | 4 | >128.0 |
C. krusei | 8 | 8 | 8 | 4 | 4 | 32.0 |
C. parapsilosis | 16 | 16 | 16 | 8 | 8 | 4.0 |
Mold | ||||||
C. gloeosporioides | 1 | 1 | 1 | 1 | 8 | - |
F. graminearum | 2 | 2 | 2 | 1 | 4 | - |
F. oxysporum | 2 | 2 | 2 | 2 | 2 | - |
F. solani | 2 | 2 | 2 | 2 | 2 | - |
T. harzianum | 2 | 2 | 2 | 1 | 4 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, K.R.; Lee, J.H.; Lee, M.-Y.; Park, S.-C. Alteration of the Antifungal Action Mechanism Due to Structural Changes in the Antimicrobial Peptide, HnMc. Appl. Sci. 2025, 15, 1307. https://doi.org/10.3390/app15031307
Cho KR, Lee JH, Lee M-Y, Park S-C. Alteration of the Antifungal Action Mechanism Due to Structural Changes in the Antimicrobial Peptide, HnMc. Applied Sciences. 2025; 15(3):1307. https://doi.org/10.3390/app15031307
Chicago/Turabian StyleCho, Kwang Rae, Jae Ho Lee, Min-Young Lee, and Seong-Cheol Park. 2025. "Alteration of the Antifungal Action Mechanism Due to Structural Changes in the Antimicrobial Peptide, HnMc" Applied Sciences 15, no. 3: 1307. https://doi.org/10.3390/app15031307
APA StyleCho, K. R., Lee, J. H., Lee, M.-Y., & Park, S.-C. (2025). Alteration of the Antifungal Action Mechanism Due to Structural Changes in the Antimicrobial Peptide, HnMc. Applied Sciences, 15(3), 1307. https://doi.org/10.3390/app15031307